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Structuring of Communication in Modern Systems
C.A. Vissers

621.39

Starting with the example of the general purpose instrumentation interface IEEE-488, which was developed in a period where only small

and medium scale integrated components were available, it is shown which new insights in user requirements, modern technology, and system

design methodology have lead to a modern approach in system structuring and hardware and software design.

Vom Beispiel des IEEE-488 Interface für allgemeine Anwendung ausgehend, das in einer Zeit entwickelt wurde, wo nur Komponenten

geringer und mittlerer Integrationsdichte verfügbar waren, wird gezeigt, welche neuen Erkenntnisse der Anwenderbedürfnisse, moderner Technologie

und Methodik der Systementwicklung zu einem modernen Zugang zur Systemstrukturierung und zum Entwurf von Hardware und Software

geführt haben.

Partant de Vexemple de l'interface IEEE-488 qui fut développé à une époche ou seuls des composants à faible et moyenne integration étaient

disponibles, l'auteur montre les nouveaux aspects des besoins des utilisateurs, de la technologie moderne et de la méthodologie de la conception
des systèmes qui ont conduit à une approche moderne de la structuration des systèmes et de la conception du matériel et du logiciel.

1. The significance of standardization

In May 1974 Working Group 3 of the Technical Committee
66 of the International Electrotechnical Commission (IEC TC

66, WG 3) pretty well completed a draft standard for an

Interface System which later would be known as IEC-625,

IEEE-488, GPIB, HP-IB, etc. Today, it is hardly thinkable
that a device meant for laboratory automation or production
test facilities would not be equipped with this Interface. Even

equipment such as computers and peripheral devices which

were not in the primary scope of this standardization process,

frequently offer this Interface as an option.
By mid 1981, this standard has been translated into 9

different languages, and over 300 companies offer over 3000

different instruments, controllers, systems and components
which use, or are based upon this Interface. These numbers

seem to double every two years, and it may well be expected

This paper was presented at the SEV-meeting of 8th October 1981

on 'normalisation dans le domaine des systèmes micro-informatiques'.
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Fig. 1 Structure of a device from the perspective of the IEC-625

Interface system for programmable measuring apparatus

Important is the distinction into layers of Interface functions,
Message coding, Drivers and Receivers, and the Interface bus.
Each interface function is represented by a formal specification
in terms of a finite state machine

that this standard will serve us till up in the nineties, rather
than up in the eighties, which was the originally expected
lifetime.

In analysing the 'why' and 'how' of this success, there are

at least three key factors that can be distinguished :

1. The timing was right: Whereas sometimes standardization

committees are filibustered to unproductivity, this standard

was initiated while there was a great need for it, and
produced by WG 3 within two years.

2. The technical quality was right: The technical concepts in
this standard allow a wide variety of simple and complex
instruments to interwork in an efficient way, and thus to bridge
the gap between the period that devices were assembled from
discrete (or at most medium scale integrated) components to
nowadays, where technology allows us to install more and

more functions in a single device.

3. The specification was right: Whereas interface specifications

are notorious sources of system failures, as provoked by
hidden ambiguities in the usually informal specification, the

highly structured (figure 1) and formal specification of this
interface guarantee unambiguous interpretation by designers
and users, and thus real compatibility between devices.

These aspects of structuring and formality, in particular
how they are seen now by the international community, form
the main subject of this text.

2. Reference Model

A mechanism to cope with the enormous complexity of
protocol (another term for interface) structures in modern
distributed systems, in which each device or subsystem can
be another computer system, is by the use of so called 'Reference

Models'. In this context, the ISO 'Reference Model for
Open Systems Interconnection (OSI)', which was developed

by ISO TC 97 SC 16, plays a dominant role at this moment.
As it may be expected that every system designer, who
incorporates a standard interface or protocol in his system, sooner

or later will get confronted with this model, we base our
discussion on it.

The objectives of the OSI Reference Model is to provide
the framework for the development of standard interface,
protocol, and service specifications. These standards will allow
users of computer systems that are interconnected via local

area and/or public and/or satellite (computer) networks, to
communicate and to share each others facilities (i.e. their
systems are 'open'). Many applications are served with this
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development, the economic interest is great, as illustrated by
the fact that far over hundred top-experts out of the world's
highest industrialized countries cooperate in SC 16.

The following shows a strongly simplified image of the
Reference Model. This image is used to introduce the definitions

of Interface, Protocol, and Service, which have a
confined semantics in the context of this model :

The Reference Model employs a vertical layering of (open)
systems (Sl...Ss), and a horizontal layering of functional
entities (El...Ee) within each system (fig. 2). On this layered
structure a number of concepts are defined, which, in increasing

order of abstraction, are called: Interface, Protocol, and
Service (fig. 3).

An Interface is the interaction between two adjacent but in different

layers located functional entities within one system, e.g. the
Ee/Ee-1 interaction within SI.

A Protocol is the interaction between two functional entities
located in the same layer, but pertaining to different systems, e.g.
the Ee-l/Ee-1 interaction of S2 and Ss. This interaction is not
directly but proceeds via the underlaying Service, in this example
the Ee-2 Service.

A Service is the integration of all functional entities below a
certain layer, e.g. the Ee-3 Service is the functional integration of
all functions (i.e. all Ee-3's through El's including the communication

media for interaction between Sl...Ss) below the Ee-2 layer,
and represents the behaviour of these functions as seen by all
Ee-2's.

These abstract concepts are handled according to a great
number of technical criteria to develop practical interface,
protocol, and service designs. This is further discussed in
section 3.
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Figure a: The model uses 7 layers, which from top to bottom
are as shown in figure 2b
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Fig. 3 Graphical representation of the Interface, Protocol,
and Service concepts

In the following, an attempt is made to draw a rough
correspondence between the IEC-625 structure and the OSI
Reference Model. This correspondence, of course, cannot be

complete and precise.
The Device (Apparatus) of figure 1 is an example of a

system in figure 2, which is open in the sense of being accessible

by other devices which use the same IEC-625 standard.
The boxes in figure 1 (the IEC-625 'Reference Model') are
examples of (functions within) entities of figure 2, which may
be located within a layer of figure 2b as follows:

- the Interface Bus is an example of a communication medium,
- the Drivers and Receivers are within the Physical layer,
- the Device Functions are within the Application layer,
- the Interface Functions and Message Coding have to be distributed

among the layers.

This distribution can be performed in the following way:
First of all the message coding should be devided into two
sections. One section concerns the representation of application

data. A separate document, the IEC-625 'Code and Format

Conventions', is dedicated to this subject. This document
corresponds to the Presentation layer. The dotted lines through
the Talker (T) and Listener (L) functions, indicating the
transparency of data transferred through these functions, allow this
interpretation of figure 1. The other section concerns the
representation of protocol data, and should be associated with
the interface functions to which these data apply.

The Remote Local (RL), Parallel Poll (PP), Device Clear
(DC), and Device Trigger (DT) functions are typical examples
of 'standardizable portions' of application functions, and as
such belong to the Application layer. The Source Handshake
(SH) and Acceptor Handshake (AH) are functions that control
the valid transfer of data, and belong to the Data Link layer.
The Talker (T) and Listener (L) functions are used for the
setting up of a connection between devices and can be located
in the Transport layer. The Service Request (SR) and parts of
the Controller (C) functions have to do with the setting-up
and synchronization of connections, and may be located at
Session level.

The IEC-625 does not know a network function.

3. Role of Interface, Protocol, and Service concepts
The definitions shown in figure 3 allow a number of

conceptual manipulations which are useful to illustrate the roles
of these definitions in the development of open systems standards.

In the following discussion we use the Transport Service
as an example.
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3.1 The Service concept

From the definition of the service concept it will be clear

that the functionality of the transport service, which is

represented by figure 4a in the most direct and simple way, can

also be represented by the compound representation of figure
4b. This compound representation consists of the Transport
Entities (TEs), which embody the Transport Protocol, on top
of the Network Service.

It follows from these different representations that the same

transport service can be rendered by different network services

on top of which different transport protocols are placed. Thus,

a transport service can be a standard, although the underlying
mechanisms may be non-standard. This allows the development

of standard protocols on top of the transport service, as

well as a step-by-step replacement of lower level non-standard

protocols by standard protocols without making higher level

protocols obsolete.
Service specifications, therefore, represent a vital mechanism

in distributed systems to balance and adapt in a standard way
the requirements of many different applications to the
characteristics rendered by many different network technologies.

An important critérium in this process is that on each level in
the model a service is defined, such that each higher level

service screens off ('wraps') user-unfriendly characteristics of
the next lower level service.

It follows also that the transport service defines the ultimate
constraints for the development of the transport protocols and

the network service and as such permits a top-down approach
in the development of protocols, starting out with service user

requirements.
Yet, service specifications are 'just discovered' and service

standards for practical applications are still in an early stage

of development and dedicated to a limited goal : the connection

oriented services (see 5.2). The OSI 'Transport Service for
Connection Oriented Services', whose draft proposal may be

expected by mid 1982, will most possibly be the first Service

standard in the world.

3.2 The Protocol concept

The transport protocol, which is the interaction between

two or sometimes more transport entities, determines the

functional specification of the transport entities. Since the

functional specification of an open system is determined by
the functional specification of all its entities, it follows that
the protocols of all layers determine the implementation of an

open system.
Protocols are always based on a lower level service. Even

the physical protocol is based on the (usually rather poor)
service of the underlying communication medium. This service,

however, is not further decomposed in another protocol and
service, but implemented directly by the communication medium.

Entities exchange specific messages, called 'Protocol Data
Units' (PDUs), to perform the protocol and to provide the

required service. In the OSI model PDUs are exchanged as

data, and thus transparently, via the underlying service.

This is shown in figure 5 for the Transport Protocol Data
Units (TPDUs).

Protocols make use of such mechanisms as cyclic redundancy

check, retransmission, time-out, buffering, numbering
of PDUs, window-mechanism, etc. Sometimes the same
mechanisms can be found at different levels in the model.

3.3 The Interface concept

From figure 4 and figure 6 it will be clear that the
interactions between the transport service and the session entities

(fig. 6a) must be the same as the interaction between the transport

entities and the session entities (fig. 6b), as a necessary
(but not sufficient) requirement to conclude that the integrated
and distributed representation of the transport service are

equivalent.
These interactions are modelled by the transport interfaces.

As such the transport interfaces form a kind of lock, which

can be used to map a transport protocol on the transport
service.

The transport interface, as meant in this way, is actually
an abstract interface between abstract representations of
transport service, transport entities, and session entities. This
is because the OSI standards do not want to prescribe the

precise way how the implementation of the transport and
session entities exchange information. These decisions concern
the implementation interface, which is the domain of the
manufacturer.

It follows, that when a system is implemented, the abstract
interfaces need to be implemented as well as the abstract
entities. It follows therefore, that any hardware and/or
software implementation interface may be chosen between two
adjacent entities, whereas any hardware and/or software
implementation may be chosen for any entity.
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Abstract interfaces are, like service specifications, modelled
by temporal orderings of 'Service Primitives', which shall be

discussed in the next section. These service primitives play also

an essential role in protocol specifications in addition to the
PDUs. In the remaining part of this paper, therefore, we
restrict ourselves to Service specifications.

4. Modelling of Service specifications
Obviously, adequate specification techniques are required

to reflect the right level of abstraction in interface, protocol,
and service specifications. Conventionally, specifications are
written (informally) in plain language, and illustrated with
drawings, diagrams, and tables. In recent years the virtue of
formal specification techniques has become more and more
appreciated as a tool during the design process, and as a
means of communication between the original designers and
the users.

A formal specification (because of the formal basis) avoids
the ambiguity of the informal specification, and thus cannot
be explained in different ways. It allows also the logical analysis

of a specification, such that deadlocks, races, instabilities,
etc. can be detected in an early phase during the design process.
These analysis procedures can be, and sometimes are,
automated on a computer. Formal specifications can also be concise

and clear, and as such they support the human reasoning
during the design process.

The informal specification language, however, remains
indispensable as a meta language to define the formal language,
as a means to explain and introduce formal specifications, and
as a means for intuitive communication during the design

process.
Therefore, formal and informal language complement,

rather than compete, each other! In order to perform this
complementary role, it is necessary that both formal and
informal language use the same semantics for the concepts
that they use in common.

In the following we introduce some concepts which appear
to be highly valuable in the specification of interfaces and
services.

4.1 Service Primitives

A Service Primitive (SP) is a unit of interaction between two
adjacent entities, or between an entity and its adjacent service.

This unit of interaction can be conceived as an elementary

process of finite duration with a specific semantics, expressed

by the type of SP. Usually this semantics concerns the exchange
of a set of particular data elements. These data elements are
called parameters or parameter values.

Thus an SP is specified by its type and by the values of its
parameters.

The concept of interaction implies that one does not want
to distinguish how each entity contributes to this interaction.
Instead, the interaction is interpreted so as to contribute to
the activity of both entities in the same way.

The concept of unit of interaction implies that one does

not want to give an inner temporal ordering structure (i.e.
relevant to the parameters) to the SP.

Figure 7 tries to illustrate these concepts. In this figure the
enclosed surface of entity X symbolically represents the activity

of entity X. The little surface marked SP belongs to the

activity of entity X as well as to the activity of entity Y.

4.2 Temporal Ordering

A Temporal Ordering (TO) defines the allowable time
sequences of service primitives. These time sequences as well as
references of parameter values to each other are used to indicate

causality, which forms the basis of a specification.
A specification by way of the enumeration of all possible

time sequences of SPs usually becomes very tedious to read.
Therefore shorthand notations (temporal ordering primitives)
are used in practice. An example is given in figure 8. The figures
of section 5 show examples of temporal orderings by way of
simple timing diagrams. The dotted lines in these diagrams
indicate causality, the vertical lines indicate time.

5. Types of Services

A type of service defines a fixed pattern of service primitives
in a temporal ordering specification. Types of services are used

to characterize and satisfy the needs of particular service users.
In this context the service user may be an end-user, but may
also be an arbitrary entity in the open system, e.g. the session

entity as the user of the transport service.

In the following we introduce a number of service types
which are currently under discussion. For simplicity we eliminate

the parameters, and focus on the transport service by
way of example.

5.1 Connectionless Services

Service types are currently classified as connection and
connectionless services. The connectionless service is the more
simple class, so we start with this class.

5.1.1 Unconfirmed Service

The unconfirmed service is again the most simple one of
the connectionless services. Sometimes this service is called
the '(unreliable) datagram', or the 'send and pray' service.

Figure 9 shows an example for data transfer. A 'data
request' SP (Dr) is executed at the border of the calling session

entity (SE) and the transport service (TS), which is normally
followed by the execution of a 'data indication' SP (Di) at the
border of the transport service and the called session entity.
The information, however, may get lost in the transport
service, in which case the data indication is not executed.

Parameters in data request are: 'called session entity' and
'data'. The parameters in Di are 'calling session entity', and
'data', which, except for a certain residual error rate, are the
same data as in Dr.

/ V \
/ A \' Entity X (sP^ Entity Y J

\ V /
\ A /

Fig. 7 Symbolic representation of the actions X and Y,
and the interaction SP

seçj(SP 1 ,çonç(SP 2.SP 3)

Fig. 8 Temporal Ordering of three SPs

It defines a sequence (seq) of SP 1 followed by interaction x,
where x is a concurrent (cone) ordering of SP 2 and SP 3

(i.e. SP2 and SP3 may overlap in an arbitrary way)
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therefore, has the same value as the parameter in the Dp-SP,

or the value 'unconfirmed'.
The protocol for this type of service has almost the same

complexity as the protocol for the provider confirmed service.

User confirmed services have important applications, for
example in banking, airline reservation, database inquiries, etc.,

where short predefined questions require short answers.

5.1.4 Relevance of connectionless services

Connectionless services have a particular relevance for
Local Area Networks (LANs). Local area networks offer a

number of inherent technological characteristics (such as short

and relative constant transit delay, high bandwidth and broadcast

transmission) in conjunction with relative low cost, that

make these networks particularly suitable for a number of
new applications as well as new and cheeper implementations
of existing applications.

On the other hand the potential power of LANs can never
be fully exploited independent of the long-haul terrestrial and

satellite networks that provide the means to interconnect

largely distributed LANs.
Service and protocol standards for LANs are now under

development, in particular within the IEEE-P 802 group. These

developments, however, are restricted to the bottom two layers

of the ISO OSI-Reference-Model, whereas ISO TC 97 SC 16

is too much engaged in getting the connection oriented services

and protocols ready for draft standards.

The unconfirmed service forms the basis of all communication:

each transmission line performs an unconfirmed service.

Several important applications require the unconfirmed
service, for example teleconferencing (video-, or voice-). Also

some forms of periodic status reporting and message
broadcasting may use it.

5.1.2 Provider Confirmed Service

The provider confirmed service tries to avoid the uncertainty

of the execution of the Di primitive by providing a

'data confirm' SP (De) or a 'confirmation of delivery' SP at

the calling SE. This is shown in figure 10. Sometimes this type
of service is called 'reliable datagram service'.

At protocol level, the transport entity can retransmit the

Dr-PDU when a time-out condition indicates that the Dc-PDU
has not arrived in time. This may be caused by the loss of the

Dr-PDU, which implies that the Di-SP has not happened, or
by the loss of the Dc-PDU, which implies that the Di-DP has

happened but the confirmation by the receiving Transport
entity is not received by the sending Transport entity.

It follows that this type of service is drastically more complex

than the simple unconfirmed service as it implies all kinds

of error procedures. Figure 10b therefore shows only the

statistically most probable temporal ordering. The single
parameter in the Dc-SP expresses either 'confirmed', or
'unconfirmed'.

Provider confirmed services are useful in some forms of
process control applications, where absolute and timely
guarantee of information delivery is necessary.

5.1.3 User Confirmed Service

In the user confirmed service, the user is requested to give

an 'intelligent' response on the Di primitive by means of a

'data response' SP (Dp) (fig. 11). The parameter in the Dc-SP,

5.2 Connection Service

The connection service is the more complex type of service.

It is required when service users interact on a regular basis

(e.g. the interaction of a terminal with an application program)

and/or with long units of data (e.g. in file transfer). The
connection service is a very general service and thus can be used

for many applications. It forms the basis of many public data

communications networks which provide the X.25 Interface.

This forms the background why ISO TC 97 SC 16 and SC 6

focus for the standards which are now under development on
this type of service.

The connection service (fig. 12) employs three phases:

establishment phase, data transfer phase, termination phase,

in the cited sequence. The termination phase, however, may
be invoked by either user after the 'connect' request or 'connect'

indication primitive.
The establishment phase looks like a user confirmed service.

Its purpose, however, is to set up a connection and to negotiate
between both service users and the service provider under

which conditions this connection will be maintained. These

+ +
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Fig. 11 The user confirmed Service

a Geographical distribution of SPs

b The must probable TO of SPs in the user confirmed Service
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—>DATA indication

—>DISCONNECTindication

Fig. 12 Example of a Connection Service

conditions concern aspects of throughput, transferdelay, residual

error rate, etc. and are usually called the quality of service.
In the data transfer phase 'normal data' can be transferred

in either direction. This means that the connection can be
conceived as a two way simultaneous (or: full duplex) virtual
circuit between the calling and called user.

Data is offered to the service provider by means of the
'data request' SP, and delivered by the service provider by
means of the 'data indication' SP. The service provider pre¬

serves the integrity of the data. The maximum length of the
data is negotiated during connection establishment. The data
is transferred 'transparently', i.e. any coding or formatting of
the data is allowed.

Sometimes an additional full duplex virtual circuit is
installed for short urgent messages. This circuit is operated by
'expedited data' request and indication primitives.

The termination phase eliminates the connection. This
termination may be invoked by either user by issuing a
'disconnect request' SP. The service provider informs the other
user by issuing a 'disconnect indication' SP. The Service
provider can also terminate a connection if it cannot longer
guarantee the quality of service agreed earlier. The service provider
then informs both service users by way of the disconnect indicate

SP.

Figure 12 shows an example. The temporal ordering
presents only one possible sequence of SPs.
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