Briefe an die Redaktion = Lettres à la Rédaction

Objekttyp: **Group**

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de

l'Association Suisse des Electriciens, de l'Association des

Entreprises électriques suisses

Band (Jahr): 70 (1979)

Heft 1

PDF erstellt am: **28.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Briefe an die Redaktion - Lettres à la Rédaction

«Erwärmungslauf von Asynchronmaschinen bei bifrequenter Speisung»

[Bull. SEV/VSE 68(1977)14, S. 703...709]

Zuschrift

This is extraordinarily valuable work. From my experience I agree with A. Meyer that determination of losses, and therefore efficiency, is important. It is neither simple nor easy. The methodology described in this paper could be supplemented. Average loading at *nominal* rated load will often be found to be insufficient because *actual* rated load conditions might be significantly different.

The full treatment of skin effect is particularly good. Disregarding the skin effect in wound rotor induction motors can lead to surprises. There are many important applications for low voltage (say 440 V) motors where very deep solid copper bars are used in the rotor.

What are the author's views on the thought that occasionally some external flywheel effect should be added to reduce the power swing?

From my experience it seems to me that a measured dose of «CAVEAT EMPTOR» is in order. The stray load losses and possibly the «no-load-iron losses» are bound to be significantly different from what they are at actual rated load. There will be some ways for at least acceptable approximate methods for the determination of these. There seems to be some saturation effect on stray load losses. A series of some 38 motors showed me that the stray load losses grow at an exponential rate of about 2.57 when the stray load losses are about 1 % of rated load (median values). The 1 to 2 K temperature rise values reached by the author are certainly most satisfactory.

One wonders, what happens if the saturation of leakage paths is high and motors have high temperature rise (Class H)?

Extrapolation from reduced voltage, reduced load, actual load tests were found by me to be often useful.

John Szogyen, Glen Ridge, USA

Stellungnahme des Autors

Ich danke Herrn Szogyen für das der Arbeit entgegengebrachte Interesse.

Die Bemerkung, dass bei hohen Rotor-Kupferstäben (bis ca. 30 mm) in Schleifringanker-Asynchronmaschinen des Niederspannungsbereiches die Stromverdrängung ausgeprägter auftritt, ist ohne Zweifel richtig. Rechnerische wie messtechnische Untersuchungen haben allerdings ergeben, dass auch in diesem eher seltenen Fall der Einfluss der Stromverdrängung auf das dynamische Verhalten der Maschine und auf die Verlustaufteilung gering ist. Die aufwendige Methode der Unterteilung der Rotorstäbe für die numerische Simulation des Erwärmungslaufes bei bifrequenter Speisung, wie sie im Aufsatz für Käfiganker-Asynchronmaschinen beschrieben wurde, ist deshalb für Schleifringanker-Asynchronmaschinen nicht notwendig.

Eine weitere Frage betrifft die Anwendung eines Schwungrades zur Herabsetzung der Leistungspendelungen. Dazu ist zu bemerken, dass die Kupplung der Asynchronmaschine mit einem Schwungrad mit einer kostspieligen Aufstellung im Prüffeld verbunden ist, die zudem bei Vertikalmaschinen kaum realisierbar ist, und damit der Vorteil der Wirtschaftlichkeit des Erwärmungslaufes bei bifrequenter Speisung wegfällt. Die Untersuchungen, dargestellt in Fig. 12, zeigen ausserdem, dass auch mit einer grossen Erhöhung der Trägheitsmasse des Prüflings die Leistungspendelungen bei den für die bifrequenten Messungen üblichen Zusatzfrequenzen von 40...45 Hz nur wenig reduziert werden können. Sind die auftretenden Leistungspendelungen für die speisenden Netze zu gross, so ist es sinnvoller, anstelle der Drehstromnetze Synchrongeneratoren mit möglichst grossen Trägheitsmassen einzusetzen (vgl. Fig. 3 des Aufsatzes). Damit ist eine vollständige elektrische Entkopplung von den speisenden Netzen erreicht.

Bei der Erwärmungsmessung durch bifrequente Speisung wird die Asynchronmaschine im Mittel mit Nennspannung und Nennstrom betrieben. Die periodischen Amplituden- und Frequenzschwankungen der Statorspannungen (vgl. Fig. 4, $\lambda \approx 0,1$) sind bei geeigneter Wahl der Zusatzfrequenz relativ gering. Zudem zeigt die Zusammensetzung der Statorströme in den Gleichungen (19) bis (23), dass die auftretenden Frequenzen im Bereich der Nennfrequenz liegen (stationäre Ströme und Oberströme erster Ordnung v=1). Es kann deshalb angenommen werden, dass sowohl die strom- wie die spannungsabhängigen Zusatzverluste mit den Zusatzverlusten im Nennbetrieb recht ge-

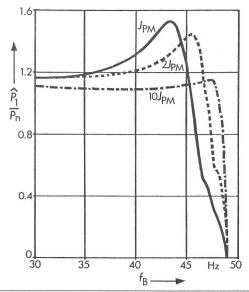


Fig. 12 Pendelleistungen \hat{P}_1 der Asynchronmaschine bezogen auf die Nennleistung P_n J_{PM} Massenträgheitsmoment der ungekuppelten Asynchronmaschine (Maschine 2 mit Schleifringanker)

nau übereinstimmen und beispielsweise keine zusätzlichen Sättigungserscheinungen auftreten. Die Richtigkeit dieser Annahme wird durch umfangreiche Erwärmungsmessungen an mehreren Asynchronmaschinen bestätigt, wo bei bifrequenter Speisung verglichen mit dem Nennbetrieb eine Mehrerwärmung im Stator von höchstens 1 bis 2 K gemessen wurde.

A. Meyer