Spannungsüberhöhungen auf Freileitungen und Kabeln

Autor(en): Rasquin, W.

Objekttyp: Article

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de

l'Association Suisse des Electriciens, de l'Association des

Entreprises électriques suisses

Band (Jahr): 73 (1982)

Heft 21

PDF erstellt am: **28.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-905032

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Spannungsüberhöhungen auf Freileitungen und Kabeln

W. Rasquin

621.315.1:

1. Einleitung

Soll mittels eines Drehstromsystems elektrische Energie über grössere Entfernungen transportiert werden, dann ergeben sich längs der Übertragungsstrecke Veränderungen in den Strom- und Spannungsamplituden. Insbesondere die Veränderung der Spannungsamplitude kann eine Begrenzung des Übertragungsvermögens darstellen, da an den Enden des Übertragungssystems nur geringe Abweichungen von der Nennspannung toleriert werden können. Um derartige Begrenzungen wenigstens teilweise aufzuheben, werden Kompensationsverfahren eingesetzt, die die Spannungsabweichungen an den Enden des Übertragungssystems auch bei grösseren Übertragungsentfernungen in engen Grenzen halten können, siehe z.B. [1].

Nachdem in jüngster Zeit Drehstrom-Kompensations-Drosselspulen für immer grössere Leistungen bis hinauf zur 400-kV-Betriebsspannung entwickelt worden sind, siehe z.B. [2], war es erfolgversprechend, zu untersuchen, ob Drehstrom-Fernübertragungen auch mit Höchstspannungskabeln technisch realisiert werden können. In [3...5] ist für den quasistationären Betrieb gezeigt worden, dass Drehstromkabel z.T. Entfernungen bis zu mehreren 100 km überbrücken können, falls die Kabel an ihrem verbrauchernahen Ende mit angepassten Querdrosseln versehen werden. Bei diesen Untersuchungen ist nachgewiesen worden, dass bei derartigen Kompensationsmassnahmen am Anfang und am Ende der Kabel alle Grenzgrössen der Kabel, aber auch alle vom Netzbetrieb in der Bundesrepublik Deutschland vorgegebenen Grenzgrössen eingehalten werden.

Dagegen ist in [3...5] nicht diskutiert worden, ob während des Betriebes auf der Übertragungsstrecke Strom- oder Spannungsmaxima auftreten, die in ihrer Amplitude die an den Enden des Übertragungssystems tolerierten Grössen übersteigen und damit gegebenenfalls das Übertragungssystem selber gefährden können. Daher wird im folgenden nachgeprüft, ob auf der Übertragungsstrecke Strom- oder Spannungsmaxima auftreten und ob diese Maxima Begrenzungen für die Fernübertragung mittels Drehstromsystemen darstellen können. Ausserdem wird untersucht, ob und gegebenenfalls in welchem Ausmass Einschaltüberspannungen durch die unveränderlichen Querdrosseln vermindert werden, wie dies bereits in [6] für Freileitungen und Ladestromspulen (allerdings mit nichtlinearer Charakteristik) nachgewiesen worden ist.

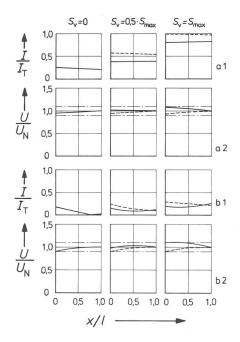
2. Beispiele von Strom- und Spannungsverteilungen

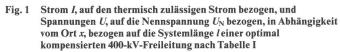
Für die in Tabelle I umrissene 400-kV-Freileitung, die mit einer angepassten Querkompensation an dem verbrauchernahen Ende ausgestattet ist, wurden Strom und Spannung längs der Leitung berechnet. Die Figuren 1 und 2 zeigen die bezogenen Ströme und Spannungen längs der Leitung für unterschiedliche Systemlängen, und zwar je-

Daten der 400-kV-Freileitung mit den entsprechenden Zuordnungen zu den Figuren 1 und 2

Tabelle I

Anzahl der Seil Seilmaterialien Seilquerschnitt Abstand der Se Abstand der Ph Mittlere Seilhö Maximale Seilt	4 Aluminium/ Stahl 265/35 mm ² 400 mm 6500 mm 23 700 mm 353 K					
Thermische Gr Zugeordnete Vo	_		1728 MVA 615 kW/km			
Übertragungsleistun	Maximal mögliche Systemlänge					
0 MVA 367 MVA 734 MVA 1101 MVA 1468 MVA				426 km 356 km 205 km 120 km 87 km		
Gewählte Systemlänge	Optimale Kompensations-	Grösstmögliche übertragbare	Zuordnun	ıg		
	leistung	Verbraucher- leistung	Figur	Teil	bild	
100 km 500 km	-356 MVA 64 MVA	1576 MVA 400 MVA	1 1	al bl	a2 b2	
1000 km*) 1500 km*)	352 MVA 680 MVA	236 MVA 200 MVA				


^{*)} Unwirtschaftliche Systemlängen, werden nur zur Grundsatzbetrachtung verwendet!


weils bei der Übertragungsleistung (S_{v}) Null, bei der halben und bei der grösstmöglichen Übertragungsleistung. Letztere Übertragungsleistungen sind ebenfalls in Tabelle I aufgeführt.

Aus Figur 1 ist zu erkennen, dass bei der Systemlänge von 100 km noch kein Strom- oder Spannungsmaximum auftritt. Die Begrenzung des Übertragungsvermögens erfolgt über den Strom am Anfang (x = 0) des Systems (Fig. 1 a1, rechtes Teilbild).

Wird die Systemlänge auf 500 km vergrössert, so können zwar Stromminima und Spannungsmaxima auftreten, aber die in [3...5] angegebenen Strom- und Spannungsgrenzen werden weder an den Enden noch irgendwo auf der Strecke überschritten. Die Begrenzung des Übertragungsvermögens erfolgt über die Spannungserhöhung und die Spannungserniedrigung am Anfang des Systems (Fig. 1 b2, rechtes Teilbild).

Erst bei noch grösseren Systemlängen (Fig. 2) bilden sich auf der Strecke Spannungsmaxima aus, die die für Anfang oder Ende des Systems tolerierten Spannungshübe spürbar übersteigen können, ohne dass am Anfang des Systems die Grenzspannungen überschritten werden. Zur deutlichen

Die Ortskoordinate weist vom Systemanfang (Generatorseite) zum Systemende (Verbraucherseite)

al, a2 Systemlänge 100 km, Höchstleistung 1576 MVA Kompensationsleistung -356 MVA (kapazitiv)

b1, b2 Systemlänge 500 km, Höchstleistung 400 MVA, Kompensationsleistung 64 MVA

---- Verbraucher-Phasenwinkel -15° (kapazitiv)

Ausbildung der Spannungsmaxima auf der Strecke sind allerdings Systemlängen von 1000 km oder mehr erforderlich. Wenn derartige Systemlängen bei 400-kV-Freileitungen auch ungewöhnlich sind, so sollen sie dennoch zur grundsätzlichen Untersuchung der Spannungsüberhöhungen herangezogen werden.

Um die möglichen Auswirkungen der Spannungsüberhöhungen leichter überblicken zu können, werden im folgenden Ort und Effektivwert der Spannungsmaxima berechnet.

Da bei den Strömen die Höchstwerte nur am Anfang und/oder Ende des Übertragungssystems auftreten, auf der Strecke selber aber nur kleinere Ströme anzutreffen sind, stellen die Ströme keine weitere Einschränkung des Übertragungsvermögens dar und werden daher im folgenden nicht weiter betrachtet.

3. Berechnung der Spannungsmaxima

An mehreren Stellen in [3...5] ist gezeigt worden, dass beim quasistationären Betrieb die Vernachlässigung der Verluste des Übertragungssystems zu keiner ausschlaggebenden Verfälschung der Ergebnisse führt. Daher werden die nachfolgenden Berechnungen ebenfalls für verlustlose Übertragungssysteme durchgeführt. Später wird dann nachgewiesen, dass die Vernachlässigung der Verluste keine unzulässig grossen Fehler verursacht.

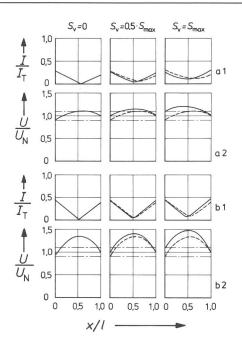


Fig. 2 Strom und Spannung analog Figur 1

a1, a2 Systemlänge 1000 km, Höchstleistung 236 MVA, Kompensationsleistung 352 MVA

b1, b2 Systemlänge 1500 km, Höchstleistung 200 MVA, Kompensationsleistung 680 MVA

Die Beziehung für die Spannung am Ort *x* einer verlustlosen Drehstromübertragungsstrecke lautet:

$$U_{x} = U_{E} \cdot \cos \beta \ (l-x) + j\sqrt{3} \ Z_{W} \cdot I_{E} \cdot \sin \beta (l-x)$$
 (1)

 $U_{\rm x}$ verkettete Spannung an der Stelle x

 Ortskoordinate längs der Strecke vom Systemanfang ausgehend

UE verkettete Spannung am Ende des Systems

β Phasenkoeffizient

l Systemlänge

Z_W Wellenwiderstand des Systems

IE Strom am Ende des Systems

Für den Strom am Ende des Systems kann geschrieben werden:

$$I_{\rm E} = (S_{\rm V}\cos\varphi - \mathbf{j} \cdot S_{\rm V}\sin\varphi - \mathbf{j} \cdot S_{\rm K})/\sqrt{3}/U_{\rm E}$$
 (2)

S_V Verbraucher-Scheinleistung

φ Verbraucher-Phasenwinkel und

S_K Kompensationsleistung am Systemende

Die natürliche Leistung des Systems P_N ist

$$P_{\rm N} = U_{\rm E}^2 / Z_{\rm W} \tag{3}$$

Damit folgt

$$U_{\rm x}/U_{\rm E} = \cos \beta (l-\varkappa) + \frac{S_{\rm V} \cdot \sin \varphi + S_{\rm K}}{P_{\rm N}} \sin \beta (l-\varkappa)$$

+
$$j \cdot \frac{S_V}{P_N} \cdot \cos \varphi \cdot \sin \beta (l - \varkappa)$$
 (4)

Mit den Hilfsgrössen

$$A = (S_{V} \cdot \sin \varphi + S_{K}) / P_{N} \text{ und}$$

$$B = (S_{V} \cdot \cos \varphi) / P_{N}$$
(5, 6)

folgt für den Ort des Spannungsmaximums

$$\kappa_{\rm m} = \frac{1}{\beta} \cdot \arcsin \sqrt{0.5 - 0.5 \sqrt{1 - \frac{4A^2}{4A^2 + (A^2 + B^2 - 1)^2}}}$$
 (7)

und für den Effektivwert der Spannung am Ort des Maximums

$$U_{\rm m} = \\ U_{\rm E} \sqrt{1 + (A^2 + B^2 - 1) \cdot \sin^2 \beta \varkappa_{\rm m} + 2A \cdot \sin \beta \varkappa_{\rm m} \sqrt{1 - \sin^2 \beta \varkappa_{\rm m}}}$$
(8)

Wird berücksichtigt, dass das Übertragungssystem so kompensiert sein soll, dass die Spannung am Anfang des Übertragungssystems den Bereich zwischen $1,1 \cdot U_N$ und $0.9 \cdot U_{\rm N}$ nicht verlässt, so gilt nach [3]

$$S_{K}/P_{N} = (W - \cos \beta \cdot l) / \sin \beta \cdot l \tag{9}$$

mit

$$W =$$
 (10)

$$\sqrt{\frac{k_2 \cdot \sin \varphi_{\max} - k_1 \cdot \sin \varphi_{\min} + \sqrt{(k_2 \cdot \sin \varphi_{\max} - k_1 \cdot \sin \varphi_{\min})^2 - (k_1 - k_2)^2}}{2 (\sin \varphi_{\max} - \sin \varphi_{\min})}}$$

$$\frac{S_{V}}{P_{N}} = \frac{-W \cdot \sin \varphi_{\text{max}} + \sqrt{W^{2} \cdot (\sin^{2} \varphi_{\text{max}} - 1) + k_{1}}}{\sin \beta \cdot l} = \frac{V}{\sin \beta \cdot l}$$
(11)

- Kehrwert des Quadrates der kleinstzulässigen, bezogenen Spannung im Netz (1/0,9/0,9)
- k_2 Kehrwert des Quadrates der höchstzulässigen, bezogenen Spannung im Netz (1/1,1/1,1)
- $\phi_{ ext{max}}$ grösster, frei wählbarer (induktiver) Verbraucher-Phasenwinkel
- φ_{\min} kleinster, frei wählbarer (eventuell kapazitiver) Verbraucher-Phasenwinkel

Mit den Gl. (9) und (11) nehmen die Hilfsgrössen aus den Gl. (5) und (6) folgende Form an:

$$A = (W + V \cdot \sin \varphi - \cos \beta \cdot l) / \sin \beta \cdot l \tag{12}$$

$$B = V \cdot \cos \varphi / \sin \beta \cdot l \tag{13}$$

Mittels der Gl. (7) und (8) wurden unter Berücksichtigung der Abkürzungen gemäss Gl. (12) und (13) die Kennlinien der Figur 3 berechnet. Dabei wurde vorausgesetzt:

- Die Spannung am Verbraucher ist gleich der Nennspannung.
- Die Spannung am Anfang des Übertragungssystems darf nicht unter 90% der Nennspannung sinken und nicht über 110% der Nennspannung ansteigen.
- Der Verbraucher-Phasenwinkel darf zwischen den beiden frei gewählten Extremgrössen -15° (kapazitiv) und +30° (induktiv) schwanken.
- Die Verbraucher-Scheinleistung ist so gross, wie es bei optimaler Kompensation gerade noch möglich ist.

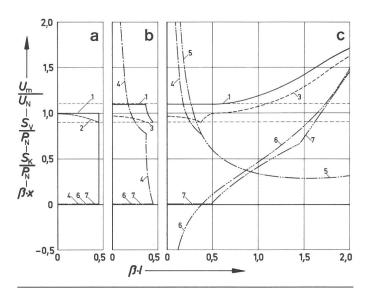
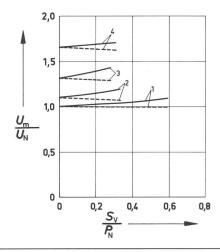


Fig. 3 Kenngrössen verlustloser Übertragungssysteme in Abhängigkeit von der bezogenen Systemlänge $\beta \cdot I$

- a Unkompensiertes Übertragungssystem im Leerlauf
- b Unkompensiertes Übertragungssystem bei Vollast
- c Optimal kompensiertes Übertragungssystem bei Vollast

Kennlinie 1 $U_{\rm m}/U_{\rm N}$ Kennlinie 2 U_{\min}/U_{N} Kennlinie3 U_{\min}/U_{N} Kennlinie 4 S_V/P_N Kennlinie 5 S_V/P_N Kennlinie 6 SK/PN

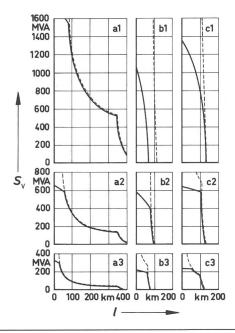

Kennlinie 7 βx

bei $\varphi = +30$ Grad bei $\varphi = -15$ Grad und $U_{\rm m}/U_{\rm N}$ bei $\varphi = -15$ Grad

ohne Kompensation bei optimaler Kompensation

bezogene Ortskoordinate des Spannungsmaximums

Um zu kontrollieren, ob die letztgenannte Voraussetzung eine Einschränkung der Aussagekraft der Berechnungen liefert, wurden die Spannungsüberhöhungen auch in Abhängigkeit von der bezogenen Verbraucherleistung berechnet. Aus den Kennlinien der Figur 4 folgt, dass bei den höchsten Verbraucherleistungen und den höchsten Verbraucher-Phasenwinkeln stets die grössten Spannungsüberhöhungen auftreten. Es genügt also, die höchstmöglichen Verbraucherleistungen bei den höchsten Verbraucher-Phasenwinkeln zu betrachten, um die grössten Spannungsmaxima zu erfassen.


Maximale Spannungsüberhöhung eines verlustlosen Übertragungssystems in Abhängigkeit von der bezogenen Verbraucherleistung

Verbraucher-Phasenwinkel +30° (induktiv) --- Verbraucher-Phasenwinkel -15° (kapazitiv)

1 $\beta \cdot l = 0.5$ 3 $\beta \cdot l = 1.5$ 2 $\beta \cdot l = 1.0$ 4 $\beta \cdot l = 2.0$

Somit werden in Figur 3 tatsächlich die härtesten Betriebsbedingungen berücksichtigt. Dabei beziehen sich die Kennlinien auf viele unterschiedliche Betriebsfälle, Teilbild 3a beispielsweise auf ein leerlaufendes, unkompensiertes Übertragungssystem. Die Kennlinie 1 zeigt, dass die höchste Spannung innerhalb des Übertragungssystems gleich der am Ende vorgegebenen Nennspannung ist. Kennlinie 2 vermittelt, dass die kleinste Spannung innerhalb des Übertragungssystems an dessen Anfang zu finden ist und dass diese Spannung mit zunehmender Systemlänge sinkt. Die grösste diskutierbare Systemlänge wird erreicht, wenn die Spannung am Anfang des Übertragungssystems auf 90% der Nennspannung gesunken ist. Dies ist bei $\beta \cdot l = 0.451$ erfüllt.

Sollen mit dem unkompensierten System Leistungen übertragen werden, dann sind die Kennlinien von Teilbild 3b massgebend. Es sagt aus, dass die Systemlänge für jede von Null verschiedene Leistung gegenüber der Leerlauflänge aus Figur 3a reduziert werden muss. Bis zu einer bezogenen Übertragungsleistung $S_V/P_N \approx 0.78$ fällt die notwendige Reduktion der Systemlänge noch vergleichsweise bescheiden aus, muss sie doch bei dieser Leistung nur auf $\beta \cdot l \approx 0,372$ zurückgenommen werden. Aber auch bei höheren Leistungen und damit noch weiter herabgesetzten Systemlängen tritt laut Kennlinie 1 aus Figur 3b keine Spannung auf, die grösser als $1, 1 \cdot U_N$ ist.

Grösste übertragbare Verbraucher-Scheinleistung Sv bei Fig. 5 unkompensierten verlustbehafteten Übertragungssystemen in Abhängigkeit von der Systemlänge I

- Berücksichtigung aller Begrenzungen (auch thermischer)
- Ausschliessliche Berücksichtigung der zulässigen Spannungsüberhöhungen $(0.9 < U/U_{\rm N} < 1.1)$
- al 400-kV-Freileitung aus Tabelle I
- a2 220-kV-Freileitung aus Tabelle II
- a3 110-kV-Freileitung aus Tabelle II
- bl 400-kV-Öl-Papier-Kabel aus Tabelle III b2 220-kV-Öl-Papier-Kabel aus Tabelle III
- b3 110-kV-Öl-Papier-Kabel aus Tabelle III
- cl 400-kV-VPE-Kabel aus Tabelle III
- c2 220-kV-VPE-Kabel aus Tabelle III
- c3 110-kV-VPE-Kabel aus Tabelle III

Diese Aussage wird auch bei Berücksichtigung aller Übertragungsverluste bestätigt, wie anhand von Figur 5 gezeigt werden soll. Die dort gestrichelt gezeichneten Kennlinien umreissen für unkompensierte Freileitungen und Kabel den Leistungs-Längen-Bereich, in dem am Systemanfang die Grenzen $0.9 \cdot U_N$ oder $1.1 \cdot U_N$ erreicht werden, ohne dass innerhalb der Übertragungsstrecke eine Spannung grösser als 1,1 · U_N wird. Die durchgezogenen Kennlinien sind die Leistungen, die auch unter Berücksichtigung der maximal möglichen Stromtragfähigkeiten erreichbar sind.

Werden Querkompensationen am Systemende durchgeführt, dann ergeben sich die Kennlinien aus Teilbild 3c. Diese Kennlinien sagen aus, dass mit wachsender Kompensationsleistung (Kennlinie 6) die überbrückbaren Entfernungen ebenfalls ansteigen. Gleichzeitig sinken die bezogenen Übertragungsleistungen (Kennlinie 5), und innerhalb des Überstragungssystems können Spannungsmaxima auftreten, die die Grenze von $1,1 \cdot U_N$ übersteigen (Kennlinie 1).

Um zu überprüfen, ob und wie stark die Kennlinien aus Figur 3c durch Übertragungsverluste verändert werden, wurden die entsprechenden Grössen unter Berücksichtigung aller Verluste für die 400-kV-Freileitung gemäss Tabelle I sowie für die 220-kV-Freileitung und die 110-kV-Freileitung gemäss Tabelle II berechnet. Die Berechnungsergebnisse sind in Form schräg gestellter Kreuze in die Figuren 6 und 7 eingetragen worden. Aus dem Vergleich der Kennlinien (Verluste vernachlässigt) und der Kreuze (Verluste berücksichtigt) geht hervor, dass die Vernachlässigung der Verluste zumindest bezüglich der Spannungsüberhöhungen bis zu bezogenen Systemlängen von $\beta \cdot l = 1,5$ gerechtfertigt ist.

Daten der betrachteten 110-kV- und 220-kV-Freileitungen Tabelle II

Teilbild aus Figur 6		a	b
Verkettete Spannung		110 kV	220 kV
Anzahl der Seile Kernmaterial Leitermaterial Stahlquerschnitt Leiterquerschnit Abstand der Seil Phasenabstand b Aufhängung Mittlere Seilhöh Boden	et e im Bündel bei ebener e über dem	2 Stahl Aluminium 55 mm ² 435 mm ² 400 mm 4000 mm	2 Stahl Aluminium 55 mm ² 435 mm ² 400 mm 5000 mm
Maximale Seiltemperatur		353 K	353 K
Thermische Grenzleistung Zugeordnete Verluste		326 MVA 355 kW/km	652 MVA 355 kW/km
Kompensations- leistung	Übertragungs- leistung	Grösstmögliche Sys	stemlänge
0 MVA 0 MVA 0 MVA	0 MVA 25 MVA 50 MVA	425 km 355 km 204 km	-
0 MVA 0 MVA 0 MVA	0 MVA 95 MVA 190 MVA	- - -	425 km 355 km 204 km

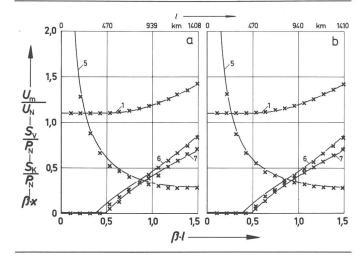


Fig. 6 Einfluss der Übertragungsverluste

Kennlinien aus Bild 3c

- x Berechnungsergebnisse für Freileitungen unter Berücksichtigung aller Verluste
- a 110-kV-Freileitung aus Tabelle II
- b 220-kV-Freileitung aus Tabelle II

Daher werden alle weiteren Folgerungen, die sich auf die Spannungsmaxima beziehen, in einem ersten Schritt unter Vernachlässigung aller Verluste aus den Kennlinien des Teilbildes 3c gezogen. Diese lauten:

Bis zu einer bezogenen Länge von $\beta \cdot l = 0,4809$ treten Spannungsmaxima nur bei negativen Ortskoordinaten auf. Innerhalb der Übertragungsstrecke existiert also kein Spannungsmaximum. Die höchste Spannung tritt bei festgehaltener Verbraucherspannung also am Anfang des Übertragungssystems auf (x = 0). Daher ist die Kennlinie 7 bis $\beta \cdot l = 0,4809$ auf die Abszisse von Figur 3c gelegt worden. Die zu dieser bezogenen Länge gehörende Verbraucherleistung beträgt: $S_V/P_N = 0,6122$.

Sollen also innerhalb der Übertragungsstrecke keine Spannungsmaxima auftreten, dann muss, falls das Übertragungsvermögen ausgeschöpft werden soll, die Bedingung $\beta \cdot l \leq 0,4809$ beachtet werden. Die sich daraus ergebenden Grenzlängen stehen in Tabelle IV. Aus dieser Tabelle können mehrere Folgerungen gezogen werden:

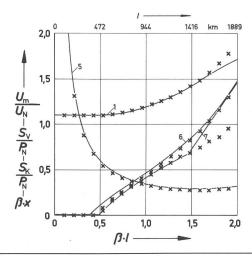


Fig. 7 Einfluss der Übertragungsverluste
Wie Figur 6, jedoch für die 400-kV-Freileitung aus Tabelle I

Grösse	Einheit	*)	**)		***)	i.e	
Verkettete Spannung	kV	400	400	220	220	110	110
Leitermaterial	_	Kupfer	Kupfer	Kupfer	Kupfer	Kupfer	Kupfer
Leiterquerschnitt	mm ²	3000	3000	2000	2000	1000	1000
Leiterfüllfaktor		0,85	0,85	0,85	0,85	0,85	0,85
Hohlkanaldurchmesser	mm	16	0	16	0	16	0
Zulässige Leitertemp.	K	363	363	363	363	363	363
Dicke Leiterglättung	mm	0,5	1	0,5	1	0,5	1
Isolierungsart		Öl-	VPE	Öl-	VPE	Öl-	VPE
isoliciuligsait	-	Papier	VIL	Papier	VIL	Papier	VIL
Isolierungsdicke	mm	30	30	20	25	10	18
Dielektrizitätszahl	111111	3.6	2,3	3,6	2.3	3,6	2,3
Verlustfaktor		0,0025	0,0005	0.0025	0,0005	0,0025	0,0005
Spez. therm. Widerstand	K·m/W	5	2,5	5	2,5	5	2,5
Schirmdicke	mm	0.5	1	0,5	1	0,5	1
	1	-,-			1		
Metallmanteldicke	mm	4	2	4	2	4	2
Mantelmaterial	-	Alumi-	Kupfer	Alumi-	Kupfer	Alumi-	Kupfer
M 1 W. I C		nium	0.05	nium	0.05	nium	0.05
Mantel-Verlustf.	-	0,1	0,05	0,1	0,05	0,1	0,05
Zulässige Manteltemp.	K	343	343	343	343	343	343
Dicke Korrosionsschutz	mm	5	5	5	5	5	5
Spez. therm. Widerstand	K∙m/W	6	6	6	6	6	6
Feuchter Erdboden							
Spez. therm. Widerstand	K·m/W	1	1	1	1	1	1
Trock, stab, Boden							
Spez. therm. Widerstand	K·m/W	1,2	1,2	1,2	1,2	1,2	1,2
	K	293	293	293	293	293	293
Umgebungstemp.	K	308	308	308	308	308	308
AustrocknTemp.							
Verlegetiefe	m	1,2	1,2	1,2	1,2	1,2	1,2
Aderachsabstand	m	0,4	0,4	0,4	0,4	0,4	0,4
Phasenkoeffizient	10-3/km	4,08	3,27	4,61	3,38	5,71	3,59
Natürliche Leistung	MVA	3973	3143	1257	908	347	213
Therm. Grenzleistung Zugeordn. Verluste	MVA kW/km	1065 111	1343 111	577 106	637 107	218 100	231 102

*) Bisher nur bis zu einem Leiterquerschnitt von 2600 mm² erprobt
Ein noch nicht hergestelltes Kabel

***) Bisher nur bis zu einem Leiterquerschnitt von 1000 mm² erprobt

- Für alle in der Bundesrepublik Deutschland diskutierbaren Entfernungen zwischen zwei Netz-Stützpunkten (stets kürzer als 200 km) treten auf Freileitungen keine Spannungsmaxima auf (Fig. 8).
- Aber auch bei grösseren Systemlängen, die wirtschaftlich nach [7] noch vertretbar sind (bei 400 kV ungefähr 450 km), spielen zusätzliche Spannungsüberhöhungen bei Freileitungen keine Rolle.
- Sollen jedoch Kabel diese Entfernungen überbrücken, so treten Spannungsmaxima auf, die die Grösse $1,1\cdot U_{\rm N}$ übersteigen. Es ist also zu untersuchen, wie diese Spannungsüberhöhungen auf Kabeln beherrscht werden können.

4. Beherrschung von Spannungsüberhöhungen bei Drehstromkabeln

Da die Kennlinie 1 in Teilbild 3c oberhalb von $\beta \cdot l = 0,5$ mit der Vergrösserung der Systemlänge zunächst nur sehr wenig ansteigt, können die Systemlängen erheblich gegen-

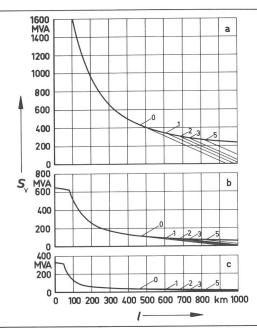


Fig. 8 Höchste übertragbare Verbraucher-Scheinleistung S_V in Abhängigkeit von der Systemlänge I von optimal kompensierten Freileitungen

Die Parameter an den Hilfskennlinien kennzeichnen die prozentualen, zusätzlichen Spannungserhöhungen über $1,1\cdot U_{\rm N}$ hinaus

- a 400-kV-Freileitung aus Tabelle I
- b 220-kV-Freileitung aus Tabelle II
- c 110-kV-Freileitung aus Tabelle II

Zulässige Systemlängen von Drehstrom-Übertragungssystemen, falls bei optimaler Kompensation keine Spannungsmaxima auf der Strecke zugestanden werden $(\beta \cdot l = 0.4809)$ Tabelle IV

Übertragungssystem	Gemäss Tabelle	Zulässige Länge	Ohne Verlust- berücksich- tigung mögliche Leistung	Bemerkungen
400-kV-Freileitung	I	450 km	445 MVA	realisierbar, schlechte Ausnutzung der Leitung
220-kV-Freileitung	II	450 km	115 MVA	realisierbar, sehr schlechte
110-kV-Freileitung	II	450 km	30 MVA	Ausnutzung realisierbar, extrem schlechte Ausnutzung
				8
400-kV-Öl-Papier- Kabel	III	117 km	2430 MVA	nur mit künstlicher Kühlung
400-kV-VPE-Kabel	III	147 km	1920 MVA	realisierbar nur mit künstlicher Kühlung
220-kV-Öl-Papier- Kabel	III	104 km	765 MVA	realisierbar
220-kV-VPE-Kabel	III	142 km	555 MVA	
110-kV-Öl-Papier- Kabel	III	84 km	210 MVA	realisierbar mit Aufwand realisierbar
110-kV-VPE-Kabel	III	133 km	130 MVA	

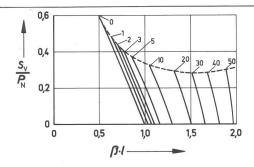


Fig. 9 Bezogene Verbraucher-Scheinleistung S_V/P_N als Funktion der bezogenen Systemlänge $\beta \cdot I$ eines verlustlosen Übertragungssystems

- Höchste übertragbare Verbraucher-Scheinleistung
 Höchste übertragbare Verbraucher-Scheinleistung bei vorgegebener, gleichbleibender, zusätzlicher
 Spannungsüberhöhung
- 0...50 Parameter der durchgezogenen Kennlinien; Prozentuale, zusätzliche Spannungsüberhöhung über $1,1\cdot U_{\rm N}$ hinaus

über denjenigen aus Tabelle IV vergrössert werden, falls innerhalb der Übertragungsstrecke Spannungsmaxima zugelassen werden, deren Amplituden nur geringfügig oberhalb von $1,1\cdot U_N$ liegen.

Um die Abschätzung der möglichen Systemlängen-Vergrösserung zu vereinfachen, wurde aus Gl. (8) eine Näherungsbeziehung abgeleitet:

$$\beta \cdot l = 0.39379 + \sqrt{-4.10815 + 3.7482 \cdot U_{\text{m}} / U_{\text{N}}}$$
 (14)

Selbstverständlich gilt Gl. (14) nur, falls die angegebenen Spannungsgrenzen am Anfang des Systems weiterhin gefordert werden und falls der Verbraucher-Phasenwinkel in den Grenzen –15° und +30° schwanken darf.

Aus Gl. (14) lassen sich die Systemlängen der Tabelle V herleiten. Gleichzeitig sind in Tabelle V die maximalen Leistungen eingetragen, die dann möglich würden, falls die Kabel verlustlos übertragen könnten.

Aus Tabelle V lassen sich zwei unterschiedliche Fragestellungen ableiten:

- Welche Spannungsüberhöhungen und damit welche Höchstfeldstärken müssen zugelassen werden, falls bis zu Systemlängen von 200 km die übertragungstheoretisch möglichen Leistungen (z.B. aufgrund von Zwangskühlung) ausgeschöpft werden sollen?
- Wie weit sind die Übertragungsleistungen zu senken, falls keine oder nur geringe zusätzliche Spannungsüberhöhungen zugestanden werden?

Wird die erste Fragestellung aufgegriffen, so müssen die in Tabelle VI zusammengestellten Höchstfeldstärken im Betrieb zugelassen werden. Bis auf die zu fordernde Betriebsfeldstärke des 400-kV-VPE-Kabels, das selber bislang noch nicht hergestellt worden ist, sind alle anderen Feldstärken bereits im Betrieb der entsprechenden Kabel von diesen erfolgreich beherrscht worden. Es besteht also kein Zweifel, dass Drehstromkabel, würden ihre thermischen Grenzleistungen nur weit genug angehoben, auch Entfernungen von 200 km überbrücken können, ohne durch Spannungsüberhöhungen gefährdet zu sein.

Um die Antwort auf die zweite Frage nach der notwendigen Leistungssenkung geben zu können, wurde ein Rechenprogramm erstellt, dessen Ergebnisse in Figur 9 dargestellt sind. Dort gibt die gestrichelte Kennlinie die maximal mög-

$\frac{\Delta U}{U_{ m m0}}$	$\frac{U_{\mathrm{m}}}{U_{\mathrm{N}}}$	β·l _m	400-kV- Öl-Papier-	Kabel	400-kV- VPE-Kabe	1	220-kV- Öl-Papier-	Kabel	220-kV- VPE-Kabe	:1	110-kV- Öl-Papier-	Kabel	110-kV- VPE-Kabe	:1
			l _m	S _m	l _m	S _m	l _m	S _m	l _m	S _m	lm	S _m	l _m	S _m
%	-	-	km	MVA	km	MVA	km	MVA	km	MVA	km	MVA	km	MVA
1 2 3 4 5 10 20 30	1,111 1,122 1,133 1,144 1,155 1,210 1,320 1,430	0,6307 0,7058 0,7660 0,8178 0,8639 1,0474 1,3100 1,5126	150 170 185 200 210 255 320 370	1900 1730 1620 1540 1470 1290 1160 1120	190 210 230 250 260 320 400 460	1500 1370 1280 1210 1170 1020 920 890	135 150 165 175 185 225 280 325	600 540 510 480 460 410 360 350	185 205 225 240 255 305 385 445	430 390 370 350 330 290 260 250	110 120 130 140 150 180 225 260	165 150 140 130 125 110 100 95	175 195 210 225 240 290 360 420	100 90 85 80 75 65 60 60

liche Übertragungsleistung eines verlustlosen Übertragungssystems in Abhängigkeit von der Systemlänge wieder, falls das System optimal kompensiert ist. Wird die Übertragungsleistung bei gleichbleibender zusätzlicher Spannungsüberhöhung reduziert, wandert man auf einer der durchgezogenen Kennlinien zu grösseren Systemlängen hin.

Werden die Ergebnisse von Figur 9 auf verlustbehaftete Kabel übersetzt und werden Übertragungsleistungen gewählt, die von dem entsprechenden Kabel thermisch noch beherrscht werden können, dann ergeben sich die Kennlinien der Figur 10 mit den entsprechenden Hilfskennlinien für gleichbleibende, zusätzliche Spannungsüberhöhungen.

Soll keine zusätzliche Spannungsüberhöhung zugestanden werden, so werden laut Figur 10 beim 220-kV-VPE-Kabel, beim 110-kV-Öl-Papier-Kabel und beim 110-kV-VPE-Kabel interessante Betriebsbereiche abgeschnitten. Um derartige Einschränkungen zu verringern, bietet sich an, die Isolierungsdicke zu vergrössern, wie dies in Figur 11 geschehen ist. Durch die Vergrösserung der jeweiligen Isolierungsdicke auf 30 mm ergibt sich eine deutliche Verschiebung der Hilfskennlinien gleichbleibender, zusätzlicher Spannungsüberhöhungen zu grösseren Systemlängen hin.

Im Betrieb eines Drehstromkabels auftretende Höchstfeldstärken, falls das Kabel durch Kompensationsmassnahmen auf 200 km Systemlänge gebracht wurde

Tabelle VI

Übertragungssystem	Feldstärke bei kurzen	Höchste Spannungs-	Höchst- feldstärke	Bemerkungen
	Kabeln	überhöhung bei 200 km		
	kV/mm	-	kV/mm	
400-kV-	10,66	1,144	12,2	sicher
Öl-Papier-Kabel 400-kV- VPE-Kabel	10,70	1,115	11,9	beherrschbar vermutlich beherrschbar
220-kV- Öl-Papier-Kabel	8,35	1,170	9,8	sicher beherrschbar
220-kV- VPE-Kabel	7,09	1,118	7,9	sicher beherrschbar
110-kV- Öl-Papier-Kabel	7,74	1,250	9,7	sicher beherrschbar
110-kV- VPE-Kabel	4,93	1,128	5,6	sicher beherrschbar

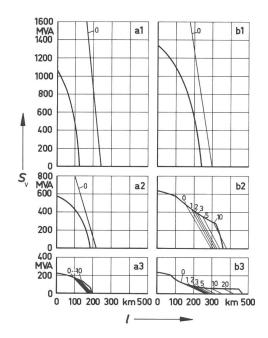


Fig. 10 Höchste übertragbare Verbraucher-Scheinleistung in Abhängigkeit von der Systemlänge Ivon optimal kompensierten Kabeln

- . al 400-kV-Öl-Papier-Kabel aus Tabelle III
- a2 220-kV-Öl-Papier-Kabel aus Tabelle III
- a3 110-kV-Öl-Papier-Kabel aus Tabelle III
- bl 400-kV-VPE-Kabel aus Tabelle III
- b2 220-kV-VPE-Kabel aus Tabelle III
- b3 110-kV-VPE-Kabel aus Tabelle III

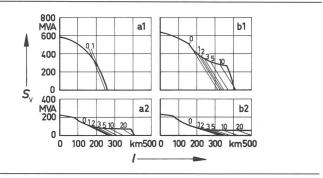


Fig. 11 Verbraucher-Scheinleistung analog Figur 10 jedoch mit 30 mm Isolierungsdicke

- al 220-kV-Öl-Papier-Kabel
- a2 110-kV-Öl-Papier-Kabel
- b1 220-kV-VPE-Kabel
- b2 110-kV-VPE-Kabel

Kabeldaten	Nennspannung Leitermaterial Leiterquerschnitt Leiterfüllfaktor Dicke der Leiterglättung Isoliermaterial Dielektrizitätszahl Verlustfaktor Isolierungsdicke Dicke des Schirms	110 kV Kupfer 1000 mm ² 0,85 1 mm VPE 2,3 0,0005 18 mm 1 mm
	Material des Metallmantels Dicke des Metallmantels	Blei 2 mm
	Dicke des Korrosionsschutzes	5 mm
	Dielektrizitätszahl des Korrosionsschutzes	5
Verlegedaten	Verlegetiefe Ader-Achs-Abstand in der Flachverlegung	1200 mm 400 mm
Systemdaten	Systemlänge Kompensationsleistung Kompensations-Induktivität je Phase Wicklungskapazität je Phase	400 km 167 MVA 0,23 H 1 nF
Schaltdaten	Schaltaugenblick Schaltart	Maximum der Spannung einphasig
Generator- daten	Frequenz Innenwiderstand Scheitelwert der Spannung	50 Hz null 89,81 kV

Zusammenfassend kann festgestellt werden, dass bei Kabeln auch bis zu Übertragungsentfernungen von 200 km entweder keine zusätzlichen Spannungsüberhöhungen auftreten oder aber diese so gering ausfallen, dass sie ohne Gefahr für das jeweilige Kabel toleriert werden können.

5. Spannungsüberhöhungen bei Schalthandlungen

Wird ein Übertragungssystem an eine Wechselspannungsquelle geschaltet, dann ist die Spannungsüberhöhung am Systemende um so grösser, je mehr sich die Systemlänge einer viertel Wellenlänge der Spannung nähert. Um also zu kontrollieren, welche Spannungsüberhöhungen tatsächlich auftreten können, musste ein möglichst langes Kabel gewählt werden. Aus diesem Grunde wurde das in Tabelle VII beschriebene, 400 km lange 110-kV-VPE-Kabel ausgesucht und im Spannungsmaximum ans Netz geschaltet. Die Berechnungsergebnisse sind in Figur 12 dargestellt.

Bemerkenswerterweise wirken sich bei einem Schaltvorgang im Gegensatz zum quasistationären Betrieb die Verluste des Kabels stark aus. Während nämlich bei Vernachlässigung der Verluste am leerlaufenden Ende des Kabels

Fig. 12 Spannung u am Ende eines 400 km langen 110-kV-VPE-Drehstromkabels gemäss Tabelle VII in Abhängigkeit von der Zeit t nach Einschalten einer Wechselspannungsquelle

- ---- Ohne Berücksichtigung der Verluste des leerlaufenden Kabels
- —- Bei Berücksichtigung aller Verluste des leerlaufenden Kabels
- Bei Berücksichtigung aller Verluste des optimal
 - kompensierten Kabels ohne Anschluss eines Verbrauchers

wiederholt Spannungsspitzen von 223 kV bei einem Einschaltscheitelwert von $\sqrt{2} \cdot 110 \text{ kV}/\sqrt{3} = 89,81 \text{ kV}$ auftreten, wird bei Berücksichtigung der Verluste nur noch einmal eine Spannungsspitze von -183,5 kV erreicht; alle folgenden Spannungsspitzen bleiben spürbar kleiner.

Wird das Kabel mit einer im Sinne der obigen Ausführungen angepassten Querdrossel abgeschlossen, ohne dass ein Verbraucher eingespeist wird, und werden ausserdem die Verluste berücksichtigt, dann berechnet sich die grösste Spannungsspitze nur noch zu 168,5 kV. Darüber hinaus wird die Spannung schon nach etwa 100 ms in den vom Generator vorgegebenen Verlauf gezwungen.

Aus diesen wenigen Ergebnissen kann gefolgert werden, dass durch angepasste Querdrosseln Spannungsspitzen, die aus Schalthandlungen stammen, abgebaut werden, ein angenehmer Nebeneffekt der Kompensationsmassnahme.

6. Folgerungen

Bei Freileitungen spielen Spannungsüberhöhungen im quasistationären Betrieb bis zu Systemlängen von 450 km überhaupt keine Rolle, und bei Systemlängen oberhalb von 450 km bis etwa 800 km sind die Spannungsüberhöhungen noch so gering, dass sie sicher beherrscht werden können.

Bei Drehstromkabeln spielen Spannungsüberhöhungen im quasistationären Betrieb bis zu Systemlängen von 100 km ebenfalls keine Rolle, bei den VPE-Kabeln sogar bis 150 km Systemlänge. Werden entweder geringfügige zusätzliche Spannungsüberhöhungen zugelassen oder die Isolierungsdicken erhöht, dann können mit Drehstromkabeln auch Sy-

stemlängen von 200 bis 300 km ohne Gefährdung des Isoliervermögens der Kabel realisiert werden.

Bei transienten Überspannungen wirken darüber hinaus die Querdrosseln spannungsmindernd.

Es bleibt also festzuhalten: Werden bei Drehstromsystemen Querdrosseln zur Vergrösserung der Systemlänge eingesetzt, so müssen Spannungsüberhöhungen, wenn überhaupt, erst bei sehr grossen Systemlängen beachtet werden. Sie sind aber auch dann stets beherrschbar, so dass sie keine entscheidende Begrenzung bei der Vergrösserung der Systemlänge darstellen. Diese Feststellung kann so uneingeschränkt nur für verzerrungsfreie Spannungen getroffen werden. Welche Auswirkungen Verzerrungen haben und wie diese beherrscht werden können, muss durch weitere Untersuchungen geklärt werden.

Literatur

- [1] H. Engelhardt: Die Spannungsregelung bei Grosskraftübertragungen über lange Leitungen in technischer und wirtschaftlicher Sicht. AEG-Sonderdruck. Berlin, AEG, 1962.
- [2] G. Weigel: Drehstrom-Kompensations-Drosselspulen für 250 Mvar und 420 kV. Siemens-Energietechnik 3(1981)7, S. 232...235.
- [3] W. Rasquin: Drehstrom-Kabel mit angepassten Querdrosseln. ETZ-Archiv 3(1981)11, S. 371...376.
- [4] W. Rasquin: Entwurfskarte für Drehstrom-Übertragungssysteme mit angepassten Querdrosseln. ETZ 103(1982)5, S. 254...259.
- [5] W. Rasquin: Technische Aspekte der Fernübertragung mit Kabeln. Energiewirtschaftliche Tagesfragen 32(1982)7, S. 596...605.
- [6] K. Gappa: Verminderung von Einschaltüberspannungen auf Höchstspannungsfreileitungen durch steuerbare Ladestromspulen mit nichtlinearer Charakteristik. ETZ-A 96(1975)5, S. 211...216.
- [7] B. Ehmeke: Drehstrom-Hochspannungs-Übertragung. Siemens-Energietechnik 3(1981)Beiheft Hochspannungstechnik, S. 4...10.

Adresse des Autors

Professor Dr. Ing. W. Rasquin, Universität-Gesamthochschule Duisburg, Fachbereich Elektrotechnik, Postfach 101629, D-4100 Duisburg.