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To describe a £/r-embedding with underlying variety X, we must give a

homomorphism B —> Aut X such that X has an open orbit J3-isomorphic to

B/T. Two such homomorphisms give rise to equivalent embeddings if and

only if they are conjugate.

In the following section we will use the information given here to study

the possible ß/r-embeddings into P2, P1 x P1, and F„,0 1.

§2. The minimal ^/F-embeddings

Theorem 2.1. Let T be a finite subgroup of B, and let X be the

projective plane P2 or a rational ruled surface Fn (with n^0, where

F0 PX x J*1).

(i) The number emb (A) of equivalence classes of B/T-embeddings into X
with at least two fixed points is

emb (P2) 2 emb (P1 x P1) 1 and emb (FJ n + 3, n ^ 1

We call these the "ordinary" embeddings.

(ii) Moreover, for any such surface X, there is exactly one subgroup T
and an "exceptional" B/T-embedding into X with only one fixed point
(up to equivalence), and the corresponding order ord (X) of this group T is

ord (P2) 4 ord (P1 x P1) 2 and ord (F„) 2(rc + 1), n ^ 1

(iii) The complement to the open orbit consists of two (for P2) resp. three

(for the Fn) smooth rational curves, intersecting transversely, except in the

"exceptional" case with X P2, in which case the two curves are tangent.

(In this theorem we include the case F1 even though it is not minimal.)

To be more precise, we indicate the form of the complement Z to the

open orbit in each case. Also to distinguish the embeddings where Z has

the same form, we indicate how the action of B differs on Z. Let U be

the unipotent radical of B and T be a maximal torus. (That is, U is the
subgroup of elements of B where both eigenvalues are 1, and T can be

chosen to be the subgroup of diagonal elements.) Then B is T IX U, and
the characters of B are the characters of T. We denote the character group
of B by {oc" : n e Z}.

Denote by c the order of the group T.
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Embeddings into P2 :

(i) "Ordinary" embeddings : We find that for each T there are two embeddings
where Z Lx u L2 and Lx and L2 are lines in P2. The group B acts

on L1 in the standard manner and on L2 by the character a2+c or a2_c.

There are two fixed points except in one embedding for the case c 2,

where L2 is a line of fixed points. See Fig. la.

(ii) The "exceptional" embedding: If c 4, we also find an embedding
where Z L1 u C and C is a smooth conic which is tangent to L1

at the unique fixed point. See Fig. lb.
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Embeddings into P1 x P1 :

In this case, Z is always the union of three curves. Let pt: P1 x P1 - P1,

i 1, 2 be the two projections.

(i) "Ordinary" embeddings: For each F there is an embedding where

Z Fxu Fi u F2 and F1,F\ are fibres of p1 and F2 is a fibre of p2.

There are two fixed points. See Fig. lc.

(ii) The "exceptional" embedding : Also, if c 2, we find another embedding

into P1 x P1 where Z *= u F2u C, and C is a section of p1 and p2

which intersects F± and F2 transversely in the unique fixed point. See Fig. Id.

Embeddings into F„, n ^ 1 :

Again Z is is always the union of three curves. Let nn: F„ P1 be the

unique ruling of F„, and let En be the irreducible curve of F„ with self-

intersection — n.

(i) "Ordinary" embeddings: For each T we find n + 1 cases where

Z En u F u F' and F and F' are fibres of %n. The torus T acts on F

by the character acp + 2 and on F' by the character OL~c{n~p) + 2, p 0,..., n.

There are either 3 or 4 fixed points (depending on the action of U on F
and F), or, if T acts trivially on F, then F is a curve of fixed points.
See Fig. le.

There are also two other embeddings in Fn for each T where Z — F

u Enu D and F is a fibre as before and F is a section of n„ which
does not intersect En. The group B acts on F by the character a2n±c.

There are two fixed points except in one of the embeddings in the case

where c 2n, in which case F consists entirely of fixed points. See Fig. If.

(ii) "Exceptional" embeddings : Also if c — 2(n +1), there is one more
embedding where Z En u F u C and C is a section which intersects En

and F transversely in the unique fixed point. See Fig. lg. This embedding is

obtained as follows. Consider the embedding into Fw + 1 of the previous type
where the fibre F consists of fixed points. Blow up a point of F which is

not on En + 1 or D and contract the strict transform of F. This gives the

required embedding into F„.
The explicit matrix representations of the different B-actions are given

in the proof of the theorem.

Proof of the Theorem. Throughout the proof we denote the order of
the group T by c.
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Recall that to give an embedding of B/F into a variety X, we must find
a homomorphism cp : B Aut X such that under the induced action of B

on X, there-is an open orbit isomorphic to B/T. Two such embeddings are

equivalent if and only if the homomorphisms are conjugate.

We have B { ^ ^jlaefe* and ß e k}, U *= ^ | ß e /c},

and set T { ^ ^jlae /c*}.

We consider separately the embeddings into P2, P1 x P1 and F„, n ^ L

Embeddings into P2 :

If B acts on P2, it has a fixed point o since P2 is complete and B is solvable

(see e.g. [Bor], p. 242). Also B acts on the linear system S {lines of P2

passing through o). Since we have S P1, B stabilizes one such line, which we

call L. We can choose homogeneous coordinates (z0 : z1 : z2) of P2 such

that o (1:0:0) and L — (z0:z1\ 0) ; thus cp(£) c= PGL(3) is upper triangular.

Case 1. U acts trivially on L.

Then there is another point o' e L fixed by B. By choosing an appropriate
'1 ßN

basis, we can assume that for
0 1

eU we have

G Î)-
1 0 0

0 1 ß

LOO 1

ePGL(3)

The brackets indicate the class of the matrix in PGL(3). All the lines

passing through o' are stable by U. By a change of basis we can also

assume that cp(T) is diagonal. Then for cp to be a homomorphism, it is

necessary that

G !-)-
am 0 0 ~

0 a ß e PGL(3) me Z
0 0 a_1_

For m — 1 ± c, this gives two embeddings of B/F with | F | ~ c. The

group B acts on L by the character a2±c. There is another stable line
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{(0 : z1 : z2) I zte k} on which B acts in the standard manner. This gives the

two "ordinary" B/T-embeddings mentioned earlier for P2.

Case 2. U acts non-trivially on L.

(i) U acts trivially on the linear system S.

Then B stabilizes another line L' passing through o. Since we have that
P2 — {L u L'} k x k* B/T, and since k x k* contains no proper open
subvariety isomorphic to itself, we must have that the complement to the open
orbit is Z L u L'. We will show that U acts trivially on L'. Indeed, let

x e L'\L and D be a line of P2 passing through x but not o, and let
u e U, u =£ e ; then uD n D is a point fixed by u since U acts trivially on S ;

therefore it must belong to Z, but it is not in L; thus it is in L', henee

it is x. So by exchanging L and L', we are in Case L

(ii) U acts non-trivially on the linear system S.

Then T stabilizes a line L' in S — L.

Fix ueU, u =£ e. We can choose a basis such that cp(w) is in Jordan

" 1 1 0 ~

Oil. Now by a change of basis we can assume
_0 0 1 _

normal form

(i f)
i
0

0

2ß
1

0

ß2

ß

1

ePGL(3)

Let S'bethe linear system of conics passing through the point Now E
acts on S', and one can easily check that the set of conics stable by V
is isomorphic to P1. In fact it is the set of conics of the form

{(zo zi • zz) I a(zoz2 zî)+ hz I 0} : e P1

Also T acts on US';itmust leave two conics invariant: the double line
L {(zo : zi : 0)} and a non-degenerate conic C. Since P2 - {L u C} is

isomorphic to kxk*,thecomplement to the open orbit is LuC. By a
change of basis one can choose

c {Oo : zx : z2) I z0z2 - z2 0} and L' {(z0 : 0 : zj}
By checking the action of Ton P2 - L, one finds there is just one
possibility which yields :
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» (ê -
a2 2aß ß2

a_1ß

a"2 J
g PGL(3)

(So cp is obtained from the irreducible representation of SL(2) of dimension 3.)

This homomorphism gives rise to a H/T-embedding for c 4. Note that there
is exactly one fixed point : (1:0:0). This is the "exceptional" embedding.

Embeddings into P1 x P1 :

The two projections P1 x P1 -> P1 give the two different rulings of
P1 x P1. Any automorphism of P1 x P1 either leaves the two rulings
invariant or exchanges them. In other words,

Aut (P1 x P1) (PGL(2) x PGL{2)) X] Z/2Z

Since B is connected, the image of cp(B) c Aut(P1 xP1) is connected; thus

we consider homomorphisms cp : B PGL(2) x PGL(2). Up to conjugation,
the only homomorphisms of B to PGL(2) are

or

a p j a ß

0 a"V _0 a-1

a ß x) am 0~
>

0 or V _0 1_

G PGL{2)

G PGL{2) t mm 0, 1, 2,

To obtain an embedding, U cannot act trivially on P1 x P1. So the

possibilities (up to conjugation) are

or

<P

a ß

0 oT1

a ß

0 a-1

a ß

0 a"1

a ß

0 a"1

ocm 0"

0 1

a ß

0 a"1

g Aut (P1 x P1), m 1, 2, 3,...

g Aut (P1 x P1

In the first case, we get an "ordinary" embedding of B/T with c m

with two fixed points. The second induces a J5/r~embedding with c 2,

and the complement to the open orbit consists of three curves isomorphic
to P1 all intersecting transversely in the unique fixed point. This is the

"exceptional" embedding.
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Embeddings into Fn9n ^ 1 :

Remember from section 1 that we can consider F„ as the union of En

and the total space of the line bundle (9Pi(n). Suppose we have a homo-

morphism cp : B -> Aut F„ which gives rise to a B/T-embedding. Since Aut F„
stabilizes En, we know that B fixes En. We consider three cases.

Case 1. U acts trivially on En.

We will find n + 1 inequivalent "ordinary" embeddings of this type for
each T.

In this case, consider the action of T on En. It cannot act trivially
(because then each H-orbit would be contained in a fibre of izn : F„ - P1) and
has therefore exactly two fixed points, x and y. By possibly exchanging x
and y, we can assume that T acts by a character am, m > 0 on En P1

(i.e. for z e En — {x, y}, we choose x lim tz and y lim tz91 e T).
t~>0 f-> oo

The fibres Fxand Fy of xand y,respectively,are stable by B. Let Z
be the complement of the open orbit in Fn. Then we have u u Z.
Since we know that F„ - {E„ u Fx u x k* B/T, and since, as
noted earlier, kxk*containsno proper open subvariety isomorphic to itself,
we must have Z £„ u Fx u Fy.

Now by Lemma 1.3, we have T B-*AutF„ -> Aff (H^P1, Since
T is reductive, T must fix a section D of &(n).

We also have that U acts on the space U°(P1, (P(n)). Consider the orbit
UD. First note that UD k (we could not have UD D, because then D
would be in the complement of the open orbit). Now let ueU, m # e;
then I claim that aßnflc [x1,/},where x' Fxn D and y' Fy r\ D.
To see this, note that since U acts trivially on En, it stabilizes the fibres
of it„. Thus if z belongs to uD n D, then u belongs to the isotropy
group of z, and therefore z must be in Z. The intersection number

n

uD-D is n;soUDcDu(J Ap,whereAp is the set of sections of
p 0

(9{n) such that D n D' px' + (/n — p)y' counted with multiplicity. Now
D u Apis isomorphic to k, p 0,..., n;soUD D u Apfor somep 0,..., n.
We call p the contact index of the embedding. See Fig. 2.

Figure 2.
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Lemma 2.2. Up to equivalence, there is at most one B/T-embedding into
F„ of a given contact index p, with p 0,..., n. Also, for such an

embedding B acts on En by the character ac, where c is the order of T.

Proof Suppose we have two 5/r-embeddings into Fn with the same

contact index p. Fix u g U, u =£ e. For the first (resp. second) action denote

by x, y (resp. x, y) the fixed points in En and D (resp. D) the section
fixed by T. Set Du : uD (resp. Du : uD).

Remember from section 1 we know that there is an exact sequence

1 -> k* IX H°(P\ (9(n)) -+ Aut F„ PGL{2) -> 1

Since PGL(2) acts doubly transitively on P1, we can conjugate by an

automorphism of F„ which sends x to x and y to y; thus we can assume

x x and y y. Then by conjugating by an element of H°(P1, U(n)),

which translates the sections, we can assume D D. Finally, since the two
embeddings have the same contact index, by conjugating by an automorphism
that fixes the fibres and which is a homothety centered at D, we can assume

Du Du-

Now I claim that for a fixed T, there is at most one possible action
of B on F„ which induces a R/r-embedding with the quadruple {x, y, D, Du}.

Indeed U acts by translation on each of the fibres of U(n); so D and Du

determine how U must act. Now check the action of T on D, which is the

same as its action on En. Choose z g D in the open orbit. The order of the

isotropy group Bz is c, the order of T, and Bz a T. So T acts on D

by a character a±c. Since we chose x and y such that the action of T
on En is given by a positive character, we must have that T acts on D

by the character ac. This proves the second statement of the lemma. Now
let v be an element of the open orbit and t e T. Choose ueU such that
(t~lut)v v' g D. Then tv So this fixes the action of T on the open
orbit, which is dense in F„. So the claim is true, and this finishes the proof
of the lemma.

By this lemma, we have at most n + 1 inequivalent embeddings of this

type for each T. Now we must show that these actually exist.

Lemma 2.3. Let n be a positive integer and p be an integer such that
0 ^ p ^ n. Then for each finite F c B, there exists a B/T-embedding into

Fn with contact index p.

Proof Let Xn be the surface obtained by contracting En in F„ as

explained in section 1. Suppose we have an embedding of B/T into Xn
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which fixes the vertex of the cone (if n > 1, this condition is always
satisfied, because this point is singular). Then by blowing up the vertex, we

obtain an embedding into F„.
For each p with 0 ^ p < n, we will exhibit an action of B on Xn

which induces a 5/r-embedding with contact index p. To do this we give
a linear action of B on kn + 2 which induces an action of B on pw + 1

stabilizing Xn and its vertex.
B acts on k2 in the standard way :

/a ß \ As\
_

/as+ßA
v° «"V /'

Also for i g Z, we denote by (k, a1) the vector space k with the action of B
by the character a? :

Consider the fhmodule

k2 ® (k, acp + 1) © © (k, acj), p 0,.., n
j o

jfp
We have B PGL(n + 2) Aut P" + 1 by

(a p \
VO a-1/

-acp+2 1

0 acp

P 0

L o 0 a"

We change the basis so that the image of C h
x

I is
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^cp + 2 0 0 acp+l ß 0 0

0 1

0 aCi

Let Xn be as given in section 1. Clearly Xn and the vertex of the cone

(1:0:...: 0) are fixed by this action. In X„ all the "fibres" are stable by U,
and the two "fibres" Fx {(z0 :z1: 0 :... : 0)} and Fy {(z0 : 0 :... : 0 : zn + x)}

are stable by B. It is easy to check that the isotropy group of (0:1 :... : 1) is

the finite subgroup of T of order c. So this induces an embedding of
B/T into Xn which by blowing up the vertex gives a B/T-embedding into
F„ where U acts trivially on En.

Let D {(0 :sn:sn~1t:... : tn)} c= Xn. Then D is a "section" stable by T.

Fix u Ge U. Then uD {(s""ptp : s" : : tn)} cI,.We check

the multiplicity of the intersection of D and uD at x' (0:1:0 :... : 0). The

local ring of x' in Xn is k[z0, t](f zo), and the local equation of D

(resp. uD) is z0 0 (resp. z0 tp); thus this multiplicity is p, and the contact
index of the embedding is p. This finishes the proof of the lemma.

Remark. By checking the induced torus actions on the fibres Fx and

Fy, one finds the results about the structure of the action stated after

Theorem 2.1.

Case 2. U acts non-trivially on En and B fixes a section D of G(ri).

We will find two "ordinary" embeddings of this type for each T.

In this case, U has one fixed point x on En. Then T must also fix x,
and it also fixes another point y e En. As before, we call Z the complement
to the open orbit. Then we have Z En u D u Fx, where Fx is the fibre
of Kn containing x. Now look at the action of T on Fy, the fibre of y.

Choose z e Fy in the open orbit. Then the order of the isotropy group Bz
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± c

is c, the order of T, and Bz c T. So Tactson Fy by the character a

For each such embedding, call this character the sign of the embedding.

See Fig. 3.

Figure 3.

Lemma 2.4. Up to equivalence, there is at most one B/T-embedding into

F„ with a given sign a cn±c.

Proof. Suppose we had two actions of B on F„ which yield two B/T-
embeddings with the same sign a. For the first (resp. second) action, let \J/

(resp. \jf) : B x be the induced action on En and D (resp. D) be the

section of 0(n) fixed by B.

Up to conjugacy there is only one action of B on En P1 for which U

acts non-trivially. So we can assume \|/ \j/. By conjugating by an appropriate
automorphism of F„ which fixes the fibres and translates the sections, we

can assume D D.

Now I claim there is at most one action of B on F„ which yields a

£/T-embedding with the triple {\|/, D, a}. To see this, consider first the action
of U on Fr Now x is the fixed point of En, and Fx is its fibre. Let S be

the set of sections of (9{n) which are not D and intersect D with multiplicity
n at the fixed point x' Fx n D. This set is isomorphic to k* (by the map
D' -> D' n Fy) and is stable by B, so U acts trivially on S. Since the action
of U on D' e S is identical to its action on En, the action of U on F„ is

determined by \[/ and D. As for the action of T, remember that T
stabilizes the set S. The action on this set is equivalent to its action on
Fy, the fibre of the point of En fixed by T and not fixed by U. This
action is given by a. So {\|/, D, a} determines the action of T on F„.
This proves the claim.

From this lemma, we see that for each T, there is at most two
ß/T-embeddings of this type. Now we must show that these embeddings
actually exist.
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Lemma 2.5. Let T be a finite subgroup of B of order c and a
be a±c. Then there exists a B/T-embedding into Fn with sign a.

Proof We use the same notation as in Lemma 2.3. Consider the B-module

(k, a~n±c) © Sn(k2)

where Sn(k2) is the vector space of homogeneous polynomials of degree n

over k with two variables, and the action of B on Sn(k2) is induced from
the natural action on k2 of B as a subgroup of SL(2). We have

B PGL(n + 2) by

(Ö

L o

0

Prt

0

where p„ is the (n + l)-dimensional irreducible matrix representation of SL{2, k)

corresponding to the basis {^j xlyn~i}issût n of Sn(k2).

As in Lemma 2.3, let Xn {(z0 : s" : sn~1t :... : t") | z0, s, t e k} a P" +1.

Then Xn and its vertex (1:0 :... : 0) are fixed by the action above. In Xn the

"section" {(0 : sn :... : tn)} and the "fibre" {(z0 : zx : 0 :... : 0)} are stable. The
other "fibres" are not stable by U. The isotropy group of (1:0 :... : 0:1) is

the finite subgroup of T of order c. So this action gives an embedding
of B/T into Xn which by blowing up the vertex gives an embedding into F„
where U acts non-trivially on En and B fixes a section.

The "fibre" {(z0 : 0 :... : 0 : zn + 1)} is stable by T and not by U. Also T acts

on this fibre" by the character a±c, so the sign of the embedding is a±c. This

proves the lemma.

Remark. The group B acts on the fixed fibre of the ß/T-embedding
with sign a±c by the character a2"Tc. In particular, for each n, there is

exactly one embedding of this type with c 2n where B acts trivially on
the fixed fibre. We will use this remark for the following case.

Case 3.- U acts non-trivially on En and B does not fix any section of (9(n).

For each n, we find one such case where c 2(n+l). These are the

"exceptional" embeddings.
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As in the previous case, B fixes one element x e En. So Z, the complement

to the open orbit, contains En and Fx, the fibre of x. Now F„ — {En u Fx} is

isomorphic to k x fc; so Z must have another component. Suppose zeZ

— {En u Fj ; then C Bz is contained in Z. Clearly C is a section of

P1, and by hypothesis it in not a section of 0(w); thus it is a

section of nn which intersects En at the point x. We have Z Enu Fxu C,

since F„ — {£„ u Fx u C} k x k*.

Lemma 2.6.

(i) Suppose c 2(w+l). T/zerc £/zere is exactly one embedding of B/T

into F„ of Case 3 with C • En 1. Afco for this embedding there is a

unique fixed point.

(ii) If c / 2(n+ 1) is no such embedding with C • En - 1.

Proof Recall from section 1 that one obtains Fn + x from F„ by blowing up

a point x on En and contracting the strict transform of the fibre

containing x.

Now suppose we have such an embedding with C • En 1. We blow up
the point x. (See Fig. 4.) Now there are three fixed points on the exceptional
divisor F0, so B acts trivially on F0. Blow down Fx; We obtain an

embedding into Fn + 1 as in Case 2, where B acts trivially on the fixed fibre.
As we have seen in the remark of Case 2, this happens in exactly one case

with c 2(n+l). Conversely, given this embedding into Fn + 1, by doing the

reverse procedure, one obtains exactly one embedding of this type. (By
changing the fixed point which is blown up first one obtains an equivalent
embedding.) This proves everything except the unicity of the fixed point.
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Now we exhibit explicitly the embedding of (i). We use the notation of
Lemmas 2.3 and 2.5. Consider the ^-module Sn + 1(k2). We have B PGL(n + 2)

/a p ^
\ /a

(o 1^ _P" + 1\0 a"V_
where pn+1 is the (n + 2)-dimensional irreducible representation of SL(2,k).
Consider the closure of the orbit of xn + 1 + yn + 1 by B using the basis

f(U ~h l\ •

{( J x'y" '}i=0n + 1. This is exactly

X„ {(z0:s":s"-xt:...:t")\z0,s,

The vertex (1:0 :... : 0) is fixed by this action. The two stable curves in Xn
are the "fibre" {(z0 : z1 : 0 :... : 0)} and {(s" + 1

: snt :... : tn+1)}, the image of the

(rc+l)-uple embedding of P1 in P" + 1. It is easy to see that the isotropy
group of (1:0 :... : 0:1) is the finite subgroup of T of order c; so this
action gives a B/r-embedding into Xn which induces an embedding into F„.
Since the only fixed point on Xn is the vertex and there is only one fixed

"fibre", we have exactly one fixed point for the action on F„. It is easily checked

that the intersection number of En with the other stable section in F„
is 1. Thus the lemma is proven.

Lemma 2.7. Any embedding of Case 3 must have C • En 1.

Proof The intersection number C • En p is strictly positive. Suppose
that p > 1. Now blow up x and then contract the strict transform of Fx;
we obtain an embedding into Fn + 1. Let C1 be the strict transform of C

in Fn+1; then the intersection number Cx- En + 1 is p — 1. Also, this new

embedding has at least two fixed points: one on En + 1 and the other the

image of the strict transform of Fx in Fw + 1. By doing this process p — 1

times, we get an embedding into Fn + p-x of Case 3 with Cp„x •£n + p_1 — 1

and at least two fixed points. By Lemma 2.6 this is impossible. Therefore

Figure 5.



ALMOST HOMOGENEOUS GROUP ACTIONS 331

This finishes Case 3. Thus we know all the embeddings into P2, P1 x P1

and Fra > 1. The comments after Theorem 2.1 are easily verified by

checking each embedding. This finishes the proof of the theorem.

Remarks.

(1) Note that — as to be expected — all the embedding into are

obtained by blowing up the embeddings into P2 at fixed points.

(2) The "exceptional" embeddings, i.e. those with only one fixed point,

are of special interest, because this phenomenon does not occur for smooth

complete embeddings of tori. (See [KKMS] for a reference on torus

embeddings.)

§ 3. Application to SL(2)-embeddings

In [LV] a combinatorical method is presented in order to classify all

normal S'L(2)-embeddings. A natural question is how to classify those which

are smooth and complete to obtain a geometrical realization. We now sketch

how the result of this article is useful for this. (For further details see [JM].)
Given a B/r-embedding X, we construct an SL(2)/r-embedding in the

following way. Consider the B-action on SL(2) x X given by

b • (s, x) (sb~1, bx)

where b e B, s e SL(2), and x e X. Denote by SL(2)*BX the variety obtained by
quotienting by this action. The action of SL(2) on this variety by left

multiplication endows it with the structure of an SL(2)/T-embedding.
The projection SL(2) x X -* SL(2) induces a locally trivial fibre bundle

SL(2)*bX SL(2)/B P1. The morphism p is SLßj-equivariant, and the
fibre of p is ^-isomorphic to X. So we see that for studying the geometry
of the SL(2)/r-embeddings of this form it is useful to study the B/F-
embeddings.

As for general SL(2)/r-embeddings one finds the following essential result.
Let T be a finite cyclic subgroup of SL(2). Let F be a smooth SL(2)/F-
embedding with orbit Y. Then there exists a Borel subgroup B of SL(2)
containing F and an SL(2)-stable open neighborhood of Y in V which is of the
form SL(2)*bX for some smooth B/T-embedding X. Thus all smooth
SL(2)/r-embeddings are locally of the form above. Also any smooth
B/r-embedding can be completed to a smooth embedding. Thus it is enough
to study the complete ones.
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