5. Proof of the Fundamental Constraint

Objekttyp:  Chapter

Zeitschrift:  L'Enseignement Mathématique

Band (Jahr): 34 (1988)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 05.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



GEODESICS IN THE UNIT TANGENT BUNDLE 243

5. PrROOF OF THE FUNDAMENTAL CONSTRAINT

Let (p(t), v(t)) be a curve in the unit tangent bundle US? such that
p(t) traces out a spherical helix in S® at constant speed, while v(¢) has
constant coefficients with respect to the moving Frenet frame along this
helix. We saw in section 1 that a geodesic in the unit tangent bundle must
have this form, and also noted there that it will be sufficient to restrict
our attention to the 3-sphere S°.

In this section we will verify the Fundamental Constraint: (p(t), u(t)) is a
geodesic in US? if and only if its slope equals the writhe of the helix p(z).
We will assume that the helix has nonzero curvature, and leave the
degenerate case, in which p(t) is a point or a great circle, until the very end.

The key step in the argument may be described as follows. Consider the
3-dimensional linear space of vector fields aT(t) + bN(t) + cB(tf) which can
be written as constant coefficient combinations of the Frenet vectors along the
helix p(t). Covariant differentiation along the helix provides an endomorphism
of this space, whose action was described in section 3. If we fix the value
of ¢, this space becomes the tangent space to S° at p(t). Here we may
consider the action of the Riemann curvature transformation R(v', v). The key
step will be to compare these two endomorphisms.

In carrying out the argument, we will be blending Sasaki’s two equations:

1) v = — <v,v>v
2) p" = R, v)p

with the three Frenet equations for the helix:

3)) T = KN
4) N = —«T — 1B
5) B = TN .

To begin, assume that (p(t), u(t)) is a geodesic in US>. For convenience,
let t be an arc length parameter along p(f). We first aim to show that
the action of covariant differentiation coincides with that of the Riemann
curvature transformation R(v', v). To do this, we must verify

6) T = R(v,v)T
7) N' = R, v)N
8 B = R(v,v)B.
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The unit tangent vector field T(t) = p'(t), since ¢t was set as an arc
length parameter along p(t). Making this substitution in Sasaki’s equation 2)
gives equation 6).

To get equation 7), combine equations 3) and 6) to get

9 «¥N = R, v)T.
Then take covariant derivatives on both sides of this equation:
kN = R(",v)T + R, v)T + RV, v)T".

Sasaki’s equation 1) and skew symmetry of R show that R(v”, v) = 0. Skew-
symmetry alone gives R(v',v') = 0. In the third term on the right, replace
T’ by kN. Divide through by « to get equation 7).

Covariant differentiation and the Riemann curvature transformation
R(v', v) are both skew symmetric endomorphisms of our 3-dimensional linear
space. Equations 6) and 7) tell us that they agree on two out of the three
basis vectors. Automatically, they must agree on the third, giving equation 8§).
Thus the two endomorphisms coincide.

From this, we want to conclude that slope = writhe.

We've already described the action of covariant differentiation in section 3:
it kills the instantaneous axis vector U = tT — kB and takes the orthogonal
2-plane to itself by a 90" rotation, followed by multiplication by the writhe.

Since we are on S3, one can show that the Riemann curvature transfor-
mation R(v, v) consists of orthogonal projection of the tangent 3-space onto
the 2-plane spanned by v and v, followed by rotation by 90 in the direction
from v to v/, followed by multiplication by | v’ |.

Since these two transformations coincide, writhe = | v"|. All this assumes
that | p’| = 1. In general, we get

writhe = | v | /| p'| = slope,

verifying the necessity of the Fundamental Constraint.

Note also that, because the two transformations coincide, the vector v(t)
must be orthogonal to the instantaneous axis vector U(t) of the helix p(t),
thus verifying the necessity of the Fundamental Constraint in its second
formulation.

Conversely, suppose (p(¢), u(t)) is a curve in US?, with p(t) tracing out a
spherical helix in S* at constant speed, and u(t) having constant coefficients
with respect to the moving Frenet frame along this helix. In particular,
| v(¢) | is constant, and hence so is the slope | v'(¢) | /| p'() |. Suppose this slope
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equals the writhe of the helix. We must show that (p(t), u(t)) is a geodesic
in US>,

As in the first part of the proof, we aim to show that the action of
covariant differentiation coincides with that of the Riemann curvature trans-
formation R(v', v).

To this end, adjust the speed so that ¢ is an arc length parameter
along the helix p(t). Hence | v’ | = writhe. But this is the maximum magnifica-
tion of covariant differentiation, and can only be achieved when u(t) is
orthogonal to the instantaneous axis vector U(t). Thus <o, U> = 0.
Differentiate this equation, keeping in mind that U’ = 0, and get <v', U>
= 0. Hence v’ is also orthogonal to the instantaneous axis.

But this means that the kernel and image of covariant differentiation
coincide with the kernel and image of the Riemann curvature transformation
R(v',v). Since writhe = |v'|, the maximum magnifications of these two
transformations also coincide. Then, by their special nature, so must the
transformations themselves.

With this done, we can now check that (p(¢), v(?)) is a geodesic in US>
by verifying Sasaki’s two equations.

Consider the vector field v”. Since covariant differentiation coincides with
application of R(v,v), the vector v” is obtained from v by twice rotating
the v’ plane by 90" and twice multiplying by | v’ |. That is,

1"

V= — <V, >,

which is Sasaki’s first equation.
Next look at the vector field T'. This must be the same as R(v', v)T.
But T(z) = p'(t) and T'(t) = p"(¢t), so we get

pl/ — R(U/’ v)pl ,
which is Sasaki’s second equation.

Hence (p(t), v(t)) must be a geodesic in US? by Sasaki’s theorem, verifying
the sufficiency of the Fundamental Constraint.

To verify the sufficiency of the Fundamental Constraint in its second
formulation, suppose we begin instead with the information that u(t) is
orthogonal to the instantaneous axis vector U(f). It is here that covariant
differentiation achieves its maximum magnification, equal to the writhe of the
helix p(t). Thus | v'(t) | = writhe. The above proof of sufficiency now applies,
and we conclude again that (p(t), 1(¢)) must be a geodesic in US?3.
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We complete the proof of the Fundamental Constraint by checking the
two degenerate cases, again using Sasaki’s equations.

If p(t) 1s a constant point, then Sasaki’s second equation is certainly
satisfied, while the first tells us that (p(¢), v(t)) is a geodesic in US?® if and
only if u(¢) traces out, at constant speed, a great circle in the tangent space
to S* at that point.

If p(t) is a great circle in S°, travelled at constant speed, then p” = 0,
so Sasaki’s second equation reads

R, v)p = 0.

This can be satisfied in two ways.

One is that v = 0, so that u(t) is a parallel vector field along p(z).
In this case, Sasaki’s first equation is automatically satisfied, so (p(t), v(?))
must be a geodesic in US>.

The other way for Sasaki’s second equation to be satisfied is that v
and v are both orthogonal to p’. Parallel translate v(t) backwards along
p(t) to the vector field u(t) in the tangent space to S® at p(0). Then
Sasaki’s first equation says that u(t) traces out, at constant speed, a great
circle orthogonal to p’(0). Equivalently, v(¢) spins at constant but arbitrary
speed along a great circle orthogonal to that of p(¢). In these circumstances,
the curve (p(z), v(t)) will be a geodesic in US®>.

But these are precisely the interpretations of the Fundamental Constraint
which were set in the introduction, and the proof is complete.

REFERENCES

[Ba-Br-Bu] BaLLMmANN, W., M. BrIN and K. BUrNs. On surfaces with no conjugate
points. J. Diff. Geom. 25 (1987), 249-273.

[Gl-Zi] Gruck, H. and W. ZiLLER. On the volume of a unit vector field on the
three-sphere. Comm. Math. Helv. 61 (1986), 177-192.

[Jo] Jounson, D. Volumes of flows. Proc. Amer. Math. Soc., to appear.
[Pe] PEDERSEN, S. Volumes of vector fields on spheres. To appear.
[Sa] Sasakl, S. On the differential geometry of tangent bundles of Riemannian

manifolds. Tohoku Math. J. 10 (1958), 338-354.

(Regu le 20 octobre 1987 )

Herman Gluck

Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104
(USA)




	5. Proof of the Fundamental Constraint

