VSE-Nachrichten = Nouvelles de l'UCS

Objekttyp: **Group**

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de

l'Association Suisse des Electriciens, de l'Association des

Entreprises électriques suisses

Band (Jahr): 85 (1994)

Heft 4

PDF erstellt am: **28.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

VSE-Nachrichten – Nouvelles de l'UCS

Elektrizitätswerke investieren jährlich rund eine Milliarde

(Sx) Mit einem jährlichen Investitionsvolumen von durchschnittlich 1,02 Mrd. Franken (real) beträgt der Anteil der Elektrizitätswirtschaft rund einen Fünfzigstel an den gesamtschweizerischen Investitionen. Während in der Periode von 1980 bis 1985 durchschnittlich 1,07 Mrd. Franken pro Jahr investiert wurden, gingen die inund ausländischen Investitionen zwischen 1986 und 1991 auf durchschnittlich 0,97 Mrd. Franken oder um 9% zurück. Zugenommen haben die Auslandinvestitionen, namentlich wegen zusätzlichen Bezugsrechten aus französischen Kernkraftwerken. Im Inland wurden jedoch Infrastrukturvorhaben, die zur Deckung des seit 1980 um 35% gestiegenen Strombedarfs hätten bereitgestellt werden müssen, verhindert oder verzögert.

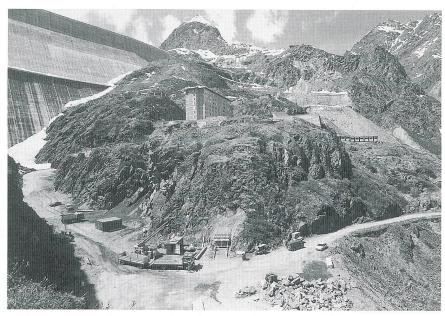
Projekte für 8 Milliarden Franken vorhanden

Bis Ende der neunziger Jahre könnten im Bereich der Kernenergie für Ersatzinvestitionen und Leistungserhöhungen rund 1,5 Mrd. Franken investiert werden. Bei der Wasserkraft sind Projekte für die Modernisierung bestehender und zum Bau neuer Anlagen im Umfang von rund 3 Mrd. Franken vorhanden. Im Leitungsbau könnten im Hochspannungsbereich für Verteilanlagen und Trafostationen im Inland rund 4 Mrd. Franken investiert werden. Voraussetzung dafür ist aber auch eine speditive Behandlung dieser Vorhaben durch die Behörden. Die geplanten Investitionen von rund 8 Mrd. Franken entsprechen dem Durchschnitt der achtziger Jahre.

17000 Vollbeschäftigte

Mit weniger Beschäftigten wurde mehr Strom produziert. Seit 1980 konnte die Stromproduktion um 9% gesteigert werden. Im gleichen Zeitraum nahm die Anzahl der Beschäftigten um nur 8% zu. Dies trotz neuen Tätigkeiten bei der Kundenberatung mit 1200 direkt oder indirekt tätigen Energieberaterinnen und -beratern. Insgesamt waren 1991 rund 17000 Vollzeitbeschäftigte in der Elektrizitätsversorgung tätig.

Les entreprises électriques investissent environ un milliard par année


(Sx) Avec un volume d'investissements annuel de 1,02 milliard de francs (réels), la part de la branche représente environ un cinquantième de l'ensemble des investissements suisses. Alors que les investissements réalisés en Suisse et à l'étranger étaient en moyenne de 1,07 milliard entre 1980 et 1985, ils ont diminué de 9% entre 1986 et 1991, passant en moyenne à 0,97 milliard de francs. Les investissements réalisés à l'étranger ont augmenté notamment à cause des droits de prélèvement supplémentaires d'électricité acquis auprès de centrales nucléaires françaises. En Suisse par contre, des projets d'infrastructure qui auraient permis de couvrir l'accroissement de la demande d'électricité (35% depuis 1980) ont été empêchés ou retardés.

Projets d'investissements pour 8 milliards de francs

Il est prévu d'investir environ 1,5 milliard de francs d'ici à la fin des années quatre-vingt-dix dans le domaine de l'énergie nucléaire (remplacements d'équipements, augmentations de puissance). Il existe en outre des projets de modernisation ou de construction d'installations hydrauliques d'un montant de quelque 3 milliards de francs. Il est de plus envisagé d'investir 4 milliards de francs dans la construction des réseaux suisses en haute tension, plus précisément dans les postes de couplage et de transformation. Cela implique toutefois que les autorités traitent rapidement ces projets. Les investissements prévus de quelque 8 milliards de francs correspondent à la moyenne des années quatre-vingt.

17000 employés à plein temps

La quantité d'électricité produite a plus augmenté que le nombre d'employés. Depuis 1980, la production d'électricité a augmenté de 9%, alors que le nombre d'employés ne s'est développé que de 8%, en dépit de l'ouverture de nouvelles activités de conseil impliquant directement ou indirectement la collaboration de 1200 conseillers et conseillères en énergie. L'économie électrique employait en 1991 environ 17000 personnes à plein temps.

Eines der wenigen Grossprojekte, das momentan in der Schweiz realisiert wird, ist Cleuson-Dixence: die Erweiterung der Kraftwerkgruppe um eine zusätzliche Anlage wird bis 1998 1,1 Milliarden Franken verschlingen

L'un des seuls grands projets réalisés actuellement en Suisse est celui de Cleuson-Dixence: l'extension des aménagements par une nouvelle centrale coûtera 1,1 milliard de francs jusqu'en 1998

Höhere Fachprüfung als dipl. Elektro-Installateur

Gestützt auf die Art. 51–57 des Bundesgesetzes über die Berufsbildung vom 19. April 1978 und die Art. 44–50 der dazugehörigen Verordnung vom 7. November 1979 werden die

Meisterprüfungen für Elektro-Kontrolleure

gemäss Prüfungsreglement über die Durchführung der Berufsprüfung und der höheren Fachprüfung im Elektro-Installationsgewerbe durchgeführt.

Zulassungsbedingungen

Zur höheren Fachprüfung wird zugelassen, wer die Berufsprüfung als Elektro-Kontrolleur vor mindestens einem Jahr bestanden hat und wer sich über eine Tätigkeit auf dem Gebiete der Installationen gemäss NIV von mindestens fünf Jahren nach Lehrabschluss ausweisen kann.

Prüfungsgebühr

Fr. 2300.– inkl. Materialkostenanteil. Die Reise-, Unterkunfts- und Verpflegungskosten gehen zu Lasten des Kandidaten.

Anmeldung

Die Anmeldung für die Meisterprüfungen (Februar bis Juli 1995) hat in der Zeit vom 1. bis 15. April 1994 unter Beilage der folgenden Unterlagen an den VSEI zu erfolgen:

- Anmeldeformular (vollständig ausgefüllt)
- Lebenslauf (datiert und unterzeichnet)
- Prüfungszeugnis Elektro-Kontrolleur
- sämtliche Arbeitsausweise, eventuell Diplome

Nächste Anmeldefrist: 1.–15. September 1994.

Anmeldeformulare und Reglement bitte schriftlich mit beigelegter adressierter Retouretikette bestellen beim Verband Schweizerischer Elektro-Installationsfirmen (VSEI), «Berufsbildung MP», Postfach 3357, 8031 Zürich.

Kontrolleur- und Meisterprüfungskommission VSEI/VSE

Examen professionnel supérieur d'installateurélectricien diplômé

Sur la base des articles 51–57 de la Loi fédérale du 19 avril 1978 relative à la formation professionnelle et des articles 44–50 de l'ordonnance correspondante du 7 novembre 1979

l'examen de maîtrise pour contrôleurs-électriciens

sera organisé selon le règlement concernant le déroulement de l'examen professionnel et de l'examen professionnel supérieur dans la profession d'installateurélectricien.

Conditions d'admission

Est admis à l'examen professionnel supérieur, le titulaire du brevet fédéral de contrôleur-électricien, pour autant qu'il ait réussi l'examen professionnel au moins une année auparavant et qu'il justifie d'une activité d'au moins cinq ans dans le domaine des installations selon l'OIBT après l'examen de fin d'apprentissage.

Taxe d'examen

Fr. 2300.— y compris les frais pour le matériel. Les frais de déplacement, de séjour et les repas sont à la charge des candidats.

Inscription

Le délai d'inscription est fixé du 1^{er} au 15 avril 1994 pour les examens d'octobre 1994 jusqu'à environ juillet 1995. Les inscriptions sont à adresser à l'USIE et doivent être accompagnées des pièces suivantes:

- formule d'inscription dûment remplie
- curriculum vitae, daté et signé
- certificat d'examen de contrôleur-électricien
- attestations de travail, diplômes éventuels

Le prochain délai d'inscription est fixé du 1^{er} au 15 septembre 1994.

Les formules d'inscription et le règlement sont à commander par écrit en joignant une étiquette portant l'adresse exacte du destinataire à l'Union Suisse des Installateurs-Electriciens (USIE), formation professionnelle MP, case postale 3357, 8031 Zurich.

> Commission d'examen de contrôleur et de maîtrise USIE/UCS

Esame professionale superiore d'installatore elettricista diplomato

Secondo gli articoli 51–57 della Legge federale del 19 aprile 1978 sulla formazione professionale e gli articoli 44–50 della rispettiva ordinanza del 7 novembre 1979

l'esame di maestro per controllori-elettricisti

sarà organizzato secondo il regolamento per l'esame professionale e per l'esame professionale superiore nella professione d'installatore elettricista.

Condizioni per l'ammissione

All'esame professionale superiore è ammesso chi ha superato, da almeno un anno, l'esame di professione di controllore e può comprovare di aver esercitato, dopo la fine del tirocinio, un'attività di almeno cinque anni nel campo degli impianti ai sensi dell'OIBT.

Tassa d'esame

Fr. 2300. – compresa la partecipazione ai costi del materiale utilizzato. Le spese di viaggio, nonchè i costi per vitto e alloggio sono a carico del candidato.

Iscrizione

Il periodo d'iscrizione per gli esami che avranno luogo a partire da febbraio a luglio 1995 si estende dal 1º al 15 aprile 1994 e la domanda dev'essere corredata dei seguenti documenti:

- formulario d'iscrizione (debitamente compilato)
- curriculum vitae (con data e firma)
- attestato d'esame di controllore elettricista
- attestati di lavoro ed eventuali diplomi

Prossimo periodo d'iscrizione: 1º al 15 settembre 1994.

Formulari d'iscrizione e regolamenti vanno richiesti presso l'Unione Svizzera degli Installatori Elettricisti, esami di maestria MP, casella postale 3357, 8031 Zurigo, allegando un'etichetta col proprio indirizzo.

Commissione d'esame di controllore e di maestria USIE/UCS

10. Berufsprüfung für KKW-Anlagenoperateure

Der VSE gratuliert den 18 erfolgreichen Prüfungskandidaten, die die 10. Berufsprüfung für KKW-Anlagenoperateure vom 22. bis 30. November 1993 in der Probstei Wislikofen und im KKW Beznau bestanden haben und nun zu den 96 KKW-Anlagenoperateuren mit eidgenössischem Fähigkeitsausweis zählen:

KKW Beznau

Grau Markus, Kindhausen Kleiner Michael, Egliswil Loosen Thomas, Dulliken Rüegger Markus, Böttstein Schmid Roland, Frick

KKW Leibstadt

Holzapfel Josef, Dogern Kromer Christian, Ühl.-Birkendorf Meier Matthias, Laufenburg Näf Peter, Leibstadt Peter Anton, Mettau

KKW Gösgen

Baumgartner Roger, Oberbuchsiten Christen Reinhard, Aarburg Glur Willy, Olten Heuberger Christian, Dulliken Ruzicka Markus, Lostorf Sommerhalder Arnold, Rothrist Wyss Jürg, Gunzgen

KKW Mühleberg

Bieri Stephan, Schönbühl Bill Dorian, Treiten

Wir gratulieren allen Kandidaten zu ihrem Prüfungserfolg.

Prüfungskommission für die Berufsprüfung für KKW-Anlagenoperateure

Berufsprüfung für KKW-Anlagenoperateure 1994

Gestützt auf die Art. 51–57 des Bundesgesetzes über die Berufsbildung vom 19. April 1978 und die Art. 44–50 der dazugehörigen Verordnung vom 7. November 1979 organisiert der Verband Schweizerischer Elektrizitätswerke

Berufsprüfungen für KKW-Anlagenoperateure

Für diese Prüfungen gilt das Reglement vom 10. September 1991.

Prüfungsdaten: Prüfungsort: Prüfungsgebühr:

24.–28. Oktober 1994 Kernkraftwerk Beznau

Fr. 900.–

Zulassungsbedingungen:

Gemäss Art. 9 des Prüfungsreglementes. Die Zahl der Kandidaten ist auf 20 beschränkt. Anmeldung:

Bis Ende Mai 1994, mit folgenden Beilagen:

- Anmeldeformular
- Lebenslauf (datiert und unterzeichnet)
- Kopie des Lehrabschlusszeugnisses
- sämtliche Arbeitsausweise
- eventuelle Diplome

Mangelhafte oder verspätet eingehende Anmeldungen können nicht berücksichtigt werden. Den Kandidaten wird der Entscheid über die Zulassung und der genaue Zeitpunkt der Prüfung bis Ende Juni 1994 mitgeteilt. Die Prüfungsgebühr wird mit der Zulassung in Rechnung gestellt.

Anmeldeformulare und Auskünfte VSE, Postfach 6140, 8023 Zürich. Prüfungskommission für die Berufsprüfung für KKW-Anlagenoperateure

Sicherheit im Elektrizitätswerk

(Gr) Im vergangenen August ist das neue Sicherheitshandbuch für Elektrizitätswerke in Form eines Ordners im A5-Format erschienen. Die französische Version (A4-Format) konnte im November herausgegeben werden und die italienische soll bis im April/Mai dieses Jahres fertiggestellt sein.

Das Sicherheitshandbuch will den Sicherheitsbeauftragten und den verantwortlichen Vorgesetzten helfen, ihre Mitarbeiter über die Sicherheitsvorschriften zu informieren und die richtigen Massnahmen zu treffen. Es behandelt Themen wie gesetzliche Grundlagen, Verhalten bei Notfällen, Erste-Hilfe-Massnahmen, Arbeitssicherheit, Anlagensicherheit und viele mehr.

Das Handbuch (5.10d) kann zum Preis von Fr. 50.– beim VSE, Gerbergasse 5, 8023 Zürich, bezogen werden. Während fünf Jahren werden die Besitzer des Handbuches kostenlos alle Ergänzungen und Korrekturen nachgeliefert erhalten.

Die französischsprachige Schweiz verfügt bereits seit ein paar Jahren über ein Poster, das die fünf grundlegendsten Sicherheitsregeln in Erinnerung ruft, und – am rechten Ort aufgehängt – dafür sorgt,

Handbuch, Kleber und Plakate für die Sicherheit im Elektrizitätswerk

Un manuel, des auto-collants et des affiches pour la sécurité dans l'entreprise électrique

dass sie am Arbeitsplatz immer präsent sind. Dieses Plakat (Fr. 1.50) und die entsprechenden Kleber (–.50) sind nun neu auch in deutscher Sprache beim VSE erhältlich.

La sécurité dans les entreprises électriques

(Gr) L'Union des centrales suisses d'électricité a publié en août 1993 un «Manuel de la sécurité» sous la forme d'un classeur A5. Ce manuel existe également en version française (format A4) depuis novembre 1993. La version italienne est, quant à elle, prévue pour avril/mai de cette année.

Le «Manuel de la sécurité» permet aux responsables de la sécurité et cadres non seulement de mieux informer leurs collaborateurs sur les prescriptions correspondantes, mais aussi de prendre les mesures appropriées. Il traite les bases légales, les principes de la prévention des accidents, le comportement en cas d'urgence, les mesures de premiers secours, la sécurité du travail, la sécurité des installations, la protection contre l'incendie, la protection de l'environnement et d'autres thèmes.

Le «Manuel de la sécurité» (5.10f ou d) peut être obtenu au prix de 50 francs auprès de l'UCS, Gerbergasse 5, 8023 Zurich. Pour les possesseurs du manuel, ce dernier sera mis gratuitement à jour (feuilles complémentaires, modifications, etc.) durant cinq ans.

La Suisse romande dispose depuis quelques années d'un poster mettant en évidence les cinq règles de sécurité fondamentales, qui peuvent ainsi être affichées sur le lieu de travail. Ce poster (1 franc 50) et les autocollants correspondants (50 centimes/pièce) existent également en version allemande et peuvent être commandés à l'UCS.

Stellenbörse Bourse aux emplois

Kraftwerke Hinterrhein AG, Thusis: Netzelektriker für den Netzausbau im Bereich Nieder- und Mittelspannung, Kabelund Freileitungsbau. Bau und Unterhalt von Transformatorenstationen. Kontaktperson: M. Farrér, Tel. 081 81 18 33.

Städtische Werke Winterthur: Chefmonteur/-in Leitungsbau Elektrizität. Sie führen ein Team von zwölf Netzelektrikern, koordinieren die Arbeiten und sind für die Arbeits- und Materialvorbereitung verantwortlich. Kontaktperson: W. Fehr, Tel. 052/267 61 61.

Aus Mitgliedwerken Informations des membres

Marktwirtschaftliche Instrumente für Energieund Umweltprobleme

(Zu) Die Elektrizitätsunternehmen Elektra Birseck (EBM), Elektra Baselland (EBL) und Aare-Tessin AG für Elektrizität (Atel) veranstalten seit drei Jahren Gesprächskreise zu Umwelt- und Energiefragen. Die diesjährige Veranstaltung, die am 25. Januar 1994 im Kongresszentrum Basel stattfand, war dem Thema «Energie -Steuern oder lenken?» gewidmet. Über 400 Teilnehmer aus Wirtschaft und Politik folgten den Ausführungen von Wirtschaftswissenschafter Hansjörg Blöchlinger und Nationalrätin Vreni Spoerry. Die beiden Referenten befassten sich mit der Frage, wie man Energieanwender dazu bringt, schadenverursachende Emissionen bei der Energieverwendung zu minimieren oder zu verhindern, und kamen dabei auf dieselbe Antwort: Marktwirtschaftliche Instrumente müssen den Ansporn geben und nicht dirigistische dazu zwingen.

Abgaben als Systemkorrektur

Blöchlinger zeigte auf, wo das eigentliche Problem steckt: bei den sogenannten externen Kosten. Sie werden von Energieproduzenten und -verbrauchern verursacht, müssen aber von Dritten getragen werden. Dieser Fehler im marktwirtschaftlichen System führt zu Verschwendungen. «Wenn Energie optimal eingesetzt werden soll, müssen die externen Kosten den Verursachern angelastet werden», meinte Blöchlinger. Das sei die grundsätzliche Idee, die hinter Abgaben stecke. Der Verbrauch von Energie an sich sei allerdings noch kein Grund für die Belastung der Energie mit marktwirtschaftlichen Instrumenten, sondern erst die Schäden, die durch den Verbrauch entstehen. Dirigistische Massnahmen hätten vor allem Nachteile: Vermeidungskosten werden nicht berücksichtigt, Anreize zur Unterschreitung von Vorschriften als auch zu technischen Innovationen fehlen.

Eine Energiesteuer wäre für Blöchlinger ein Rückschritt, da Umwelt- und Fiskalpolitik unterschiedliche Ziele haben. Deshalb dürfen in seinen Augen umweltpolitisch und fiskalisch motivierte Abgaben nicht miteinander verknüpft werden. Am besten sei eine Rückerstattung der Abgaben an die Bevölkerung nach dem Prinzip des Ökobonus.

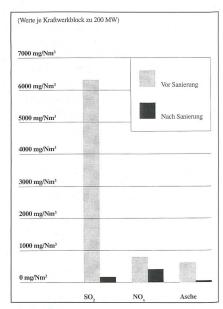
Generelle Energieabgabe ökologisch weniger begründbar

Nationalrätin Vreni Spoerry bezeichnete die Idee, die politisch vorgegebenen Umweltziele über die Marktkräfte quasi automatisch zu erreichen, als faszinierend. Gemäss der FDP-Politikerin muss sich ein marktwirtschaftliches Instrument zur Erreichung eines umweltpolitischen Ziels am angestrebten Ziel orientieren. Weil Energieverbrauch gleich Umweltbelastung in dieser absoluten Form nicht haltbar sei, sei auch eine generelle Energieabgabe ökologisch weniger gut begründbar und weniger zielgerecht. Ungeklärt sei auch die Bemessungsgrundlage der unterschiedlichen Energieträger. Die Politikerin schliesst daraus, dass Energieabgaben vor allem für die Wirtschaft abzulehnen seien. Um so mehr in einem Alleingang: Die Konkurrenzfähigkeit der schweizerischen Unternehmen dürfe nicht durch Energieabgaben geschwächt werden.

Inbetriebnahme der Zentrale Martina im Engadin

(ekw) Nach knapp vierjähriger Bauzeit wurde der Ausbau der unteren Innstufe Pradella-Martina der Engadiner Kraftwerke Ende Januar fertiggestellt. Die beiden Maschinengruppen der Kavernenzentrale Martina liefern seit dem 28. Januar 1994 Strom ans Versorgungsnetz. Bei einer installierten Generatorenleistung von je 40 Megawatt können jährlich etwa 290 Mio. kWh Strom erzeugt werden, was die Jahresproduktion der Engadiner Kraftwerke

(EKW) um rund ein Drittel erhöht. Die Zentrale Martina leistet mit seinen 290 Gigawattstunden Strom den grössten Beitrag zu «Energie 2000» seit der Lancierung des Aktionsprogramms des Bundes im Jahr 1990.


Mit der Betriebsaufnahme der Kraftwerkstufe Martina kann das gespeicherte Wasser aus dem Stausee Livigno nicht nur in den Zentralen Ova Spin und Pradella, sondern auch in Martina genutzt werden. Der Füllstand des Stausees lag Ende Januar 66% über dem langjährigen Durchschnitt. Die EKW rechnet damit, bis Ende März mit der neuen Stufe an die 50 Mio. kWh erzeugen zu können.

NOK finanziert Sanierung des Braunkohlekraftwerks Pocerady

(nok) In der 1993 abgeschlossenen Liefervereinbarung zwischen den Nordostschweizerischen Kraftwerken (NOK) und der tschechischen Elektrizitätsgesellschaft CEZ hat sich letztere verpflichtet, die aus der Stromlieferung anfallenden Devisen zur Sanierung von Kohlekraftwerken zu verwenden. Mittlerweile haben sich die beiden Partner auf die Sanierung des Braunkohlekraftwerks Pocerady im nordböhmischen Braunkohlerevier geeinigt.

Einbau von Entschwefelungsanlagen und Elektrofilter

Die Blöcke 3 und 4 des aus insgesamt fünf 200-MW-Blöcken bestehenden Kraftwerks sollen im Rahmen eines Gesamtsanierungsprojekts mit effizienten Umweltschutzanlagen ausgestattet werden. Es beinhaltet den Einbau leistungsfähiger Ent-

Schadstoffemissionen vor und nach der Sanierung des Kraftwerks Pocerady

schwefelungsanlagen zur Reduktion der SO₂-Emissionen sowie die Nachrüstung der Anlagen mit Elektrofiltern zur Senkung des NO_x-Ausstosses sowie des Ausstosses von Rauchgas und Flugasche. Neu konzipiert wird auch die Deponierung und Weiterverwendung der aus dem Abgas gefilterten Verbrennungsrückstände. So soll der bei der Entschwefelung anfallende Rea-Gips von einer geplanten Baustoff-Fabrik teilweise zu Gipsplatten weiterverarbeitet werden. Auch der Bau einer neuen Abwasserreinigungsanlage, in der sämtliche Abwässer des Kraftwerks gereinigt werden, ist vorgesehen. Gemäss CEZ belaufen sich die Kosten für die gesamte Sanierung der fünf Kraftwerkblöcke auf rund eine halbe Milliarde Franken.

Im Rahmen der Zusammenarbeit zwischen CEZ und NOK wurde vereinbart, dass das tschechische Stromversorgungsunternehmen den NOK regelmässig über den erzielten Sanierungsfortschritt berichtet und den Fachexperten der NOK ein Besichtigungsrecht im Sinne einer Projektbegleitung einräumt.

Höchstspannungsleitung Grynau-Sarelli wird nicht gebaut

Die Nordostschweizerischen Kraftwerke (NOK) verzichten auf den Umund Neubau der Hochspannungsleitung von Grynau nach Sarelli. Ursprünglich war beabsichtigt, diese 56 Kilometer lange und für 150 Kilovolt ausgelegte Verbindung durch eine Höchstspannungsleitung von 380 Kilovolt zu ersetzen. Man versprach sich davon unter anderem eine bessere Verbindung zwischen den Produktionsstandorten im Bündnerland und den Verbrauchszentren im Unterland sowie eine Senkung der Übertragungsverluste. Energiewirtschaftliche und unternehmerische Aspekte haben inzwischen zu einer neuen Beurteilung geführt. Ausschlaggebend war unter anderem die vermehrt partnerschaftliche Zusammenarbeit bei der Stromübertragung mit Höchstspannungsleitungen.

IWB: Wechsel an der Spitze der Betriebsabteilung «Elektrizität»

Auf Ende Juni 1994 tritt Franz Camenzind, dipl. Ing. HTL, Leiter der Betriebsabteilung «Elektrizität» und Stellvertreter des Hauptabteilungsleiters «Elektrizität» der Industriellen Werke Basel (IWB) in den Ruhestand. Zu seinem Nachfolger hat der Regierungsrat Hans-Rudolf Portenier, dipl.

Ing. HTL, ernannt. Er wird die Leitung der Betriebsabteilung «Elektrizität» am 1. Juni 1994 übernehmen. Hans-Rudolf Portenier war bisher als Leiter des Betriebsaussendienstes «Elektrizität» tätig.

Ein Stromtag im Zeitraffer

(nok) Mit einem neuartigen Stromsimulator möchten die Nordostschweizerischen Kraftwerke (NOK) die Besucher ihres Informationszentrums in Böttstein mit den Besonderheiten der öffentlichen Stromversorgung vertraut machen. Durch Treten der Pedale mit der eigenen Muskelkraft können die Ausstellungsbesucher einen typischen 24-Stunden-Verlauf des Stromverbrauchs im NOK-Versorgungsnetz nachvollziehen. Bis Ende März gewinnt täglich der geschickteste Benutzer dieses «Biokraftwerks» eine Energiesparlampe nach eigener Wahl.

Einblick in das Prinzip der Energieversorgung

Mit seinem spielerisch-sportlichen Einsatz gewinnt der Simulatorbenützer einen Einblick in das Prinzip der Stromversorgung. Im Zeitraffer von zwei Minuten fährt er mit Hilfe seines pedalgesteuerten Generators der Bedarfskurve eines durchschnittlichen Sommertags nach, wobei er als Unterstützung verschiedene Kraftwerkleistungen beiziehen kann. Wer eine möglichst geringe Kraftwerksunterstützung benötigt, dabei trotzdem auf Lastspitzen und -täler optimal zu reagieren vermag und somit eine kontinuierliche Stromversorgung sicherstellt, wird mit einer hohen Punktzahl belohnt. Jeder Simulatorbenützer erhält

nach seinem Einsatz eine schriftliche Bestätigung seiner persönlichen Energiebilanz und einige interessante Vergleiche über den Produktionswert des selbsterzeugten Stroms.

Das NOK-Informationszentrum Böttstein ist bei freiem Eintritt täglich bis 18 Uhr geöffnet.

Henri Payot quitte EOS

(p) Henri Payot, ancien administrateur de la Société romande d'électricité, a démissionné de la présidence de l'Energie de l'Ouest-Suisse (EOS) avec effet à la fin de l'année dernière. Pour lui succéder, le conseil d'administration d'EOS a fait appel à Jean-Luc Baeriswyl, directeur des Entreprises électriques fribourgeoises, jusque-là vice-président. Cette fonction est maintenant occupée par Paul-Daniel Panchaud, directeur de la Compagnie vaudoise d'électricité.

Datenmodell für Elektrizitätswerke

Mit der Einführung von umfassenden Informationssystemen hat die Datenverwaltung auch in Elektrizitätswerken zunehmend an Bedeutung gewonnen. Um die Zusammenarbeit auf diesem Gebiet zu intensivieren, den Erfahrungsaustausch zu fördern und Informatiklösungen vermehrt zu koordinieren, gründeteten die Kantonswerkdirektoren im NOK-Verband vor fünf Jahren eine Kommission für Informatik. Diese Kommission hat nun zusammen mit

Stromsimulator im NOK-Informationszentrum Böttstein

Aus Mitgliedwerken/Informations des membres

einem spezialisierten Software-Büro ein Datenmodell erarbeitet, das den fünf Kantonswerken Aargauisches Elektrizitätswerk, Elektrizitätswerk des Kantons Schaffhausen, Elektrizitätswerk des Kantons Thurgau, Elektrizitätswerke des Kantons Zürich und St. Gallisch-Appenzellische Kraftwerke AG als Grundlage für die Organisation und den Aufbau eines werkeigenen Informationssystems dient. Das Modell soll langfristig dazu beitragen, die Informationssysteme aller Energieversorgungsunternehmen zu vereinheitlichen und wird deshalb gerne anderen Interessenten und Softwareentwicklern zum Selbstkostenpreis zur Verfügung gestellt.

Optimierung der logischen Daten

Den Ausschlag für dieses Datenmodell gab die Erkenntnis, dass Investitionen in die Optimierung der Daten einen erheblich längeren und höheren Nutzen bringen als Investitionen in den Hard- oder Software-Bereich. Ein Vergleich der Lebensdauer und des Kostenverhältnisses der Informatikkomponenten zeigt dies deutlich. Die Lebensdauer von strukturierten und richtig verknüpften, also logisch optimierten Daten, beträgt rund 50 Jahre. Bei der Anwendersoftware wird hingegen nur mit einer Lebensdauer von 5 bis 10 Jahren gerechnet und bei der Hardware, der Betriebssoftware und den physischen Daten geht man sogar von einer Lebensdauer von nur 3 bis 7 Jahren aus. Ähnlich fällt eine Betrachtung des Kostenverhältnisses zwischen diesen Informatikkomponenten aus: Während man bei logischen Daten von einem Faktor 10-100 ausgeht, beträgt er bei der Hardware 1 und bei der Anwendersoftware 2-5.

Acht Teilbereiche

Das von der Kommission für Informatik des NOK-Verbands erarbeitete Datenmodell umfasst die Bereiche: betriebliches Steuerungs- und Informationssystem, Energieabrechnung, Finanz- und Rechnungswesen, Instandhaltung, Leitungen und Anlagen, Logistik, Personalwesen und Subjektverwaltung (Firmen, Institutionen usw.). Alle diese Bereiche werden im Datenmodell in vierfacher Hinsicht dokumentiert:

- mit einer fachlichen Beschreibung
- mit einem Entitäten/Relationen-Diagramm
- mit einer Entitätenkurzbeschreibung und
- mit einem Datenkatalog

Das Modell wird kontinuierlich erweitert und den gegebenen Verhältnissen angepasst. Die praktischen Erfahrungen ergeben zudem wertvolle Hinweise für Ergänzungen. Es ist geplant, zusätzlich ein Funktionen-/Prozessmodell zu erarbeiten und in das bestehende Modell zu integrieren.

Das Datenmodell kann zum Selbstkostenpreis bezogen werden bei W. Thurner oder J. Hunziker, Aargauisches Elektrizitätswerk (AEW), Obere Vorstadt 40, 5001 Aarau, Telefon 064 26 21 11). Sie erteilen auch gerne weitere Auskünfte.

Anforderungen an das Datenmodell *Kommunikation*

Das Datenmodell soll die Verständigung fördern zwischen allen Personen, die sich mit dem Informationssystem eines Energieversorgungsunternehmens beschäftigen.

Strategische Informatikplanung

Das konzeptionelle Datenmodell soll einen Überblick über das Informationssystem geben und als Entscheidungsgrundlage bei einem Weiterausbau des Systems und seiner Daten dienen.

Umsetzung

Das Datenmodell soll als Referenzmodell dienen und den Analyseaufwand bei der Erarbeitung des werkeigenen Modells verringern. Es soll langfristig dazu beitragen, die Informationssysteme der Energieversorgungsunternehmen zu vereinheitlichen.

A. Loser, St.Gallisch-Appenzellische Kraftwerke AG

EBM: Computerprogramm zur Berechnung einer Wärmepumpenanlage

Um die Berechnung der Betriebsdaten einer Wärmepumpe zu erleichtern, hat die Elektra Birseck (EBM) ein Computerprogramm entwickelt, das die wichtigsten energetischen sowie wirtschaftlichen Grössen einer Wärmepumpenanlage berechnet und den wirtschaftlichen und ökologischen Vergleich zu einer Gasbzw. Ölheizung liefert. Mit dem neuen Programm lassen sich sowohl einfache monovalente wie auch bivalente Anlagen berechnen. Die Dateneingabe erfolgt über die fünf Masken: Gebäudedaten, Wärmepumpe, Speicher/Heizsystem, Wirtschaftlichkeit und Schadstoffbilanz.

Minimale Kenntnisse von Excel erforderlich

Die Ergebnisse der Berechnungen des Programms werden zusammen mit den Eingabedaten dargestellt. So wird angegeben, wieviel Energie monatlich für Heizung und Warmwasser benötigt wird und wieviel Energie Wärmepumpe, Boiler und Zusatzheizung produzieren. Ausgewiesen werden auch die Betriebszeit und die Arbeitszahl der Wärmepumpe sowie der Stromverbrauch aufgeteilt in Tarifzeiten. Ein weiterer wichtiger Bestandteil der Ergebnisse bildet die Angabe der jährlichen Kosten mit einem grafisch dargestellten Vergleich zu einer Öl- und zu einer Gasheizung. Gegenübergestellt werden auch die produzierten Schadstoffemissionen.

Die Einarbeitungszeit in das Wärmepumpenprogramm ist kurz. Es sind nur minimale Kenntnisse von Excel erforderlich. Alle Interessenten können das Programm mit einer kurzen Anleitung gegen Entrichtung eines Unkostenbeitrages (Fr. 250.–) bei der EBM, Telefon 061 415 41 41, bestellen.

P. Queloz, Elektra Birseck

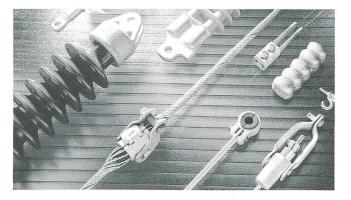
Der Einsatz von Wärmepumpen stellt neue Anforderungen an die Planung und Auslegung. Da die Leistung einer Wärmepumpe von variablen Grössen abhängig ist, wird die Berechnung der gewünschten Betriebsdaten ohne Computerprogramm recht aufwendig

Erzeugung und Abgabe elektrischer Energie in der Schweiz

Mitgeteilt vom Bundesamt für Energiewirtschaft. Die nachstehenden Angaben beziehen sich sowohl auf die Erzeugung der Elektrizitätswerke der Allgemeinversorgung wie der bahn- und industriceigenen Kraftwerke (Selbstproduzenten).

Production et consommation d'énergie électrique en Suisse

Communication de l'Office fédéral de l'énergie. Les chiffres ci-dessous concernent à la fois les entreprises d'électricité livrant de l'électricité à des tiers et les entreprises ferroviaires et industrielles (autoproducteurs).


		Landeser Production	Landeserzeugung Production nationale	le						ė.			A 2	Abzuziehen:		Nettoerzeugung Verbrauch der		Speicherung – Accumulation Production nette	ıg – Accun nette	nulation			
		Laufwerke	a)	Speicherwerke	ā	Hydraulische Erzeugung	* 65	Erzeugung der Kernkraftwerke		Konventionell- thermische Erzeugung		Total	. d	pumpen	E .	Total	14	Inhalt am' Monatsende		Änderung im Berichtsmonat Entnahme – Auffüllung +	t	Füllungsgrad	pı
		Centrales au fil de l'eau	11 =	Centrales à accumulation	10	Production hydraulique		Production nucléaire	T T O	Production thermique classique			P _C	A déduire: Pompage d'accumulation	uo		0 #	Contenu à la fin du mois		Variation pendant le mois vidange – remulissage +	- (-	Degré de remplissage	
		-		2		3 = 1 + 2	7	4	3		9	= 3 + 4 + 5	7		∞	8 = 6 - 7	6			10	-	=	
	122	in GWh – en GWh	en GWh	w =		in GWh – (– en GWh	-									.E	in GWh – en	n GWh		5	%	
		1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993	1992	1993
Januar Jan Februar Fé März Ma	Janvier Février Mars	632 861 806	756 604 687	1669 1611 1368	1662 1901 1702	2301 2472 2174	2418 2505 2389	2176 2032 2121	2191 1987 2193	219 261 218	97 91 112	4696 4765 4513	4706 4583 4694	50 43 35	44 10 26	4646 4722 4478	4662 4573 4668	4232 2823 1921	5162 3502 - 2121	1424 1409 902	- 1324 - 1660 - 1381	50,4 33,8 22,9	61,5 41,7 25,3
April Av Mai Mai Juni Jui	Avril Mai Juin	1045 1738 1890	977 1559 1972	1263 1663 1705	1157 1377 1822	2308 3401 3595	2134 2936 3794	1836 1778 1256	1867 1780 1105	69 71 67	69	4213 5250 4918	4070 4784 4958	84 215 195	43 142 207	4129 5035 4723	4027 4642 4751	1433 2676 4409	1598 – 2514 + 4612 +	488 1243 1733	- 523 + 916 + 2098	17,1 31,9 52,6	19,0 30,0 55,0
Juli Juli August Ac September Se	Juillet Août Septembre	2000 1742 1296	2040 1824 1533	1680 1790 1762	1758 1772 2001	3680 3532 3058	3798 3596 3534	1616 1016 1862	1722 1042 1633	62 63 66	68 64 59	5358 4611 4986	5588 4702 5236	250 248 122	206 240 129	5108 4363 4864	5382 4462 5107	6250 7741 7989	6448 7688 + 8185	1841 1491 248	+ 1836 - 1240 + 497	74,5 92,3 95,2	76,9 91,6 97,6
Oktober Oc November No Dezember Dé	Octobre Novembre Décembre	1029 1159 1021	1563 966 970	1493 1164 1338	2588 1825 1237	2522 2323 2359	4151 2791 2207	2164 2066 2198	2117 2154 2238	132 147 127	78 123 133	4818 4536 5 4684	6346 5068 4578	67 88: 41	59 24 56	4751 4448 4643	6287 5044 4522	7610 7321 6486	- 2909 - 6008 - 2909	379 – 289 – 835 –	- 406 - 1101 - 613	90,7 87,3 77,3	92,7 79,6 72,3
1. Quartal 1 ^{er} 2. Quartal 2 ^e 3. Quartal 3 ^e 4. Quartal 4 ^e	1er trimestre 2e trimestre 3e trimestre 4e trimestre	2299 4673 5038 3209	2047 4508 5397 3499	4648 4631 5232 3995	5265 4356 5531 5650	6947 9304 10270 7204	7312 8864 10928 9149	6329 4870 4494 6428	6371 4752 4397 6509	698 207 191 406	300 1 196 1 201 1 334 1	13974 13 14381 13 14955 15 14038 15	13983 13812 15526 15992	128 494 620 196	80 1 392 1 575 1 139 1	13846 1 13887 1 14335 1 13842 1	13903 13420 14951 15853		1 + 1	3735 2488 3580 1503	- 4365 + 2491 + 3573 - 2120		
Kalenderjahr An	Année civile	15219	15451	18506	20802	33725	36253	22121 2	22029	1502	1031 5	57348 59	59313	1438	1186 5	55910 5	58127		+	830	- 421		
		1991/92	1992/93	1991/92	1992/93	1991/92	1992/93	1991/92	1992/93	1991/92 199	1992/93 19	1991/92 19	1992/93 15	1991/92	1992/93 1	1991/92	1992/93			1991/92	1992/93		-
Winter- Ser halbjahr d'h	Semestre d'hiver	5013	5256	9350	9260	14363	14516	12762	12799	1136	706 2	28261 28	28021	325	276 2	27936 2	27745			- 8209	- 5868		
Sommer-Ser halbjahr d'é	Semestre d'été	9711	9905	69863	7886	19574	19792	9364	9149	398	397 2	29336 29	29338	11114	967 2	28222 2	28371		+	+ 8909	- 6064		
Hydrolog. Jahr Année hydrologique	nnée drologique	14724	15161	19213	19147	33937	34308	22126	21948	1534 1	1103 5	57597 57	57359	1439	1243 5	56158 5	56116			100 +	+ 196		

Production et consommation d'énergie électrique en Suisse (suite)

Erzeugung und Abgabe elektrischer Energie in der Schweiz (Fortsetzung)

		Nettoerzeugung Production nette	ugung n nette	Ш	Einfuhr	Ausfuhr	hr	Überschus Einfuhr +	snı +	Landes- verbrauch		Ver- ände-	Verluste	Col	Endverbrauch Consommation finale	n finale	55.
		Total	7 12 1	Ver- ände- rung				Ausfuhr –	Ĺ			gunı		Total	al	N iii N	Ver- ände- rung
		Total		Varia- Intion	Importation	Expor	Exportation	Solde importateur + exportateur – 14 15	teur + reur + reur + 15	Consommation du pays	Sec.	Varia- tion	Pertes	Total	Total	tio V	Varia- tion
		in GWh –	en GWh		in GWh – en GWh			1 - 01	3	0 1		0/2	GWh	- en GWh	- 11 - 13	%	
		1992	1993		1992 1993		1992 1993	1992	1993	1992	1993		1992	1993	1992	1993	
Januar Jan Februar Fé März M	Janvier Fevrier Mars	4646 4722 4478	4662 + 4573 - 4668 +	0,3 3,2 4,2	2350 2442 2105 2338 2223 2477	1908 1854 1854 77 2008	2306 54 2356 38 2368	6 + 442 6 + 251 8 + 215	+ 136 - 18 - 109	5088 4973 4693	4798 4555 4777	- 5,7 + 8,4 + 1,8	338 362 345	321 4 326 44 348 4	4750 4 4611 4 4348 4	4477 – 4229 – 4429 –	5,7 8,3 1,9
April Avri Mai Mai Juni Juin	Avril Mai Juin	4129 5035 4723	4027 4642 4751	2,5	2129 2146 1653 1823 1464 1746	23 2750 2454 2454	2181 50 2662 54 2725	1 + 29 2 -1097 5 - 990	- 35 - 839 - 979	4158 3938 3733	3992 3803 3772	- 4,0 + 3,4 + 1,0	323 290 260	310 278 362 362	3835 3648 3473	3682 – 3525 – 3510 +	4,0 3,4 1,1
Juli August Ac September Se	Juillet Août Septembre	5108 4363 4864	5382 4462 5107	+ 5,4 + 5,0 + 5,0	1268 1385 1453 1551 1490 1690	2672 51 2075 50 2431	3108 75 2324 31 2847	8 -1404 4 - 622 7 - 941	- 1723 - 773 - 1157	3704 3741 3923	3659 3689 3950	- 1,2 + 0,7	287 278 285	282 274 3, 286 3,	3417 3 3463 3 3638 3	3377 – 3415 – 3664 +	1,2 1,4 0,7
Oktober Oc November No Dezember Dé	Octobre Novembre Décembre	4751 4448 4603	6287 5044 4522	+ 32,3 + 13,4 - 2,6	1741 1563 1916 2184 1965 2509	2060 34 1864 1870	50 3479 54 2454 70 2243	9 - 319 4 + 52 3 + 95	- 1916 - 270 + 266	4432 4500 4738	4371 4774 4788	- 1,4 + 6,1 + 1,1	327 321 339	326 4 338 4 338 4	4105 4 4179 4 4399 4	4045 - 4436 + 4450 +	1,5 6,1 1,2
1. Quartal 1 ^{er} 2. Quartal 2 ^e 3. Quartal 3 ^e 4. Quartal 4 ^e	1er trimestre 2º trimestre 3º trimestre 4º trimestre	13846 13887 14335 13842	13903 + 13420 - 14951 + 15853 +	0,4 3,4 4,3 14,5	6678 7257 5246 5715 4211 4626 5622 6256	577 15 7304 7304 7178 56 5794	70 7030 04 7568 778 8279 94 8176	0 + 908 8 - 2058 9 - 2967 6 - 172	+ 227 -1853 -3653 -1920	14754 11829 11368 13670	14130 11567 11298 13933	4,2,2 2,2 1,9,0 1,9	1045 873 850 987	995 13 850 10 842 10 1002 12	13709 13 10956 10 10518 10 12683 12	13135 – 10717 – 10456 – 12931 +	2,2 0,6 2,0
Kalenderjahr Aı	Année civile	55910	58127 +	4,0	21757 23854	54 26046	46 31053	3 – 4289	-7199	51621	50928	- 1,3	3755 3	3689 47	47866 47	47239 –	1,3
		1991/92	1992/1993	T	1991/92 1992/93	93 1991/92	1992/93	1991/92	1992/93	1991/92	1992/93		(991/92 199	1992/93 199	1991/92 199	1992/93	1 -
Winterhalbjahr Semestre d'hiver	mestre d'hiver	27936	27745	- 0,7	12850 12879	12068	68 12824	4 + 782	+ 55	28718	27800		2053	1982 26	26665 25	25818 -	3,2
Sommerhalbjahr Semestre d'été	mestre d'été	28222	28371 +	+ 0,5	9457 10341	11 14482	82 15847	7 - 5025	-5506	23197	22865		1723	1692 21	21474 21	21173 -	1,4
Hydrolog. Jahr Ar	Année hydrologique	56158	56116	- 0,1 2	22307 23220	26550	50 28671	1 - 4243	-5451	51915	59905		3776 3	3674 48	48139 46	46991 –	2,4
																2	
											41						
																	20

Energie ist Ihre Sache.

Wir kümmern uns um's Zubehör. Denn wenn's um den Einsatz der richtigen Isolatoren und Armaturen für Freileitungen, Sende- oder Schaltanlagen geht, möchten wir mit Ihnen über unsere langjährige Erfahrung auf diesem Gebiet sprechen.

Eurodis Werkstoffe AG

Bahnstrasse 58/60 CH-8105 Regensdorf Tel. 01 - 843 35 01

Fax 01 - 843 35 01

Fax 01 - 843 34 73

Eurodis Werkstoffe

Kundenkontakte

GEC ALSTHOM T&D entwickelt, produziert und verkauft weltweit Schaltgeräte und Anlagen für die Energieverteilung in den Bereichen Hoch- und Mittelspannung.

Zur Erarbeitung moderner Schaltanlagenkonzepte suchen wir für die Abteilung Verkauf in unserem Werk SPRECHER MITTELSPANNUNGSTECHNIK in Suhr (bei Aarau) einen

Elektroingenieur HTL

mit folgenden Hauptaufgaben:

- Erarbeiten umfassender Konzepte für Unterwerke und Transformatoren-Stationen
- Selbständige Ausarbeitung der kompletten Offerten, das heisst technisches und kommerzielles Angebot mit Rechner- und CAD-Unterstützung
- Kundenberatung

Für diese interessante Tätigkeit verfügen Sie über ein HTL-Studium oder eine gleichwertige Ausbildung mit einigen Jahren Berufserfahrung auf dem Gebiet der Energieverteilung. Die Sprachen Französisch und/oder Englisch werden vorausgesetzt. Verkaufserfahrung ist von Vorteil. Idealalter: 26–40 Jahre.

Falls Sie diese attraktive, abwechslungsreiche Tätigkeit in einem eingespielten Team anspricht, erwarten wir gerne Ihre vollständigen Bewerbungsunterlagen zuhanden Herrn H. Karg, Personalwesen.

Für telefonischen Kontakt 064 33 70 15 und für detaillierte Auskünfte Herrn H.-P. Ott, Telefon 064 33 71 03.

T&D

GEC ALSTHOM T&D AG Sprecher Mittelspannungstechnik, Reiherweg 2, CH-5034 Suhr

Leit- und Schutztechnik in Kundennähe

GEC ALSTHOM T&D entwickelt, produziert und verkauft weltweit Schaltgeräte und Anlagen für die Energieverteilung in den Bereichen Hoch- und Mittelspannung.

Für die Realisierung moderner Konzepte in numerischer und konventioneller Leit- und Schutztechnik suchen wir in unserem Werk SPRECHER MITTELSPANNUNGS-TECHNIK in Suhr (bei Aarau) einen

Elektroingenieur HTL

mit folgenden Hauptaufgaben:

- Erarbeiten umfassender Konzepte von Leit- und Schutzsystemen für Mittel- und Hochspannungsanlagen
- Bearbeitung von Projekten von der Offerte bis zur Inbetriebsetzung
- Kundenberatung

Für diese interessante Tätigkeit verfügen Sie über ein HTL-Studium oder eine gleichwertige Ausbildung mit einigen Jahren Berufserfahrung auf dem Gebiet der Energieverteilung. Die Sprachen Französisch und/oder Englisch werden vorausgesetzt. Verkaufserfahrung ist von Vorteil. Idealalter: 26–40 Jahre.

Falls Sie diese attraktive, abwechslungsreiche Tätigkeit in einem eingespielten Team anspricht, erwarten wir gerne Ihre vollständigen Bewerbungsunterlagen zuhanden Herrn H. Karg, Personalwesen.

Für telefonischen Kontakt 064 33 70 15 und für detaillierte Auskünfte Herrn H.-P. Ott, Telefon 064 33 71 03.

T&D

GEC ALSTHOM T&D AG Sprecher Mittelspannungstechnik, Reiherweg 2, CH-5034 Suhr

Infolge Beförderung des bisherigen Stelleninhabers suchen wir per sofort oder nach Vereinbarung eine/n

Elektro-Kontrolleur/in mit eidg. Fachausweis

Zur Hauptaufgabe gehören die Abnahme von Neuinstallationen nach der NIV und periodische Kontrollen, welche mit modernen Hilfsmitteln ausgeführt werden. Interessante Aufgaben ergeben sich in der Steuerungsund Messtechnik sowie im EDV-Mutationswesen.

Im Rahmen der Kant. Personalverordnung bieten wir interessante Anstellungsbedingungen. .
Bei Bedarf stellen wir auch eine 4 1/2 - Zimmerwohnung zur Verfügung.

Bitte senden Sie uns Ihre Unterlagen oder rufen Sie unseren Herrn J. Guler an. Er gibt Ihnen gerne weitere Auskunft und sichert Ihnen absolute Diskretion zu.

Elektrizitätswerk der Landschaft Davos

Talstrasse 35, 7270 Davos Platz - Tel. 081 / 44 13 44

Ingénieur électricien aux FMB

Les Forces Motrices Bernoises S.A. cherchent pour leur bureau d'exploitation de Bienne un jeune ingénieur électricien dipl. ETS de langue maternelle française avec de bonnes connaissances d'allemand.

Notre nouveau collaborateur aura comme domaine d'activité:

- planification de réseaux de distribution
- élaboration de projets
- surveillance de chantiers
- assurer l'exploitation de réseaux

Le candidat bénéficiera d'une période de mise au courant dans tous les domaines mentionnés.

Qualités requises: avoir de l'entregent, travailler de façon indépendante, initiative et contact facile avec la clientèle. De bonnes dispositions pour le travail d'équipe ainsi que la communication sont indispensables.

Téléphonez-nous pour de plus amples renseignements. M. Peter Tanner vous répondra volontiers.

Envoyez votre candidature avec les documents habituels aux Forces Motrices Bernoises S.A., bureau d'exploitation de Bienne, rue D^r Schneider 16, 2560 Nidau, téléphone 032 52 02 02.

FMB[©]

Als Unternehmen der ATTISHOLZ GRUPPE stellen wir Zellstoff her, den unentbehrlichen Rohstoff für die Papierindustrie. Für unsere Abteilung Elektrotechnik suchen wir einen an selbständige Arbeitsweise gewohnten Berufsmann der elektrotechnischen Branche als zukünftigen

Elektroplaner

Neben der Ausarbeitung von Steuerschemata in Form von Stromlaufplänen zählt die Erarbeitung von allen weiteren, zu einer umfassenden Elektroplanung gehörenden Unterlagen zu den Hauptaufgaben. Es versteht sich von selbst, dass diese Arbeiten mit einem modernen, leistungsfähigen CAD/CAE Werkzeug ausgeführt werden (BN ELTECAD).

Wir erwarten eine abgeschlossene Ausbildung als Elektrozeichner oder eines verwandten Berufes mit mehreren Jahren Planungserfahrung sowohl im Steuerungs- als auch im Installationsbereich. Im weiteren setzt die Stelle gute DOS und Windows Kenntnisse voraus.

Was Ihnen die Anstellung in Attisholz neben den fortschrittlichen Anstellungsbedingungen alles bieten kann, darüber informieren wir Sie gerne in einem persönlichen Gespräch.

Fühlen Sie sich angesprochen? Dann senden Sie uns Ihre Bewerbung. Unser Herr G. Gross gibt Ihnen telefonisch erste Auskünfte.

Zögern Sie nicht – planen Sie Ihre Zukunft mit uns zusammen.

CELLULOSE ATTISHOLZ AG 4708 Luterbach 065 21 51 11

Führungsaufgabe im Elektroanlagen-Verkauf

GEC ALSTHOM T&D entwickelt, produziert und verkauft weltweit Schaltgeräte und Anlagen für die Energieverteilung in den Bereichen Hoch- und Mittelspannung.

Der Stelleninhaber übernimmt eine neue Aufgabe im Konzern. Wir suchen deshalb für die Leitung der Gruppe Verkauf Standardanlagen in unserem Werk SPRECHER MITTELSPANNUNGSTECHNIK in Suhr (bei Aarau) einen

Gruppenchef

mit folgenden Hauptaufgaben:

- Führen der Verkaufsgruppe Standardanlagen
- Koordinieren und unterstützen der Mitarbeiter bei der Offerterstellung und Verkaufsabwicklung
- Kundenberatung

Für diese interessante Tätigkeit verfügen Sie über eine abgeschlossene Ausbildung als Elektro-Ingenieur HTL, oder eine gleichwertige Ausbildung als Technischer Kaufmann mit einigen Jahren Berufserfahrung auf dem Gebiet der Energieverteilung. Die Sprachen Deutsch und Französisch sind vorausgesetzt, Englisch von Vorteil. Idealalter: 30-40 Jahre.

Falls Sie diese attraktive, abwechslungsreiche Tätigkeit in einem eingespielten Team anspricht, erwarten wir gerne Ihre vollständigen Bewerbungsunterlagen zuhanden Herrn H. Karg, Personalwesen.

Für telefonischen Kontakt 064 33 70 15 und für detaillierte Auskünfte Herrn H.-P. Ott, Telefon 064 33 71 03.

GEC ALSTHOM T&D AG Sprecher Mittelspannungstechnik, Reiherweg 2, CH-5034 Suhr

Der Leser ist's

der Ihre Werbung honoriert!

86% der Bulletin-SEV/VSE-Leser sind Elektroingenieure.

91% der Leser haben Einkaufsentscheide zu treffen.

Bulletin SEV/VSE - Werbung auf fruchtbarem Boden, Tel. 01/207 86 34

Inserentenverzeichnis

ABB Netcom AG, Turgi	71
ABB Hochspannungstechnik AG, Zürich	8, 10
Adasys AG, Zürich	2
Detron AG, Stein	4
M. Dussex S.A., Martigny	34
Egro AG, Baden	40
Elektron AG, Au/ZH	4
Eurodis Werkstoffe AG, Regensdorf	67
Eymann AG, Ostermundigen	44
Landis & Gyr Energy Management AG, Zug	5
Lanz Oensingen AG, Oensingen	4
MDM Elektrosystem AG, Wetzikon	40
SEV, Zürich	34
Zellweger Uster AG, Fehraltorf	72
Stelleninserate	67_69

Herausgeber: Schweizerischer Elektrotechnischer Verein, Seefeldstrasse 301, Postfach, 8034 Zürich, Tel. 01 384 91 11, Telefax 01 422 14 26.

Redaktion SEV: Informationstechnik und Energietechnik

M. Baumann, Dipl. El.-Ing. ETH (Redaktionsleitung, Informationstechnik); Dr. F. Heiniger, Dipl. Phys. ETH (Energietechnik); M. Zahno, Frau E. Sandor Seefeldstrasse 301, Postfach, 8034 Zürich, Tel. 01 384 91 11, Telefax 01 384 94 30.

Redaktion VSE: Elektrizitätswirtschaft

U. Müller (Redaktionsleitung); Frau E. Fischer; Frau I. Zurfluh. Gerbergasse 5, Postfach 6140, 8023 Zürich, Tel. 01 211 51 91, Telefax 01 221 04 42. Inserateverwaltung: Bulletin SEV/VSE, Edenstrasse 20, Postfach 229, 8021 Zürich, Tel. 01 207 86 34 oder 01 207 71 71, Telefax 01 207 89 38.

Adressänderungen/Bestellungen: Schweiz. Elektrotechn. Verein, Zentrale Dienste/ Bulletin, Seefeldstrasse 301, 8034 Zürich, Tel. 01 384 91 11.

Erscheinungsweise: Zweimal monatlich. Im Frühjahr wird jeweils ein Jahresheft herausgegeben.

Bezugsbedingungen: Für jedes Mitglied des SEV und VSE 1 Expl. gratis. Abonnement im Inland: pro Jahr Fr. 190.-, im Ausland: pro Jahr Fr. 230.-, Einzelnummern im Inland: Fr. 12.- plus Porto, im Ausland: Fr. 12.- plus Porto.

Satz/Druck/Spedition: Vogt-Schild AG, Zuchwilerstrasse 21, 4500 Solothurn, Tel. 065 247 247.

Nachdruck: Nur mit Zustimmung der Redaktion. Gedruckt auf chlorfrei gebleichtem Papier

Editeur: Association Suisse des Electriciens, Seefeldstrasse 301, case postale, 8034 Zurich, tél. 01 384 91 11, téléfax 01 422 14 26. Rédaction ASE: Techniques de l'information et techniques de l'énergie

M. Baumann, ing. dipl. EPF (chef de rédaction, techniques de l'information); Dr F. Heiniger, phys. dipl. EPF (techniques de l'énergie); M. Zahno, M^{me} E. Sandor. Seefeldstrasse 301, case postale, 8034 Zurich, tél. 01 384 91 11, téléfax 01 384 94 30.

Rédaction UCS: Economie électrique U. Müller (chef de rédaction); M^{me} E. Fischer; M^{me} I. Zurfluh.

O. Muller (cher de redaction), M. L. Tischer, M. 1. Zurhan. Gerbergasse 5, case postale 6140, 8023 Zurich, tél. 01 211 51 91, téléfax 01 221 04 42. Administration des annonces: Bulletin ASE/UCS, Edenstrasse 20, case postale 229, 8021 Zurich, tél. 01 207 86 34 ou 01 207 71 71, téléfax 01 207 89 38.

Changements d'adresse/commandes: Association Suisse des Electriciens, Seefeldstrasse 301, 8034 Zürich, tél. 01 384 91 11.

Parution: Deux fois par mois. Un «annuaire» paraît au printemps de chaque année. Abonnement: Pour chaque membre de l'ASE et de l'UCS 1 expl. gratuit. Abonnement en Suisse: par an 190. – fr., à l'étranger: 230. – fr. Prix de numéros isolés: en Suisse 12. – fr. plus frais de port, à l'étranger 12.- fr. plus frais de port.

Composition/impression/expédition: Vogt-Schild SA, Zuchwilerstrasse 21,4500 Soleure, tél. 065 247 247

Reproduction: D'entente avec la rédaction seulement.

Impression sur papier blanchi sans chlore

ISSN 036-1321

Il ne se passe guère de semaine sans que les médias ne traitent d'un sujet de politique énergétique: bilan de programme énergétique fédéral ou cantonal, projet de loi, lancement d'une initiative, évaluation des avantages ou des inconvénients de l'utilisation de telle ou telle énergie; la liste pourrait être allongée à souhait. Même quand le thème traité ne concerne pas directement l'économie électrique, les collaborateurs de nos entreprises se sentent concernés par l'actualité énergétique, et leurs responsables souhaitent souvent pouvoir réagir et exprimer leur opinion.

L'économie électrique de notre pays est caractérisée par sa diversité ainsi que par un héritage historique: sa structure fédéraliste. C'est un atout qui permet d'être proche des clients et souple dans le service qu'on leur offre. Notre industrie est sans doute moins bien adaptée à la défense de ses vues en matière de politique énergétique. Quand le responsable de l'information d'Electricité de France fait une déclaration, il parle au nom de toute l'éco-

nomie électrique de son pays (la production, le transport et la distribution). Il en va différemment en Suisse quand un représentant d'entreprise électrique s'exprime.

De par leurs activités propres, ou encore en raison de leur provenance régionale, les sociétés électriques ont une perception différente des problèmes. Il est normal, par exemple, que le patron d'une petite centrale hydraulique au fil de l'eau ne se sente pas très concerné par l'augmentation de puissance d'une centrale nucléaire. De même, le responsable de l'énergie d'un canton importateur d'électricité a une approche souvent différente de celle du conseiller d'Etat valaisan ou argovien responsable de l'énergie.

S'il n'y a pas en Suisse un porte-parole des électriciens, comment donc connaître le point de vue de la branche? Comme beaucoup de producteurs et distributeurs de notre pays sont regroupés au sein de l'Union des centrales suisses d'électricité, les responsables de l'UCS s'expriment souvent au nom de l'économie électrique. Encore faut-il, bien entendu, que leur position reflète un certain consensus issu d'une concertation, si possible assez large, au sein de la branche. Pour que la crédibilité et le poids des électriciens suisses dans le débat énergétique soient ce qu'ils méritent d'être, il serait bon en effet que leurs points de vue convergent sur les sujets touchant l'ensemble de l'économie électrique nationale.

Que le lecteur ne se méprenne pas: le vœu exprimé ici n'est pas que les responsables des entreprises électriques s'abstiennent de prendre des positions claires, relayées par les médias, sur des sujets concernant leur sphère de responsabilité. Cependant, à l'heure où certains groupes de pression sont à l'affût de propos à première vue divergents, il serait toujours utile que les auteurs de déclarations précisent s'ils expriment une opinion personnelle, celle d'une société, ou encore celle d'une union faîtière.

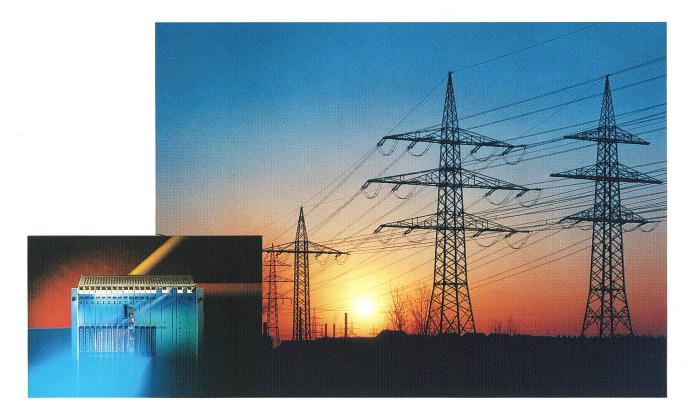
A l'avenir comme par le passé, laissons ainsi à d'autres organisations la responsabilité de prises de position intempestives et parfois contradictoires.

D' Jean-Pierre Schaller, S.A. l'Energie de l'Ouest-Suisse, membre de la Commission pour l'information de l'UCS, Lausanne

Diversité et cohésion Vielfalt und Zusammenhalt

Es vergeht kaum eine Woche, ohne dass sich die Medien mit einem energiepolitischen Thema befassen: mit der Bilanzierung eines kantonalen oder nationalen Energieförderprogrammes, mit einem Gesetzesentwurf, der Lancierung einer Initiative, der Evaluation dieser oder jener Energiequelle; die Liste könnte beliebig verlängert werden. Die Mitarbeiter unserer Unternehmen fühlen sich vom aktuellen energiepolitischen Geschehen betroffen, und dies sogar, wenn das Thema die Elekrizitätswirtschaft nicht direkt tangiert. So ergeht es auch den Verantwortlichen, die oftmals reagieren und Stellung beziehen wollen.

Charakteristische Merkmale der schweizerischen Elektrizitätswirtschaft sind ihre Vielfalt und – ein historisches Erbe – ihre föderalistische Struktur. Dies ist eine Trumpfkarte für kundennahe und flexible Dienstleistungen. Wegen dieser Struktur ist sie aber auch schwerfällig, wenn es um die Wahrnehmung ihrer energiepolitischen Interessen geht. Wenn der Informationsverantwortliche der


Electricité de France eine Erklärung abgibt, spricht er für die ganze Elektrizitätswirtschaft seines Landes (für die Stromproduktion, die Stromübertragung und die Stromverteilung). Äussert sich aber ein Vertreter der schweizerischen Elektrizitätswirtschaft, dann ist das anders.

Die Elektrizitätsunternehmen unseres Landes vertreten verschiedene Anschauungen, je nachdem, welche Aufgaben sie wahrnehmen und in welcher Region sie angesiedelt sind. So ist es zum Beispiel normal, dass sich der Betreiber eines kleinen Flusskraftwerkes nicht sehr für die Leistungssteigerung eines Kernkraftwerks interessiert. Oder dass der Energiedepartementsvorsteher eines Stromimportkantons die Dinge anders betrachtet als sein Walliser oder Aargauer Amtskollege.

Wenn die Elektrizitätsbranche keinen gemeinsamen Sprecher hat, wie soll man denn ihren Standpunkt kennen? Da viele Stromproduzenten und Stromverteiler unseres Landes Mitglieder des Verbandes Schweizerischer Elektrizitätswerke sind, äussern sich vielfach die Verantwortlichen des VSE im Namen der Elektrizitätswirtschaft. Ihr Standpunkt muss natürlich einen möglichst breit abgestützten Konsens innerhalb der Branche widerspiegeln. Damit das Gewicht und die Glaubwürdigkeit der Elektrizitätswirtschaft in der energiepolitischen Debatte so gross ist, wie sie das verdient, wäre es in der Tat gut, wenn über elektrizitätswirtschaftliche Themen von nationalem Interesse übereinstimmende Meinungen herrschten.

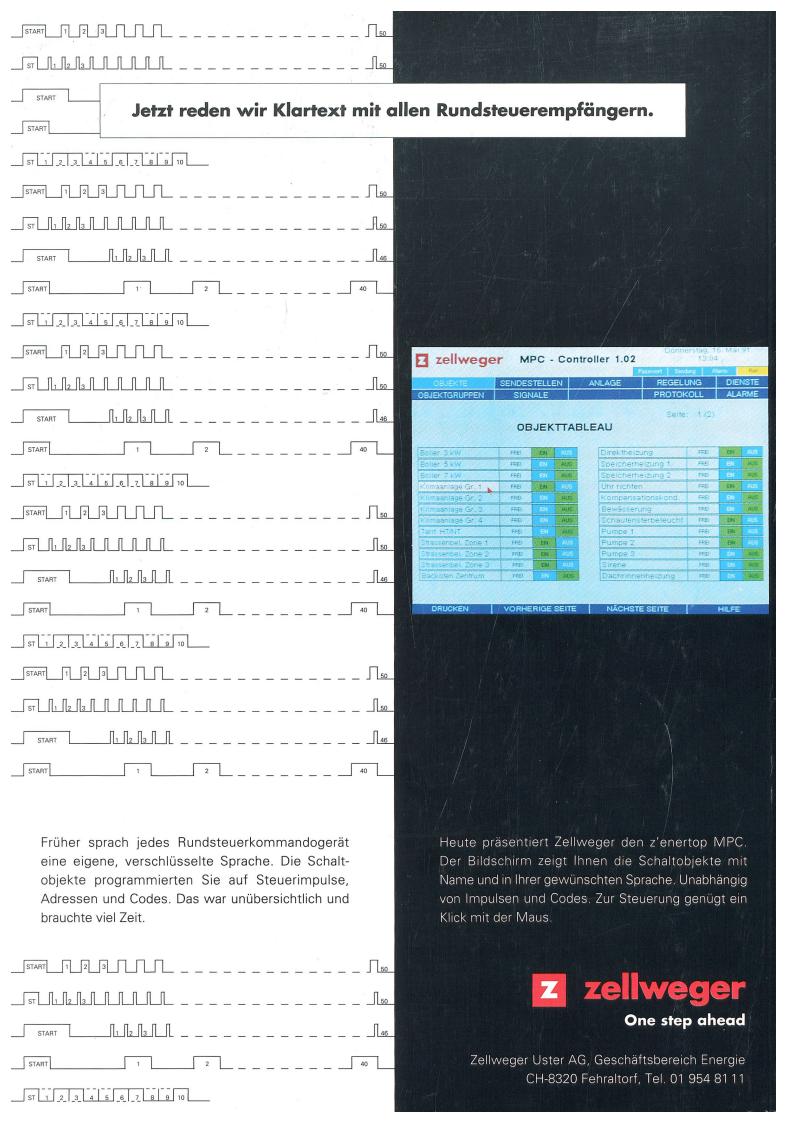
Dass mich der Leser nicht falsch versteht: das soll nicht heissen, dass die Verantwortlichen der einzelnen Elektrizitätswerke in der Öffentlichkeit nicht klar Stellung beziehen sollen zu Themen, die ihren Verantwortlichkeitsbereich betreffen. Zu einem Zeitpunkt aber, wo gewisse Interessengruppen nur auf widersprüchliche Äusserungen warten, wäre es der Sache nützlich, wenn bei einer Erklärung präzisiert würde, ob es sich um eine persönliche Meinung, um die Stellungnahme eines Unternehmens oder eines Dachverbandes handelt.

Überlassen wir es auch in Zukunft, wie schon in der Vergangenheit, anderen Organisationen, unüberlegte und manchmal widersprüchliche Stellungnahmen abzugeben.

Wir machen aus ihrem Energienetz ein digitales

entscheidenden Vorteile der digitalen Kommunikationstechnik voll für ihre Bedürfnisse nutzen: Zur Steigerung der Verfügbar-Kommunikationsnetz. keit ihrer Übertragungs- und Verteilnetze, um die Verbraucher

Immer mehr Elektrizitätsversorgungsunternehmen wollen die


noch effizienter und sicherer mit Strom versorgen zu können.

Und die Vorteile dieser Übertragungstechnik sind wirklich beeindruckend: Es lassen sich damit alle für die Netzführung wichtigen Informationen (Schutz, Daten, Telefonie, aber auch ISDN-Dienste) - extrem schnell und äusserst zuverlässig übertragen. Geringe Störanfälligkeit, Redundanz auf verschiedenen Ebenen sowie ein spezielles Management-System, das alle Netzknoten permanent überwacht, sind weitere wesentliche Elemente, um eine hohe Übertragungssicherheit dieser zukunftsweisenden Technik zu gewährleisten.

Als langjähriger Anbieter von Kommunikations-Systemen für die Energiewirtschaft ist ABB auch für die Realisierung digitaler Systeme der kompetente Partner. Bitte rufen Sie doch an, wir freuen uns auf Ihre Anfrage.

ABB Netcom AG Übertragungstechnik für die Energiewirtschaft CH-5300 Turgi/Schweiz Telefon +56 - 79 30 38, Fax +56 - 79 34 61

