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ON TORRES-TYPE RELATIONS
FOR THE ALEXANDER POLYNOMIALS OF LINKS

by V. G. Turaev

§ 1. Introduction

The classical formula of Torres [5] relates the (first) Alexander polynomial
of a link K in S3 with that of the sublink of K obtained by deleting
a component. The aim of the present paper is to establish a Torres-type
formula for Alexander polynomials of higher-dimensional links. We also

discuss analogous formulas for higher Alexander polynomials of links in S3.

An rc-component link in the sphere Sm is an ordered collection of
n disjoint smooth imbedded oriented (m — 2)-dimensional spheres in Sm.

With each odd-dimensional link K c S2r + 1
one associates a A„-module

Hr(X), where A„ is the Laurent polynomial ring Z[L, t f1,..., tn9 X
is the exterior of K and X is the maximal abelian covering of X. The
module Hr(X) algebraically gives rise to a sequence of Fitting (or deter-

minantal) invariants AX(K), A2(K),..., which are elements of An defined up to
multiplication by monomials + ts) tsnn (see [1] or § 3). The polynomial
Ai(K) is called the z-th Alexander polynomial of K. The first Alexander
polynomial At(K) is also denoted by A(K) and called "the Alexander
polynomial of K".

Theorem (Torres [5]). Let K be an n-component link in S3 with
n ^ 2 and let L be the sublink of K obtained by deleting the n-th
component. Then

l (tl{..,tf-ï- l)A(L) if n > 2

A(X)(tx 1) I
th_{
-T—r if " 2

\ rl ~ t

where l{ denotes the linking number of the i-th and n-th components of K.
The following theorem can be considered as a high-dimensional variant

of the Torres theorem.
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Theorem 1. Let K be an n-component link in Sm with odd m ^ 5.

Let L be the sublink of K obtained by deleting the n-th component.
Then there exists an element X of An_1 suchthat

(1) A(L) A(K) (t1,tn^l$ 1)-XX

Here the overbar denotes the involution of the Laurent polynomial
ring An_1 which sends each polynomial f(tl9...9tn-1) into f(tï19...,tffx).

It is well known that for any link K c= Sm with odd m ^ 5 the
Alexander polynomial À(K) is non-zero. Moreover,

aug (A(K)) A(K) (1, 1,1) ± 1

(see [1]). This implies that aug {X) +1 for any X satisfying (1). It
seems that there are no other restrictions on X; one may even guess
that for any AgA„, XeAn_1 with aug (A) aug (L) ± 1 and À A

there exists a pair K, L as in Theorem 1 such that A(K) A and

A(L) A(tl9 ...s tn x, \)XX. Here and below the symbol denotes the

equality of Laurent polynomials up to multiplication by a monomial

± tsi - tf.
Let us call two Laurent polynomials A, A' g A„ algebraically cobordant

if there exist polynomials X9 X' g A„ such that AXX A'X'X' and aug (L)

aug (V) ± 1. This terminology is suggested by the fact that Alexander

polynomials of (smoothly) cobordant links are algebraically cobordant
(see [4]). The formula (1) enables us to calculate Alexander polynomials of
all sublinks of a given link, up to algebraic cobordism. It is curious to
note that if K, K' are n-component links in Sm with odd m ^ 5 and if
polynomials A(K), A(K') are algebraically cobordant then Theorem 1 implies
that Alexander polynomials of corresponding sublinks of K, K' are

algebraically cobordant to each other. This fact reflects the evident property
of geometric cobordisms: corresponding sublinks of cobordant links are

cobordant.

I do not know if it is possible to associate with a link K some

preferred X — X(K) satisfying (1).

The remaining part of the Introduction is concerned with the classical

links. The symbols K, L, n, lx,..., 1 denote the same objects as in the Torres
theorem formulated above. It may well happen that some of the Alexander

polynomials AfK), A2(K),... are equal to zero. Denote by u u(K) the

minimal integer u ^ 1 such that AU(K) A 0. Since Ai + 1(K) divides At{K)
for all i, At(K) 0 for i < u and At(K) ^ 0 for i ^ u(K).
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In view of the Torres theorem it is natural to look for a relationship

between Au{K)(K) and a corresponding invariant of L. In the case u(K) 1

we have the Torres formula, so we shall restrict ourselves to the case

u(K) ^ 2 (i.e. the case À(K) 0).

The integers u(K), u(L) are related by the inequality u(L) ^ u(K) — 1

(see [1] or § 4). If lt ^ 0 at least for one i 1,..., n - 1 then the stronger

inequality holds: u(L) > u(K). These inequalities suggest to relate AU(K)

(where we put u u(K)) with A„^(L) and AU(L). The following relationship
between AU(K) and AU(L) was established in [4].

Theorem ([4, Theorem 5.5.1]). If u u(K) ^ 2 then there exist an

element X of An-1 and a subset ß of the set {1, 2,..., n — 1} such that

(2) (tli...fcl- 1)Am(L) - n^-l)-^-AM(K)(ti,...,t„_i,l).
ieß

Several remarks are in order, a) The non-trivial case of the Theorem
is the case where at least one of the integers ll9...,ln_1 is non-zero:
otherwise tl{ tl£i{ — 1 0 and we may put X 0. b) Formula (2) is

proved in [4] under the additional condition u(L) u(K). However if
u(L) < u(K) then we have the trivial case l2 ln_1 0; if
u(L) > u(K) then AU(K)(L) 0 and we may put X 0. c) Formula (2)

combines the factors from the Torres formula, formula (1) and a new factor
f](tj—1). All these factors may be non-trivial (see [4]). d) An explicit
construction of the set ß ß(K) is given in [4, § 5]. I do not know if there
exists a preferred X X(K) which satisfies (2).

The relationships between the polynomials AU(K) and AU_1(L) were first
considered by Levine [2] in the case u 2.

Theorem (Levine [2]). If u(K) ^ 2 then there exist an element X g An_ 1

and a set ß ci {1, 2,..., n— 1} such that

A(L) n (f.-1) • Ü 1).
ieß

Note that in the case u(K) > 2 the Levine's theorem is evident: if
u(K) > 2 then u(L) ^ u(K) - 1 > 1 so that A(L) A2(K) 0.

The following theorem generalizes the Levine's result.

Theorem 2. If u u(K) ^ 2 then there exist an element X of A„_1
and a set ß c {1, 2,..., n— 1} such that

A„_ t(L) n (ti-1) • ü • A ,tn_ t, 1).
ieß
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The non-trivial case of Theorem 2 is the case /x l2 ln_1 0:
otherwise u(L) ^ u so that A^-^L) 0 and we may put X — 0.

The proof of Theorems 1, 2 goes along the same lines as the proof of
the formula (2) given in [4]. These proofs are based on a relationship
between the Alexander polynomials and Reidemeister-type torsions, established

in [4]. This relationship is recalled in § 2. In § 3 several easy algebraic
lemmas are proved. Theorems 1, 2 are proved in § 4.

This research was completed while the author was visiting the University
of Geneva. I thank the staff of the Mathematical Department of the

University and especially professors J.-C. Hausmann and M. Kervaire for
their hospitality.

§ 2. Torsions of chain complexes and manifolds

2.1. The torsion of a chain complex (see [3]). Let g be a field.

If a (a1,..., an) and b (b1,..., bn) are two bases of a ß-module then
n

ai X ci, fij where (citj) is a non-singular n x n-matrix over Q ; the deter-
j= i

minant det e Q\0 is denoted by [u/h].
Let C (Cm—>—>C0) be a chain Q-complex. Suppose that each Q-module

Ct is finite dimensional with a preferred basis c{ and each g-module H^C) also

has a preferred basis ht. (The case Ct 0 or H^C) 0 is not excluded ; by
definition the zero module has the empty basis.) In this setting one defines the

torsion t(C) e Q as follows. For each i 1,2,..., m choose a sequence

bt (b\,..., of elements of Ct such that (di-i(b\),..., dr_x(hy)
is a basis in Im (ôi^1 : For each i 0,1,..., m choose a lifting
/zt- of the basis ht to Ker di^1. The combined sequence d^bi+^hibi is a basis

in Q. (It is understood that b0 0 and bm+1 0). Put

m

(3) T(c) n
1=0

where s(i) (— l)f + 1. Clearly, x(C) g Q\0. It is easy to verify that x(C) does

not depend on the choice of bt and

(Note that the torsion of C defined in Milnor's survey article [3]
equals ± x(C)-1 e Q/± 1 and that Milnor uses the additive notation for the

multiplication in g\0 K^Q))

2.1.1. Lemma (multiplicativity of torsion). Let 0 C -* C -> C" 0

he a short exact sequence of m-dimensional chain complexes over a field Q.
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Suppose that for all i 0, 1,m the modules Q, C" are provided

with preferred bases cfc^c" which are compatible, in the sense that

[cfï/Ci] ± 1. Suppose that for all i 0, 1,m the homology modules

HiiClHiiC'XHiiC") are provided with preferred bases. Let be the

homology sequence of the sequence 0 -> C -> C -> C" -> 0 :

* {Hm(C')^Hm(C)^~^H0(C)^H0(.

Consider as an acyclic based chain complex over Q. Then

t(C) ± t(C')x(C")t(Jf).

For a proof see [3].

2.2. The torsion go. Let M be an orientable compact smooth manifold

of odd dimension m with rg HfM) ^ 1. Denote the free abelian group

HfMfTors HfM) by G. Denote the fraction field of the group ring

Z[G] by Q. Provide Q with the involution q h-» q which sends g e G to
g~ K The field Q defines via the natural homomorphism Z|jzfMJ] Q

a system of local coefficients on M. We shall denote this system by
the same symbol Q. Assume that H#(dM ; Q) 0. In this setting one can

consider a torsion-type invariant co(M) of M which is "an element of Q\0
defined up to multiplication by + gqq with g e G and q e Q\0" (see [4]).

Recall the definition of co(M) given in [4, § 5]. Let M -> M be the regular
covering of M corresponding to the kernel of the natural homomorphism
7ifM) -» G. Fix a C1-triangulation of M and the induced G-equivariant
triangulation of M. Choose over each simplex of the (fixed) triangulation
of M a simplex of the triangulation of M. These simplices in M being
arbitrarily oriented and ordered determine "natural" bases of the modules
of the simplicial chain Z[G]-complex CH.(M ; Z). These bases induce "natural"
Q-bases in the chain Q-complex

G — Q ; Z).

For all i 0, l,..., m choose an arbitrary Q-basis ht in HfM ; Q) H^C).
Denote by x(C, h0,..., hm) the torsion of C with respect to the bases
in chain modules constructed above and the bases h0,h1,...,hm in
homology. Since H^(dM ; Q) 0 the semi-linear intersection form Ht(M ; Q)
x -+ Q is non-singular. Let vt be the matrix of this form
regarding the bases ht and hm_i. Put

d x(C,h0,h1,hm) fi (det u;)"E<i) e <2\0
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where r (m—1)/2 and e(i) (—l)i + 1. It is easy to show that under a

different choice of natural bases and bases h0,hl9...,hm the element d

is replaced by ± gqqd with g e G, q e Q\0. Thus the set {+ gqqd | g g ß\0} <= Q

does not depend on the choice of bases. It also does not depend on the
choice of triangulation in M. It is this set which is co(M).

An explicit formula established in [4] enables us to calculate co(M)

in terms of the orders of Z[G]-modules H^(dM) H^(dM;Z\ H^(M)
H^(M ; Z) and related modules. (The notion of the order of a module

is recalled in Sec. 3.1.) Denote by J the image of the inclusion homo-

morphism Hr(dM) - Hr(M) where r (m—1)/2. Then up to multiples of
type qq with q e Q\0

(4) co(M) ord (TorsZ[G]Hr(M, dM)) (ord Jf{r) J] [ord JTf(dM)]8(i)
i o

(see [4, Theorem 5.1.1]). Note that the equalities

H^(ôM ; Q) 0 imply that H^dM) and J are torsion Z[G]-modules.
Therefore ord H^dM) and ord J are non-zero elements of Z[G].

We shall apply formula (4) in the case where M is the exterior of an

n-component link K a Sm with odd m. The condition H^(ôM ; Q) 0 is

always fulfilled in this case. Here the field Q is canonically identified with
the field of rational functions of n variables Qn Q(t1,..., tn). Thus

co(M) c= Qn. If m ^ 5 then (4) implies that

A (K)(tt„)-n (t-l) ffl(M).
i= 1

If m 3 then there exists a unique subset a a(K) of the set

{1, 2,..., n} such that

a u(K)(K)(tu-nc.-Dc ®(M).
iea

For proofs and details consult [4, § 5].

§ 3. Algebraic lemmas

3.1. Preliminary definitions. For a finitely generated module H over

a (commutative) domain R we denote by rkRH or, briefly, by rk H the

integer dimq(Q®rH) where Q Q(R) denotes the field of fractions of R.

For a jR-linear homomorphism / : H -* Hf we put rk / rkRf(H). Note
that if R is the localization of R at some multiplicative system then

Q(R) Q(R) and therefore the (exact) functor (H\-^R(g)RH, /i-dd^tg)/)
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preserves the ranks of modules and homomorphisms. If H, H' are finitely
generated free R-modules and if A is the matrix of a R-homomorphism
H -> H' with respect to some bases then rk / rk A where rk A is the

maximal integer r such that some r x r-minor of A is non-zero.
If R is a unique factorization domain with 1 and if A is a matrix

with n < go columns and possibly infinite number of rows then At(A)
denotes the greatest common divisor of the (n — i + 1) x (n — i + l)-minors of A.

Here I 1,2*... and A;(H) is an element of R defined up to a unit
multiple. If H is a finitely generated module over R and A is a presentation
matrix of H then At(A) depends only on H and i ; one defines A^H) At{A).

Clearly At(H) 0 for i ^ rg H n — rg A and Af(H) / 0 for i > rg H. The
invariant AfiH) is denoted also by ord H ; it is called the order of H.
It is clear that ord H ^ 0 iff H Tors^ H. For proofs and further information
see [1].

Recall, finally, that a local ring is a domain K which has a unique
maximal (proper) ideal. The quotient of K by this ideal is a field which
we shall call "the field associated to X".

3.2. Lemma. Let R, R' be (commutative) domains with 1 and let
cp : R-» R' be a ring homomorphism. Let C (—>Ci + i-»Cf-»••*) be a

finitely generated free chain complex over R and let C be the chain
R'-complex R'®rC. Then: (i) rkrH^C') > rkrH^C) and rk d\ < rk dt

for all i where dt, d\ are the boundary homomorphisms Ci+1 — Q, C'i+1
(ii) if rk H^C) rk H^C) for some i then rk d) rk d} for

j i, i + 1 ; (iii) if R, R' are unique factorization Noetherian domains and if
rk Ht(C) rk H^C) then cp(ord(TorsRH£Q)) divides ordfTors^iJ^C')).

Proof Let n — rk Ct. Let A {ap,q\ 1 ^ q ^ n, 1 ^ p, be the matrix
of di with respect to some bases in Ci9Ci + 1. Then A' {q>{ap,qj) is the
matrix of d\ with respect to the induced bases in Cf C'i+1. It is evident
that rk d\ — rk A' ^ rk A rk dt. Therefore

rk HiC') n - rk d\ - rk d'i+1 ^ n - rk - rk 3i + 1 rk Ht{Q
These inequalities imply (i) and (ii).

Put r n - rk A + 1 and denote the R-module CJlmdi by J. Since A
is a presentation matrix of J we have ord (Tors^J) Ar(A) (see [1, p. 31]).
From the exact sequence 0 Ht{C) J x we obtain that Tors J

Tors Hj(C). Thus ord (Tors Ht(C)) Ar(A). Analogously ord (Tors H^C))
AMl where F n - rk A' + 1. If rk Ht(C) rk H^C) then rk A
rk A' and therefore r r'. It is evident that (p(A/T)) divides A {A')

for all j. This implies (iii).
J
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3.3. Lemma. Let R be a local ring and F be the associated field.
Let f : C1 -> C0 be a R-homomorphism of finitely generated free R-modules
and let f : F ®R C1 —> F C0 he the induced F-homomorphism. If
rk / rk / then with respect to some bases in Ci9 C0 the homomorphism f

~E Ol
where E is the unit matrix of order rk /.0 0 J Jis presented by the matrix

Proof Since F is a field we can choose bases d0, d1 respectively in
F (g)kC0, F ®KC1 so that the matrix of / regarding these bases has the

~E 01
form Let be a lifting of dt to Ci9i 1, 2. Here Fèi is a

sequence of rg Ct elements of Q. In view of Nakayama's lemma Q)t

generate Cv. This implies that ^ generates the (rg Q)-dimensional vector

space Q(R) (g)R Ct over the field Q(R). Therefore, the elements of the sequence
Q)i are linearly independent over Q(R) and, hence, over R. Thus is a
basis of C; for i 0,1. The matrix of / with respect to bases

~E+U Z~

x y_
ideal u of R. Note that det (E+U) 1 (mod u). Since all elements of
R\U are invertible in R the square matrix E + U is invertible over R.

Therefore we can choose bases in C0,C1 so that the corresponding matrix
E Ol

Since rk / rk / rk E, Y' 0.

has the form where U, X, Y, Z are matrices over the maximal

of / equals
0 Y'

3.4. Lemma. Let R be a local ring and F be the associated field.
Let C — (—>Cl + 1—»Q-»—) be a finitely generated free chain complex over
R. Let C be the chain F-complex F ®RC. Let di9 d\ be the

boundary homomorphisms Ci + 1 -> Q, C- + 1 -> C\. If rk^H^C) rkpH^C)
for some i then : H^C), Im di + 1, Im dt are free R-modules and

Ct Im di + 1 © Hi(C) © Im dt; the projection C C induces F-isomorphisms

F (g)R Hi(C) HfC'f F ' Im dj Im dj with j i, i + 1.

This Lemma directly follows from Lemmas 3.2 (ii) and 3.3.

§ 4. Proof of Theorems 1 and 2

4.1. Proof of Theorem 1. Denote by Qn the fraction field of the ring
An Z[tl9 tf1,..., tn, t"1]. Denote by Q„ the subring of Qn which consists

of rational functions fg-1 with f9ge A„ and g£(tn— 1)AW (so that
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g(t1,, 1) ^ 0). The homomorphism / /(^,i, 1) : Art - A„_ x

uniquely extends to a ring homomorphism -> Qn-1 which is denoted

by cp.

Denote by X the exterior of K and by 7 the exterior of L.

We shall prove the following two statements.

(4.1.1). cp(A(K)) A(K) (tx,..., 1) divides A(L) in A„_

(4.1.2). There exists a representative co of the torsion co(X) c= Qn such

that (tn— l)co eg„° and cp((t„ — l)co) represents co(T) c= Qn_1.

Let us show first that these two statements imply the Theorem. Let œ

n — 1

be the element of Qn produced by (4.1.2). Put n •=? fj (q— 1). According
i= 1

to the results formulated in Sec. 2.2 the product (tn— l)rc • A(K) represents
co(X). Thus

ffco —- (tn— I)tcA(K)
99

where f,ge An\0. We may assume that // and gg are relatively prime. If
tn — 1 does not divide g then co g ß« and cp((tM — l)co) 0 which contradicts
to the inclusion cp((tw— l)co) g co(7). Thus g (t„— l)h with he An. In view
of (4.1.1), cp(A(X)) ^ 0, i.e. tn — 1 does not divide A(K). If cp(h) 0 then

(L-l)2 divides g which obviously contradicts the inclusion (tn— l)coeß®.
Thus cp(/z) ^ 0. We have

hh(tn l)co - ff nA(K).

Since^ (p(hh(tn—l)(ù) /0 we have cp(/) ^ 0. This implies that tu • cp(A(K))
cp((t„—l)(o) where gr cp(/i)/cp(/). Thus 7ucp(A(K)) represents co(T). Since

7iA(L) g co( 7) we have

cp(A(K))XX A(L)pp

with non-zero X, peA„_1. We may assume that XX and pjâ are relatively
prime. Since cp(A(X)) divides A(L) we immediately obtain pp 1. Thus,
A(L) cp(A(X))n.

Let us prove (4.1.1) and (4.1.2). We may assume that X c 7 and
that Y\X is the interior of the regular neighborhood U c Y of the n-th
component of K in 7. Let p: X -> X and g : 7 -» 7 be the maximal abelian
coverings with the groups of covering transformations respectively H^X) « Z"
(generators t1,...,tn) and H^Y) « Z"_1 (generators tn_ x). It is clear
that p is the composition of an infinite cyclic covering X -> q~1(X) and the
covering q: q~\X) X.
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Fix a C1-triangulation of Y so that X and U are simplicial subcomplexes
of Y. Fix also the induced equivariant triangulations in X and Y.

The ring determines via the natural homomorphism ZlnfY)]
7j[H1Y~] a system of local coefficients on Y which we denote by

the same symbol An_1. According to definitions, for any simplicial subsets

A => B of Y the A„_ x-module H^(A, B;An_1) equals H^(C(q~ 1(A), q'1(B) ; Z)).
Here the simplicial chain complex Cj<q~1(A), q~l{B) ; Z) is a finitely generated
free An_ ^complex. Analogously An defines a system of local coefficients

on X and for simplicial subsets A => B of X the An-module H%(A, B ; AJ
equals Hjfip^fA), p~ \B) ; Z)). Note that

K-i ®anC*{p-\A\p-\B);Z) C^q-\A\q-\B)-Z)
where An acts on An_1 via (p.

Claim 1. For i A 1, m — 1,

rk^HILXiAJ rkAn_lHi(X ; Aw_ J rk^^T ; A„_ A) 0.

For i 1, m — 1,

rkA xk^ßlXiA^ n - 1; rk^/^Y; A„_,) n - 2.

Proof of Claim 1. We shall compute the rank of ; A„) ; modules

; A„_1) and H;(Y ; A„_x) can be treated similarly.

Denote by F a wedge of n circles in X such that the inclusion
homomorphism H^ViZ) -* H^XiZ} Zn is bijective. Then Ht{X,V, Z) 0

for i ^ m — 2. Therefore an application of Lemma 3.2(i) to complexes
and C*(X, F; Z) gives that rkAnHl(Ar, F; A„) 0 for

i ^ m — 2. This implies that rk H^X ; AJ rk H^F ; A„) for i ^ m — 3 and

that rk Hm_2(-A ; An) ^ rk Hm_2(F ; A„). The rank of HfV ; AJ can be

computed directly: It is equal to 0 if i ^ 1 and to n — 1 if i 1. Thus the

rank of H-lX\An) equals 0 if i # 1, m — 1 and equals n — 1 if i 1.

The equality rk Hm^1(X ; An) n — 1 follows from duality or from the

equalities

m

£ (— 1)' rk Ht(X;A„) 0.
i 0

C/uim 2. The exact homology sequence of Y, X) with coefficients in
A„-1 splits into short exact sequences
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0 HJY,X\A„_i) -> Hm^(X;A„.J-f F :A„ ,)-> 0,

0 - ^ WiA-i) -0, (i#l,m~l)
0 - * H^XjA„_!) - iîi(Y; A„-i) - 0.

Proof of Claim 2. Clearly, Ht{Y,X;A„-t)HfU, „.J 0 for

i # 2, m. Therefore the only thing to prove is the injectivity of d1.

According to Claim 1 rk fJx(X ; A„. ; n — 1 and rk fîx(T ; A„_ f) n — 2.

Since LT2(^ ^ 5 A„_! we see that dx is injective.

Prc><?/ of (4.1.1 In view of the equalities rg Ffipf ; AJ rg Lfi(A ; A„_ 2),

i 0, 1,... we may apply Lemma 3.2 (iii) to the chain complexes C^(X ; Z)
and Cj^q~\X) ; Z) respectively over A„ and An_i. Since m — 1 > r > 1

Claims 1, 2 show that Hr(X;An) and Hr(X ; A„_x) are torsion modules

respectively over An and An_1 and Hr(X, A^-J #r(Y ; A„_1). By definition
A(X) ord Hr(X ; AJ and A(L) - ord Hr(Z ; An_J - ord ifr(X ; A„_ J.
Lemma 3.2 (iii) directly implies that cp(A(X)) divides A(L).

It remains to prove Statement (4.1.2) which is, of course, the core of
Theorem 1. For simplicial subsets A =3 B of Y we shall denote by
C{A, B) the (simplicial) chain Qn_1 -complex Qn-Y ®An_1 C^(q~1(A), Z).
Clearly

Hi(A, B ; Qn- i) Ht{C(A,B)) Qn-% ® An_MA, B ; A„_ J...

Consider the short exact sequence of chain x>-complexes

(5) 0 -> C(X) -> C{Y) C(Y, X) -> 0

Provide the homology modules of complexes C(X), C(Y), C(Y, X) with bases
as follows. It is evident that #j(C(Y, A)) 0 for i / 2, m and

H{C(Y,X)H{C(V,dU)) Ô„_x

for i 2, m. Fix a lifting Ü czYof UxSm~2x D2. Fix in
the generator [tJ, dÜf Fix in H2(C{Y, X)) the generator [A, 5A] where A
is the meridional disk of C.

It follows from Claim 1 that Ht(C(X)) 0 for # 1, - 1.

Fix an arbitrary basis / in the (n-2)-dimensional vector Q^-space
Hi(Y i Qn-i)•Fix the dual basis g in Hm_1{Y ; It follows from Claim 2
that inclusion homomorphisms H,(C(X)} H,(C(Y)) are surjective for all Let
F and G be sequences of n -2vectorsin and in
whose images under these inclusion homomorphisms are equal respectively
!o / and cj.Claim2 implies that [517], G is a basis in and
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[dÀ], F is a basis in ffx(C(X)). Now all homology modules of complexes
C(X), C(7), C(7, X) are provided with bases.

Provide the modules of C(X), C(7), C(7, X) with natural bases (see Sec. 2.2).

We may choose these bases to be compatible in the sense of Lemma 2.1.1.

According to this Lemma

x(C(7)) ± x(C(X))x(C(7,X))x(Jf)

where XF is the homology sequence associated with the exact sequence (5).

It is evident that ± 1. It is easy to verify that x(C(7, X))
t(C(U, dU)) ±1. (Indeed, the pair (U, dU) has a cell structure such

that Int U contains 2 open cells; the meridional disc and its complement;
for such cell structure the equality x(C(U, dU)) ± 1 is evident. The case of
an arbitrary cell structure (or triangulation) follows from the invariance of
torsion under cell subdivision). Thus x(C(7)) ± x(C(X)). Note that x(C(7))
represents co(7). Therefore x(C(X)) also represents co(7).

Consider the chain complex

C Qn ®An C*{X ; Z).

Note that is a local ring with the maximal ideal (tn — l)Q„ and
associated field Qn-1. Clearly, Qn-l ®q®C C(X). The natural bases in

chain modules of C(X) lift to natural bases in chain modules of C. Claim 1

implies that for all i ^ 0

rkgOi^Q - rkAnf/j(X ; A„) rkQ^ tHt{C(X)).

Therefore we may apply Lemma 3.4 to complexes C, C(X). This lemma shows

that: Hf(C) ^/(C(X)) 0 for i 7 1, m - 1 ; the basis [M], 7 in H^^X))
lifts to a basis, say, /0, /i,/w_2 in H^C); the basis [dL], G in ^^^^(X))
lifts to a basis, say, gq,..., in ifm_1(C); the submodules of cycles
and boundaries of C are free in all dimensions. Thus we may apply the

constructions of Sec. 2.1 to C which gives rise to a torsion x(C) e Q°.

It follows directly from the formula (3) that cp(x(C)) x(C(X)). Thus cp(x(C))

represents <x>(7).

Let v be the matrix of the semi-linear intersection pairing

< >:H1(X;Q°„) x ; ß„°) -> Q„°

with respect to bases fo, fi,-,fn-iand(Here Hi{X;Q°)
It is clear that t(C) (det vj~~1 represents aiX). Put co x(C) (det 1.

We shall prove that

(6) det v ± (t„ — 1) + (tn — l)2a
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where a e Q„. Then (tn — l)co g Q J and

cp((£„-l)<ö) cp(t(C)[±l+(£„-l)a]_1) + cp(x(C)) e co(y).

This would complete the proof of (4.1.2).

It is obvious that

r</o,0o> {t«~l )«
" ~ k-Dß Y_

where a, ß, y are respectively a (n — 2)-row, (n — 2)-column and (n — 2) x (n — 2)-

matrix over g °. It turns out that

(7) </0,g0> + (t„-l) + (t„-l)2b

with b e Q„. This immediately implies (6).

I shall prove (7) for a special choice of f0 which is sufficient for our
aims. Let 0: [0, 1] dX be a path whose projection to Y is a loop
parametrizing M c: dU. Let r| : [0, 1] -> X be a path such that r|(0) 0(0)
and rj(l) tx • 0(0). Consider the singular chain 0 0 — £x0 + £„r| — rj.
It is easy to check up that 0 is a cycle in X and that its homology class

[0] e H^C) projects to (1-^) [3A] e Hx(C(X)). Put f0 (1-C)_1[0]. Then
</o, Qo> — (1—fi)-1<[S], 9o> <0,öro> where in the
right part the brackets < > denote the intersection pairing

H^dXiQ?) x Hw_1(X;ßB0)-,ßB0.

The image of <rj, g0> under (p: -> Qn-1 can be computed using the
analogous pairing

H^X, dX;Qn_1) x Hm_1(X ; ß„_,) Qn-\ •

Namely, cp(<r|, g0>)±(tx— 1). Thus <"n,ör0> ± (^-1) + (t„-l)c
with ceQ°„. Therefore </0, g0>+ (t„-1) + (tn- l)2h where b

(1 — tj) - xc. This implies (7).

4.2. Proof of Theorem 2. We may assume that A„_1(L) ^ 0 and
'i 12 -l„-i 0. Then the n-th component of K lifts to the maximal
abelian covering of the exterior Y of L. The remaining part of the proof
is analogous to the proof of Theorem 1. Note, however, the necessary
changes. In Claim 1 for i1, 2

rkA„ffi(Z ; A„) tkAri_iHi(X;A„_j) u1; ; A„_ J 2.



82 V. G. TURAEV

In the proof of (4.1.1) one should take into account that TorsAn_1H1(X ; A,,^)
injects into TorsAn_1if1(7 ; A„_1) and thus the order of the first of these

2 modules divides the order of the second one.
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