Kurze Mitteilungen zur Mineralogie der Schweiz

Objekttyp: **Group**

Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen

= Bulletin suisse de minéralogie et pétrographie

Band (Jahr): 31 (1951)

Heft 1

PDF erstellt am: 29.04.2024

Nutzungsbedingungen

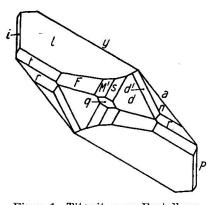
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch


Kurze Mitteilungen zur Mineralogie der Schweiz

2

Titanit vom Bortelhorn

Von Robert L. Parker (Zürich)

Zu den bemerkenswertesten schweizerischen Titanitfunden der letzten Jahre gehört zweifellos das 1944 von Jos. Imhof ausgebeutete Vorkommen am Bortelhorn (Simplongebiet). Auf die Paragenese und auffallend schöne Ausbildung der von hier stammenden Stufen hat bereits W. Bernoulli (1944) hingewiesen; doch ist bis jetzt keine kristallographische Beschreibung der Titanitkristalle erfolgt. Im folgenden seien deshalb die Ergebnisse von Messungen, die an typischen von einschlägigen Stufen der E.T.H.-Sammlung stammenden Individuen gemacht wurden, kurz mitgeteilt.

Figur 1. Titanit vom Bortelhorn (Seitenansicht)

Die auf den Stufen vorhandenen Kristalle variieren in der Grösse zwischen winzigen und ganz ansehnlichen Dimensionen und sind von gelber oder brauner, manchmal nur sehr blasser Farbe. Sie sind teils als Penetrations- oder keilförmige Kontaktzwillinge mit ähnlich grosser Entwicklung beider Teile, teils als Penetrationszwillinge mit stark ungleicher Grösse der beiden Teilindividuen, teils wieder als einfache Kristalle ausgebildet. Ihre "Kernkombination" (R. L. Parker, 1934) lautet y (001), a (102), P (100), l (112), die in Ermangelung einer ausgesprochenen Streckungsrichtung den Individuen einen tafeligen Habitus verleiht (vgl. das Seitenbild, Figur 1).

Schon bei der blossen Lupenbetrachtung erweisen sich die Kristalle als typische "Walliser", indem ein auffälliger Zug der morphologischen Entwicklung durch die reiche Entfaltung der [112]-Zone gegeben ist. In der Tat haben Untersuchungen von K. Busz an Material von der Kriegalp, von P. Koller und L. Oberföll an solchem des "Binnentals", sowie vom Schreibenden an Kristallen von der Kriegalp und dem Ofenhorn (loc. cit., dort auch die übrige Literatur) gezeigt, dass in diesem Fundgebiet die Zone oft sehr reich an Formen und manchmal sogar habitusbestimmend sein kann.

Obgleich letzteres für die Kristalle vom Bortelhorn nur teilweise zutrifft, so weisen diese doch eine Abfolge von sieben Formen auf, die dem

Winkeltabelle

Formen	Zonen					
	001	010	110	112	101	021
p (100)	90°00′ (-01′)	*				*
q (010)	*				*	
y (001)		60° 17′	65°31′			
**		(+01')	(+07')			×
s (021)			1	46° 40′		
(100)		000777		(-05')	€	
a (102)		39° 17′				
r (110)	$56^{\circ}45'$	(00')				
1 (110)	(-01')		*	*		
n (111)	(01)		27°14′		68°06′	
()		e e	(-03')		$(-02\frac{1}{2})$	
t (111)			135° 55'	95° 29′	, ,,,,,	
			(+04')	(00')		
1 (112)		8	106° 03′			$94^{\circ}15'$
			(+04')			(+07.')
d (131)		8	}	26° 45′	39°40′	
347/5 11 H)				(+03')	(+09')	
M'(3.11.7)				63°31′		
i (312)				(-09') 121°38'		141° 50′
1 (012)				+(24')	81	(+17')
F (354)				80°41′		(-
()				(-06')		
d' (383)					43°01′	
					(+26')	

Verband angehören. Darunter wurden in sehr guter Position gefunden (Kolonne 4 der Winkeltabelle): d (131), s (021), F (354), t (111). Die Flächen der zwei letztgenannten Formen weisen eine stark oszillierende Entwicklung auf, derzufolge sie als eine Serie von alternierenden Lamellen erscheinen. Während gewisse von diesen Signale liefern, die vorzüglich mit den berechneten Werten übereinstimmen, liefern andere mehr oder weniger stark abweichende Winkel. Es wurde davon abgesehen, Indizes für solche Vizinalflächen auszuarbeiten. Dagegen lieferte die in der Figur mit M' bezeichnete Form, obgleich sie glatte Flächen besitzt, die einwandfreie Signale erzeugen, zonale Positionswinkel, die um volle 3°40' von der Lage 67°02' abweichen, die der zunächst supponierten Form M (132) innerhalb der Zone [112] zukommt. Es musste daher für die Form ein Symbol gefunden werden, das bei Zugehörigkeit zu dieser Zone den gemessenen Winkeln besser entspricht. Das trifft in ausgezeichneter Weise für (3.11.7) zu, mit welchen Indizes also diese für Titanit scheinbar neue Form zu versehen ist. Eine weitere Form der Zone ist i (312). Ihre Flächen sind wenig glänzend und liefern sehr lichtschwache, schwer einstellbare Signale und keine sonderlich guten Positionswerte. Ihre Identität ist durch die einwandfrei feststell- und messbare Zonenbeziehung p $(\overline{1}00)$ -i $(\overline{3}12)$ -l $(\overline{1}12)$ gesichert (Winkeltabelle Kolonne 6).

Interessant gestaltete sich auch die Auswertung der Zone [101] (Winkeltabelle Kolonne 5). Wie am gemessenen Kristall und in der Figur leicht ersichtlich, umfasst dieselbe ausser n (111), der bereits erfassten d (131) und dem nur sehr klein entwickelten seitlichen Pinakoid q (010), eine schmale Fläche d', die sich als allerdings zu d sehr flach geneigtes aber trotzdem selbständiges Element zwischen d und n einschaltet. Die gemessene Zonenposition ergibt 43°27', was ein Symbol (383) wahrscheinlich macht (berechnete Position: 43°01'). Eine solche Form ist für Titanit neu und für den schweizerischen Titanit deswegen besonders interessant, weil die anderen an ihm gefundenen selteneren Formen dieser Zone, so die von O. Hugo angegebenen (212), (313), (414) und (616) alle auf der anderen Seite von n (111) liegen. Zwar sind in diesem Zonenstück Formen wie (232), (252) und (151) bekannt, doch scheinen sie an Material aus der Schweiz noch nicht vorgefunden worden zu sein. Somit würde die vorliegende Form d' eine an solchem bisher nicht beachtete Bereicherung des äusseren Zonenstücks darstellen.

Die Winkeltabelle (S. 307) fasst die bereits erwähnten Messungen zusammen und zeigt ferner, welche weiteren, nicht besonders besprochenen ausgeführt wurden. Die in jeder Kolonne enthaltenen Winkelwerte (sog. zonale Positionswinkel) sind solche, die innerhalb der in der Überschrift angegebenen Zone zwischen den jeweilen links angeführten Flächen und der zur Zone gehörigen (mit * versehenen) (hk0)-Fläche spannen. In der Zone [001] dient (010) als Ausgangsfläche. Die ausserhalb der Klammern stehenden Werte sind die berechneten, die eingeklammerten die an den besten Messungen festgestellten Abweichungen.

Zitierte Literatur

W. Bernoulli (1944): Verhandl. Naturf. Gesellschaft Basel, 55.

R. L. Parker (1934): Morphologische Typen am schweizerischen Titanit. Schweiz. Min. Petr. Mitt., 14, S. 478—506.