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Proof, (i) This is an immediate consequence of a result of Steenrod in

[5, p. 56, § 12.6]. In fact, from (6) and (8) in the proof of Theorem 3.1,

we easily see that the coordinate functions

<j)] : (OnXO1) x (Rn\0)'(«LXO1),
<t> '2 : (<I>„\0) x R"\0)n" X(<L\0)

of !£("„can be defined respectively by

(t, tB(V>)
<K(^ 0

V i +
'

(t'Bfif, f)

y/r+W)'
and that for any fixed element B e ^{O1, O}, the coordinate transformation

° $ub in Rn\0 is t -+ f tB(k)/N(X)1/2, and thus it cooincides with

the action of an element of Gn.

(ii) Obviously, S""1 cz Rn\0 is invariant under Gn. Therefore, according

to a result of Steenrod [5, p. 24, 2nd paragraph], there is a unique
subbundle of J5£'n with fiber Sn'1 and the same coordinate neighborhoods
and coordinate transformations as ^S£'n. Comparison will show that this

subbundle is precisely our «/„.

4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES

In the early 30's, H. Hopf [2, 3], using complex numbers, quaternions,
and Cayley numbers, discovered his fiberings of S2"-1 by S"~x over Sn,

n 2, 4, 8. Later in 1950, N. Steenrod [5, pp. 105-110] used these fiberings
of Hopf to construct three sphere bundles, which we here call the Hopf-
Steenrod bundles. But he did this in a roundabout way. For the two cases

n 2, 4, he obtained the bundles Sz -> S2 and S1 — S4 as special cases

of a general result on "sphere as a bundle over a projective space". For
the case n 8, he obtained the bundle S15 -> S8 as a subbundle of a linear
bundle which he constructed by using Cayley numbers. This being the case,
he did not need to define the coordinate functions for his bundles. Still
later in 1952, P.J. Hilton [1, pp. 52-55] showed, in a direct manner, that
the Hopf fiberings S2"-1 -» sn, n 2,4,8, are fiber spaces by exhibiting
some sets of coordinate functions. But he did not calculate the coordinate
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transformations or mention the bundle groups because they were not needed

for his purpose.
In this section, we first describe the fiberings of S2"-1 by Sn~x over

S", n 2, 4, 8, as Hopf first discovered them, and then, using Hopfs ideas
and method and taking into consideration the work of Steenrod and Hilton,
we give a unified and explicit formulation of the structures of the three

Hopf-Steenrod bundles S2n~x -> Sn. In the next section, we shall show how
the Hopf-Steenrod bundles are related to the sphere bundles we constructed
in § 3.

Let Qn, n 2, 4, 8, be respectively the (hypercomplex) systems of complex
numbers, quaternions and Cayley numbers. (See Appendix 1 for properties of
Cayley numbers.) Suppose that Ia, a 0, 1,..., n — 1, are the base elements

in Qn. Then any element X of Qn can be uniquely expressed as

where xx,..., xn are real numbers called the components of X. Furthermore,
let us define

m (Ii:L*2+i)1/2

as the length of X. Then we can identify Qn with the Euclidean rc-space
Rn by taking the components (xl5..., xn) of an element X in Qn as the

rectangular coordinates of the point X in Rn.

Consider now the space Qn x Qn of ordered pairs (X, Y) of elements

of Qn, and let x xn) and y (xn + x,..., x2n) be the components
of X and Y. Then we can identify Qn x Qn with Rln by taking (x, y)

(xj,..., x„; x„ + 1,..., x2n) as rectangular coordinates in R2n. Calling (X, Y)

the (^-coordinates in R2n, we define a Qn-line in Rln as either the point set

X 0, or a set of all the points whose (^-coordinates (X, T) satisfy an

equation of the form Y CX, where C is some element of Qn. We can easily

see that the ß„-lines are n-planes in R2n with the properties that through any
point in R2n\0, there passes one and only one such n-plane, and that any
two such n-planes intersect only at the origin of R2n.

Suppose that S2"-1 is the unit sphere |X|2 + |T|2 lin Rln. Then it
follows from the above that the great (n — l)-spheres in which S2"-1 is

intersected by the Qn-lines are such that one and only one of them passes

through each point of S2"-1, and so they form a fibering of S2"-1 by
S"'1.

Closely associated with this fibering of S2n~x is a map p from S2n~x

onto the n-sphere Sn, defined as follows. First, we regard Sn as Rn closed
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by the point oo at infinity, so that Sn Rn u oo Qn u oo. Then p sends

each point of S2n~1 which lies on a ß„-line Y CX to the point

CeQnaSn, and sends each point of S2n~1 which lies on the ß„-line
X 0 to the point oo e Sn. In other words, the map p:S2n_1 -> 5" is

defined by

where (X, 7) is any point of S2"-1. It is easy to see that p is a continuous

map, and that the inverse image of each point of Sn is one of the great
(n — l)-spheres in which S2"-1 is intersected by the <2„-lines.

The fibering S2"-1 -> sn by S"_1 constructed above is then the famous

Hopffibering, and the map p is the Hopf map related to it.
We now prove the following theorem which gives a unified and explicit

formulation of the three Hopf-Steenrod bundles S2/1_1 Sn, n 2, 4, 8.

Theorem 4.1. Let Qn, n — 2, 4, 8, be respectively the systems ofcomplex
numbers, quaternions and Cayley numbers, and let the spaces Qn, Qn x Qn

be identified with R", Rn x Rn R2n, respectively. of Qn-lines

{X 0, Y CX) in R2n slice the unit sphere S"2"-1 in R2n into a

fiber bundle

Xe^n (S2"~x, S\ p, 5""1, O(w))

with base space Sn Qn u oo, projection p, fiber S"'1 and group the
orthogonal group 0(n).

Proof We prove by exhibiting the ingredients of a representative
coordinate bundle.

(1) The bundle space S2n 1 is the unit sphere |X|2 + |7|2 1 in
R2n QnX Qn-

(2) The base space Sn is identified with R" u oo Qn u oo. Therefore,
Sn is covered by the two coordinate neighborhoods

with elements of Qn and oo serving as coordinates.

(3) The projection p : S2n~1 Sn is the Hopf map defined by (4.1).

(4) The fiber Sn~1 is the unit sphere | X | 1 in R" Qn.

(5) The group 0(n) of the bundle acts on S"'1 effectively.

(4.1)
X # 0,
X 0,

Qn, Sn\0 (Q„uoo)\0 (Qn\0) U 00
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(6) Let C, D be elements of Qn such that | D | 1, so that D represents
a point of Sn~\ Then the two coordinate functions are the homeomorphisms

*1 -QnX S"-1

\|/2 : (Sn\0) x S""1 -» p-\Sn\0),

defined respectively by

CD)
(4.2) ^i(C, D)

ynrcp

(4.3)

(C_1Z), £>)
\|/2(C, D) where C # co,

Vl + 1/1 C I2

\|/2(oo, D) (0, D).

That \Jz-l \J/2 are indeed homeomorphisms is easy to verify.

(7) It can readily be seen from (4.1), (4.2) and (4.3) that the projection p
and the coordinate functions \|/i, \J/2 satisfy the conditions :

(4.4)
(po^JiQD) C,
(p o \|/2) (C, D) C if C ^ oo and (p ° \J/2) (oo, D) oo

(8) For each fixed point C in the intersection Qn n (5"\0) Qn\0 of
the two coordinate neighborhoods in the base space Sn, let \||/1>c and \|/2>c

be the two homeomorphisms S"-1 -> p_1(Q S2"-1 defined by

*i(C, D), x|/2tC(Z)) ^2(C, D),

where \|/1? v|/2 are the coordinate functions defined in (6). Then, we can

easily verify by using (4.2) and (4.3) that the coordinate transformation

^o^cin the fiber S"-1 is

(4.5) D -> CD/I C I,

where D with | D | 1 is a variable point of S"-1 e: Now since the

components of the product CX of any two elements C, X of Qn are
bilinear functions of the components of C, X, the map X -> C2T/| C | is a

linear transformation in Rn Qn. It is in fact an orthogonal transformation
because | CX/1 C | | | X |. Therefore, the coordinate transformation (4.5)

coincides with the action of an element of the group 0(n).

(9) Finally, from the bilinearity of the product CX, it also follows that
the coordinate transformation (4.5) varies continuously with C. Therefore, the
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map from Qn n (Sn\0) Qn\0 -> 0(n) defined by C -> c ° ti,c is

continuous.

Thus, with the ingredients (l)-(9) exhibited above, we have constructed

a representative coordinate bundle of the bundle in the theorem.

Remark. The coordinate functions \\f± and \|/2 as given in (4.2) and (4.3)

were arrived at as follows. By definition, \J/x is a homeomorphism sending

(C,D)eQn x S»"*-(X, Y)ep-\Qn)c=:S2n-1.

Here, X and 7 are not arbitrary functions of C, D, but must satisfy
certain conditions. First, they must satisfy (4.4)!, so that (p ° \|/i) (C, D)

p(X, 7) C. Therefore, by (4.1) X and 7 are related by

(4.6) 7 CX

Secondly, since (X, 7) is a point of S2"-1, | X |
2 + | 7 |

2 1. Combining
this with (4.6), we get

(4.7) I X I2 1/(1 + | C I2).

Finally, since D e S"'1 cr Qn,

(4.8) I DI « 1

Conditions (4.6), (4.7) and (4.8) suggest that the simplest choice of \(/1 is
(4.2). Similarly, we choose (4.3) as v| i2becauseof conditions (4.4)2.

Similar to Theorem 4.1, we have

Theorem 4.2. In R2n, n2,4,or8, the slice R2n\0 into
a fiber bundle

SfSßt (R2n\0,S",Qn\0, R))

with base space S" Q„ kj go, projection p, fiber Qn\0, and group the
general linear group GL(n, R).

Proof. The proof is similar to that of Theorem 4.1, but with the following
difference. The projection is the map p : R2"\0 -> S" defined by

(4-9) p(X, Y) _ j YX'1 if X^O,
co if 0 :



192 Y.-C. WONG AND K.-P. MOK

and the two coordination functions

(Qn\0)^p-\Qn),
^2:(S»\0) x (iQn\0)^p~1{Sn\0)

are defined respectively by

(4.10) i(C,D) (D, CD),

(4 11) I ^2^C' ^ ^C_1Z)' ^ ' where C ^ 00 '
1 *2(co, D) (0, D).

The coordinate transformations ° where C e Qn n (Sn\0) Qn\0,
are the linear maps D -> CD in the fiber Qn\0.

The relationship between the bundles «9*„ and is described in
the following theorem, the proof of which is similar to that of Theorem 3.3.

Theorem 4.3.

(i) The bundle

Sf JSP, (R2n\0,S»,p,

is equivalent in GL(n, R) to the bundle

(R2n\0, S\ p, Qn\0, 0(n))

with group 0(n).

(ii) The bundle

(S2""1, 5", p, Sn~1, 0(n))

is a subbundle of the bundle ££'n.

Let us now explain how the bundle given in Theorem 4.1 is a

unified formulation of the sphere bundles S2"-1 -> Sn9 n 2, 4, 8 constructed

by N. Steenrod using the Hopf fiberings, and how our construction
incorporates the work of P. J. Hilton.

(a) Comparison of the ingredients of the sphere bundle y8 in Theorem 4.1

with those of the fiber space S15 -> S8 of Hilton [1, p. 54] shows that
they have the same projection (4.1) and coordinate functions (4.2) and (4.3).

(b) Suppose that in the construction of the sphere bundle in
Theorem 4.1, we use the "Q„-lines" X CY instead of the Q„-lines Y CX
in defining the projection p: S2"-1 -> Sn. Then we can obtain another sphere



ISOCLINIC PLANES 193

bundle S2"'1 -> Sn by using the ingredients of but interchanging the

roles of X and 7, i.e., by replacing

(i) the projection (4.1) by

I7"1 if 7^0,
oo

(4-1 P(X> ^0 ') ^ jf Y Q,

and

(ii) the coordinate functions (4.2) and (4.3) by

(CD, D)
(4.2') ^(C, D)

V1 + Ie i2'

(D, C~lD)
v|/2(C, D) — —, where C / co

VI + VI CI2
(4.3')

\|/2(oo, D)0).

For n 2, the X, Y, C and D (with | D | 1) are all complex numbers.

On putting X zl9 Y z29 C \i and D we can see immediately
that the projection (4.1') and the coordinate functions (4.2') and (4.3') are

exactly those used by Hilton [1, p. 51] to prove that the Hopf fibering
S3 ->• S2 has a fiber space structure.

(c) Suppose that in the construction of the linear bundle SfS£
n in

Theorem 4.2, we use the "Qn-lines" X CY instead of the g„-lines 7 CX
in defining the projection p : R2n\0 -> Sn. Then we can obtain another linear
bundle by using the ingredients of 9?5£n, but interchanging the roles of X
and 7, i.e., by replacing

(i) the projection (4.9) by

XY~1 if 7^0.(4.9') p(X, 7) -
and

oo if 7 - 0,

(ii) the coordinate functions (4.10) and (4.11) by

(4.10') *MC,

2(4.11')
v|/2(C, D) (D, C 1D), where C ^ co

\|/2(oo, D) (D, O).
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For n 8, the X, Y, C and D are Cayley numbers. On putting
X c, Y d, C x and D y, we can see immediately that the

projection (4.9') and the coordinate functions (4.10') and (4.11') are exactly
those of the linear bundle constructed by N. Steenrod in [5, pp. 109-110].

Therefore, this linear bundle Fè of Steenrod and the linear bundle <9C£?8 in
Theorem 4.2 are two slightly different representations of the same bundle.

5. Comparison of our bundles with the Hopf-Steenrod bundles

In § 3, we constructed the sphere bundles

Jn (S2n~\<ï)n,K,S"-\Gn), n 2,4,8,

with fibers lying on mutually isoclinic n-planes in R2n. In § 4, we gave a

unified treatment of the classical Hopf-Steenrod sphere bundles

xe<fn (S2n_1, Sn, p, Sn~\ 0(n)), n 2, 4, 8

using, as N. Steenrod did, the Hopf map and the hypercomplex systems of

complex numbers, quaternions and Cayley numbers. In this section we shall

prove that (i) the Hopf fibering S2n_1 -a Sn and our maximal set of mutually
isoclinic n-planes in R2n are equivalent concepts (Theorems 5.1 and 5.2),

and (ii) the representative coordinate bundles constructed in § 3 and § 4

for the bundles Jn and are topologically essentially the same

(Theorem 5.3). For convenience, the theorems will be stated and proofs

given for the case n 8 only. Similar theorems hold for the cases

n 2, 4, and their proofs follow the same line and are simpler.

Theorem 5.1. For n 8, let us identify the space Q8 of Cayley
numbers with R8 by regarding the Cayley number

X (xi + x2i + x2j + x4.k, x5Fx6i-\-x1jFxsk)

as the point in R8 with rectangular coordinates (xl5..., x8), and the space

Qs x 08 °f ordered pairs of Cayley numbers with R8 x R8 R16 by

regarding the ordered pair

(.X, Y) EE ((Xi + x2i + Xjj + xfk x5 + x6z" + x7j + x8fc),

(x9 + x10i + x1L/ + x12/c, xl3 + x14i + x15j + x16k))

as the point in R16 with rectangular coordinates (xx,..., x8 ; x9,..., x16).

Then, written in terms of x \^x1 x8] and y [x9 x16],
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