Die Übertragung von hochfrequenten Schwingungen durch Spannungswandler

Autor(en): Bogucki, A. / Pilch, Z. / Winkler, W.

Objekttyp: Article

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins : gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Band (Jahr): 62 (1971)

Heft 12

PDF erstellt am: 31.05.2024

Persistenter Link: https://doi.org/10.5169/seals-915831

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Die Übertragung von hochfrequenten Schwingungen durch Spannungswandler

Von A. Bogucki, Z. Pilch, W. Winkler, Gliwice und N. Korponay, Baden

621.314.222.8:621.391.3 Le présent article examine la transmission de signaux de

Im Aufsatz wird die Übertragung von hochfrequenten Spannungssignalen durch induktive und kapazitive Spannungswandler mit Hinblick auf sekundärseitig angeschlossene elektronische Schutzgeräte untersucht. Es wird gezeigt, dass beide Spannungswandlerarten hochfrequente Spannungssignale bis zu einer gewissen Grenze übertragen können. Innerhalb des übertragbaren Frequenzspektrums kann das Ausgangssignal, unter bestimmten Umständen, gegenüber dem Eingangssignal sogar verstärkt auftreten.

1. Einleitung

Der Fortschritt in der Entwicklung von statischen Schutzrelais für Höchstspannungsnetze besteht unter anderem in den sehr hohen Arbeitsgeschwindigkeiten dieser Schutzeinrichtungen. Gleichzeitig mit der Verminderung der Kommandozeiten ist aber das Verhalten dieser Netzschutzeinrichtungen bei transienten Vorgängen sowohl auf der Hochspannungsseite wie auch in den Messwandlern und Sekundärkreisen sehr scharf in Vorschein getreten. Diese nichtstationären Vorgänge, die mit der zuverlässigen Arbeitsweise von elektronischen Bausteinen der neuzeitlichen Schutzrelais eng verbunden sind, können folgenderweise in zwei Hauptgruppen aufgeteilt werden:

a) Transiente Vorgänge, die in Strom- und Spannungskreisen von Schutzeinrichtungen infolge Kurzschlüsse im Netz auftreten und die Ansprechsweise von rasch arbeitenden Relais-Meßsystemen beeinflussen;

b) Transiente Überspannungen, die bei Schaltvorgängen, Kurzunterbrechungen und Erdschlüssen auftreten und wegen ihren hohen Spannungsspitzen die elektronischen Relais gefährden.

In beiden Fällen liegt die Quelle der Ausgleichsvorgänge auf der Hochspannungseite. Da aber die Verbindung zwischen den Relaisschutzeinrichtungen und den von ihnen geschützten Leitungen über Messwandler erfolgt, ist es notwendig, das Übertragungsverhalten der Wandler unter diesen Bedingungen zu kennen um entsprechende Vorsichtsmassregeln treffen zu können.

 R_1, L_1 Wirkwiderstand und Streuinduktivität der Primärwicklung; R'_2, L'_2 primärseitig bezogener Wirkwiderstand und Streuinduktivität der Sekundärwicklung; L_m Hauptinduktivität; R_e Wirkwiderstand der Eisenverluste; Z'_b primärseitig bezogene Bürdenimpedanz; U_1 Primärspannung; U'_2 auf Primärseite bezogene Sekundärspannung; M und NPrimär-Anschlussklemmen; m und n Sekundär-Anschlussklemmen In der vorliegenden Arbeit werden die Übertragungseigenschaften von induktiven und kapazitiven Spannungswandlern während transienter Überspannungsvorgänge, die im Grunde genommen in Form von hochfrequenten Schwingungen an den Eingangsklemmen der Wandler auftreten und die netzfrequente Spannung überlagern, untersucht. Die Frequenz,

tension à haute fréquence par des transformateurs de tension

inductifs et capacitifs, compte tenu des appareils de protection

électroniques raccordés au circuit secondaire. On démontre, que

les deux types de transformateurs de tension peuvent transmettre

des signaux de tension à haute fréquence jusqu'à une limite dé-

terminée. A l'intérieur de cette gamme de fréquences, le signal

de sortie peut, dans certaines circonstances, même être renforcé

par rapport au signal d'entrée.

Vereinfachtes Ersatzschaltbild des induktiven Spannungswandlers unter Berücksichtigung der Anfangsbedingungen

 C'_{e} primärseitig bezogene Betriebskapazität bzw. parallele Bürdenkapazität; R'_{b} , L'_{b} primärseitiger Wirkwiderstand und Induktivität der Nennbürde; J_{1} Primärstrom; J_{b} Sekundärstrom; p Operator Weitere Bezeichnungen siehe Fig. 1

die Zeitkonstante sowie der Scheitelwert dieser hochfrequenten Signale sind bekannterweise von dem Schaltmoment und den Kenndaten des Netzes abhängig [1, 2, 3].

2. Induktive Spannungswandler

2.2 Grundsätzliches

Induktive Spannungswandler können als leerlaufende Transformatoren kleiner Leistung betrachtet werden, deren Ersatzschaltung mit Sekundärbürde Fig. 1 darstellt. Fig 2 zeigt dasselbe Ersatzschaltbild in, für die folgende Untersuchung unter Berücksichtigung der Anfangsbedingungen vereinfachter Form. C_e' ist die Betriebskapazität des Wandlers, bzw. die Kapazität der angeschlossenen Bürde (z. B. Kondensatoren in Filtern für symmetrische Komponenten). Aus Fig. 2 leitet sich die allgemeine Knotengleichung für den Wandler ab:

$$U_{2}'(p) [Y_{1}(p) + Y_{2}(p) + Y_{3}(p)] = [U_{1}(p) + I_{2}(p) + I_{1}(p)] Y_{1}(p) + \frac{U_{2}'(0)}{p} Y_{2}(p) - I_{b}'(0) L_{b}' Y_{3}(p)$$
(1)

mit

$$Y_1(p) = \frac{1}{R_i + pL_i} = \frac{1}{Z_i(p)}$$
(2)

$$Y_2(p) = p C_{e'} \tag{3}$$

$$Y_3(p) = \frac{1}{R_{\rm b}' + p L_{\rm b}'} = \frac{1}{Z_{\rm b}'(p)}$$
(4)

Setzt man die Gl. (2), (3), und (4) in Gl. (1) ein, so erhält man die Ausgangsspannung des Wandlers in folgender Operatorenform:

$$U_{2}' = \frac{U_{1}(p) \cdot Z_{b}'(p)}{p C_{e}' \cdot Z_{b}'(p) \cdot Z_{i}(p) + Z_{b}'(p) + Z_{b}(p) + Z_{i}(p)} + \frac{L_{i} I_{1}(0) \cdot Z_{b}'(p) + U_{2}'(0) \cdot C_{e}' \cdot Z_{i}(p) \cdot Z_{b}(p) - I_{b}'(0) \cdot L_{b}' Z_{i}(p)}{p C_{e}' \cdot Z_{b}'(p) \cdot Z_{i}(p) + Z_{b}'(p) + Z_{i}(p)}$$
(5)

Die erhaltene Gleichung besteht aus zwei Anteilen, wobei der erste von dem Eingangssignal $U_1(p)$ abhängig ist, der zweite dagegen die Anfangsbedingungen berücksichtigt.

Die Wurzeln des Nenners in Gl. (5) bestehen aus einer reellen und zwei komplexen Wurzeln.

Die reelle Wurzel hat dabei folgende Form:

$$p_1 = -\frac{R_{\rm b}' + R_{\rm i}}{L_{\rm b}' + L_{\rm i}} = -\frac{R}{L} = -\frac{1}{T} \tag{6}$$

wo T die Wandlerzeitkonstante inkl. Sekundärbürde ist.

Entsprechend sind die komplexen Wurzeln:

$$p_{2,3} = -\delta \pm \mathbf{j}\,\omega_0 \tag{7}$$

darin sind:

- δ der Dämpfungsfaktor der Eigenschwingung des belasteten Wandlers;
- ω_0 die Kreisfrequenz der Eigenschwingung des Wandlers inkl. Bürde.

Die Kreisfrequenz ω_0 kann aus dem Nenner der Gl. (5) durch Vernachlässigung der Wirkwiderstände enthaltenden Glieder abgeleitet werden. Es ergibt sich hiemit:

$$\omega_0 = \sqrt{\frac{L_{\rm i} + L_{\rm b'}}{L_{\rm b}' L_{\rm i} C_{\rm e}'}} = \frac{1}{\sqrt{C_{\rm e}' L_{\rm e}}} \tag{8}$$

worin

$$L_{\rm e} = \frac{L_{\rm b}' L_{\rm i}}{L_{\rm b}' + L_{\rm i}}$$

 $L_{\rm e}$ ist die von den Ausgangsklemmen gesehene Induktivität des Wandlerkreises bei kurzgeschlossenen Eingangsklemmen. Da für den belasteten Spannungswandler vorwiegend $L_{\rm b}' \gg L_{\rm i}$ ist, so ist der Wert $L_{\rm e}$ praktisch belastungsunabhängig. Fig. 3 zeigt die aus Gl. (8) erhaltene Kurvenschar ω_0 = f (C_e') für induktive Wandler mit L_i = 145, 350 und 580 H. Die Werte entsprechen praktisch einer Reihe von Spannungswandlern mit Netz-Nennspannungen von 110, 220 und 380 kV.

Den Dämpfungsfaktor δ erhält man aus der Gleichung

$$\delta = \frac{\sum_{k} R_{k} \left[\frac{\partial M}{\partial R} \right]_{p=j\omega}^{R_{1}=0}}{\left[\frac{\partial M}{\partial p} \right]_{p=-j\omega_{0}}^{R_{1}=0}}$$
(9)

 $\mathbf{P}_{1} = \mathbf{0}$

wo M der Nenner aus Gl. (5) ist. Die allgemeine Lösung lautet:

$$\delta = \frac{1}{2L} \left(\frac{L_{b'}}{T_{i}} + \frac{L_{i}}{T_{b}} \right)$$

$$L = L_{b'} + L_{i}$$
(10)

worin und

$$T_{i} = \frac{L_{i}}{R_{i}}$$
 die Wandlerzeitkonstante,
 $T_{b} = \frac{L_{b}}{R_{b}}$ die Bürdenzeitkonstante

bedeuten.

Wie aus Gl. (10) hervorgeht hängt der Wert des Dämpfungsfaktors vor allem von den Kenndaten des Wandlers ab, die Bürde dagegen hat keinen Einfluss auf den Wert von δ . Für die gegebenen Wandlertypen, deren Wirkwiderstand $R_1 = 45$, 63 und 93 k Ω beträgt, ergeben sich folgende Rechenwerte der Dämpfungsfaktoren: 147, 96 und 80 s⁻¹.

2.2 Übertragung von hochfrequenten Eingangssignalen durch induktive Spannungswandler

Unter Voraussetzung, dass ausser den hochfrequenten Schwingungen dem Wandler keine anderen Spannungskomponenten aufgedrückt werden, kann man die Zeitfunktion des Eingangssignals in folgender Form darstellen

$$u_1 = U_{1h} e^{-\delta t} \cos \omega_w t \tag{11}$$

Es bedeuten:

U_{1h} Amplitude des hochfrequenten Eingangssignals,

 $\delta_{\rm w}$ Dämpfungsfaktor des Eingangssignals,

 ω_w Kreisfrequenz des Eingangssignals.

Gl. (11) entspricht folgende Operatorengleichung

$$U_{1}(p) = U_{1h} \frac{p + \delta_{w}}{(p + \delta_{w})^{2} + \omega_{w}^{2}}$$
(12)

Durch Einsetzen von Gl. (12) in das erste Glied von Gl. (5) erhält man für das entsprechende Ausgangssignal des Wandlers folgenden Ausdruck:

$$U_{21}'(p) = \frac{U_{1h}(p + \delta_{w}) \cdot Z_{b}'(p)}{A(p - p_{1})(p - p_{2})(p - p_{3})(p - p_{4})(p - p_{5})}$$
(13)

worin

und

$$A = C_{\mathrm{e}}' L_{\mathrm{b}}' L_{\mathrm{i}}$$

$$p_{4,5} = -\delta_{\rm w} \pm {\rm j}\,\omega_{\rm w}$$

Die gesuchte Zeitfunktion von Gl. (13) kann nach zulässigen Vereinfachungen wie folgt dargestellt werden:

590 (A 453)

$$u_{21}' = U_{1h} \left\{ \frac{\sqrt{1+k^2} e^{-\delta t}}{\sqrt{\left[\left(\frac{\omega_{\mathrm{w}}}{\omega_0}\right)^2 + k^2 - 1\right]^2 + 4k^2}} \cos\left(\omega_0 t + \lambda_1 + \lambda_2\right) + \right\}$$

worin

$$k = \frac{\delta - \delta_{\rm w}}{\omega_0} \tag{15}$$

$$\lambda_1 = \operatorname{arc} \operatorname{tg} k \tag{16}$$

$$\lambda_2 = \operatorname{arc} \operatorname{tg} \frac{2k}{\left(\frac{\omega_{\mathrm{w}}}{\omega_0}\right)^2 + k^2 - 1}$$
(17)

$$\lambda_{3} = \operatorname{arc} \operatorname{tg} \frac{2 \, k \, \frac{\omega_{\mathrm{w}}}{\omega_{0}}}{1 - \left(\frac{\omega_{\mathrm{w}}}{\omega_{0}}\right)^{2} + k^{2}} \tag{18}$$

In Fig. 4 sind die Werte des Faktors *k* entsprechend Gl. (15) abhängig von dem Dämpfungsfaktor des Eingangssignals für die erwähnten Wandler dargestellt.

Die quantitative Analyse von Gl. (14) ist wegen des gleichzeitigen Auftretens zweier Komponenten mit verschiedenen Kreisfrequenzen kompliziert. Für praktische Zwecke ist es jedoch am interessantesten den Fall zu untersuchen, wenn die Kreisfrequenzen des Eingangssignals ω_w und der Eigenschwin-

gung des Wandlers inkl. der Sekundärbürde ω_0 gleich sind. In diesem Fall ergibt sich:

$$u_{21}' = \frac{U_{1h}}{k \sqrt{k^2 + 4}} \left[\sqrt{1 - k^2} \, \mathrm{e}^{-\delta t} \cos \left(\omega_0 \, t + \lambda_1 + \lambda_2 \right) + \mathrm{e}^{-\delta_w t} \cos \left(\omega_0 \, t - \lambda_3 \right) \right]$$
(19)

worin

$$\lambda_2 = \lambda_3 = \operatorname{arc} \operatorname{tg} \frac{2}{k} \tag{20}$$

Wie aus Fig. 4 sowie Gl. (16) und Gl. (20) hervorgeht, ergeben sich für die Werte $0 < k \leq 0.08$: $\lambda_1 \approx 0^0$ und $\lambda_2 = \lambda_3 \approx 90^0$. Somit entsteht aus Gl. (19) folgende Beziehung:

$$u_{21}' = U_{1h} \varkappa \left[e^{-\delta_{w}t} - \sqrt{1 - k^2} e^{-\delta t} \right] \sin \omega_0 t \qquad (21)$$

$$\varkappa = \frac{1}{k\sqrt{k^2 + 4}} \tag{22}$$

Die Funktion \varkappa ist in Fig. 5 in Abhängigkeit von δ_w mit ω_0 und δ als Parameter dargestellt.

Bull. SEV 62(1971)12, 12. Juni

Verlauf der Funktion H in Abhängigkeit vom Dämpfungsfaktor $\omega_{_{\rm W}}$ bei $\omega_{_{\rm O}}$ = const. und δ = const.

Eine zweite Grösse, die das Übertragungsverhalten des Wandlers beeinflusst, ist der nach Gl. (21) in eckige Klammern genommene Ausdruck. Schreibt man

$$H(t) = e^{-\delta_{\rm w}t} - \sqrt{1 - k^2} e^{-\delta t}$$
⁽²³⁾

so kann man diese Zeitfunktion wie in Fig. 6 gezeigt, darstellen. Das Produkt dieser Funktion gibt zusammen mit dem Produkt $\varkappa U_{1h}$ die Umhüllungskurve des Spannungsverlaufs u_{21} .

Der Spitzenwert des Ausgangssignals ergibt sich aus dem Maximalwert der Funktion H(t). Gleichzeitig kann man den Zeitpunkt festlegen, bei welchem H(t) ihren maximalen Wert erreicht. Fig. 7 zeigt die Funktion $t_{\text{max}} = f(\delta_w)$ mit δ als Parameter.

Durch Einsetzen der entsprechenden Werte von t_{max} in Gl. (23) erhält man die Spitzenwerte der Funktion H(t) in Abhängigkeit von dem Dämpfungsfaktor des Eingangssignals die Fig. 8 zeigt.

Das Produkt der Faktoren \varkappa und H_{max} ergibt schliesslich den Verstärkungsfaktor W_i des Spannungswandlers mit

Sekundärbürde für den Resonanzfall. Fig. 9 zeigt die Kurvenschar der Funktion $W_i = f(\delta_w)$ mit ω_0 als Parameter.

Wird jetzt angenommen, dass uns das Übertragungsverhalten des Spannungswandlers während eines primären Kurzschlusses interessiert, so muss man in diesem Falle den zweiten Anteil der Gl. (5) berücksichtigen. Ohne ins Detail zu gehen kann man nach zulässigen Vernachlässigungen für $U_1(p) = 0$ die allgemeine Lösung wie folgt darstellen:

$$u_{22}' = U_{1n} \sin \Psi \cos \omega_0 t \,\mathrm{e}^{-\delta t} \tag{24}$$

worin U_{1n} der Scheitelwert der Netzspannung, und Ψ der Schaltwinkel im Moment t = 0.

Das Gesamtausgangssignal ist in diesem Fall die Summe

$$u_{2}' = u_{21}' + u_{22}' \tag{25}$$

$$u_{2}' = U_{1n} \sin \Psi \cos \omega_{0} t e^{-\delta t} + U_{1n} \varkappa \left(e^{-\delta_{w} t} - \sqrt{1 - k^{2}} e^{-\delta t} \right) \sin \omega_{0} t$$
(26)

3. Kapazitive Spannungswandler

3.1 Grundsätzliches

Kapazitive Spannungswandler bestehen aus einem kapazitiven Teiler an dem ein konventioneller induktiver Zwischenspannungswandler angeschlossen ist. Der durch die Belastung bedingte kapazitive Spannungsabfall im Teiler wird durch eine Resonanzdrosselspule kompensiert.

Fig. 10a zeigt das Prinzipschaltbild des belasteten Wandlers und Fig. 10b seine Ersatzschaltung. Bei der Bildung dieser Schaltung wurden folgende Voraussetzungen gemacht:

a) Die Ersatzkapazität $C = C_1 + C_2$ ist ideal, d.h. dass die Kondensatoren als verlustfrei betrachtet werden;

b) Die Sekundärbürde besteht aus linearen induktiven und ohmschen Elementen;

c) Die Resonanzdrosselspule und der induktive Zwischenwandler arbeiten unter dem Knickpunkt ihrer Magnetisierkurven;

d) Als Dämpfungsanordnung der Ferro-Resonanzschwingungen ist ein Wirkwiderstand verwendet.

Die rechnerische Analyse der Übertragungseigenschaften von hochfrequenten Schwingungen durch kapazitive Spannungswandler ist wegen ihrer komplizierten Ersatzschaltung schwierig. In diesem Falle wurden die Untersuchungen mit Hilfe eines Analogrechners durchgeführt, wobei das Rechenprogramm gemäss Fig. 11 aufgestellt wurde.

Verlauf des Verstärkungsfaktors induktiver Spannungswandler in Abhängigkeit von dem Dämpfungsfaktoren ω_w mit ω_o als Parameter

Die ausgewählten Versuchswandler hatten folgende Daten:

- . .

a) Induktiver Zwischenwandler:	
Nennübersetzung ϑ_u	$\frac{22000}{\sqrt{3}} \Big/ \frac{100}{\sqrt{3}} \mathrm{V}$
Nennleistung S _n	150 VA
Hauptinduktivität $L_{ m m}$	45,8 \cdot 10 ³ H
b) Kapazitiver Teiler und Resonanzdrosselspule:	
Ersatzkapazität C	20 und 55 nF
Induktivität der Drosselspule mit den Streu- induktivitäten des Zwischenwandlers L_w	518 und 195 H
Wirkwiderstand der Drosselspule mit den Wirkwiderständen der Zwischenwandler- wicklungen Rw	$4\cdot 10^3\Omega$

Der Leistungsverlust auf dem Dämpfungswiderstand R_t beträgt 160 und 270 % der Wandlernennleistung.

Der auf die Primärseite des Zwischenwandlers bezogene Wert der Kapazität C_e wurde gleich 50 pF angenommen.

Bei allen Versuchen waren die Wandler mit Nennbürde belastet (cos $\beta_b = 0.8$). Alle erwähnten Werte wurden auf die Primärseite des induktiven Spannungswandlers bezogen.

 C_1 Oberspannungskondensator; C_2 Unterspannungskondensator; $L_{\rm d}$ Resonanzdrossel; T Zwischenwandler; $R'_{\rm t}$ Dämpfungswiderstand; $\hat{\upsilon}_1$ Scheitelwert der Netzspannung; M und N Ausgangsklemmen des kapazitiven Teilers; $\hat{\upsilon}$ Ausgangsspannung des kapazitiven Teilers (Scheitelwert); $\hat{\upsilon}_2$ Sekundärspannung des induktiven Zwischenwandlers (Scheitelwert); $Z_{\rm b}$ Impedanz der Bürde; C = C_1 + C_2 Ersatzkapazität des Spannungsteilers; $C_{\rm e}$ Betriebskapazität des Zwischenwandlers bzw. parallele Kapazitätsbürde; $\vartheta_{\rm u}$ Übersetzungsverhältnis des Zwischenwandlers; L_2 sekundäre Streuinduktivität des Zwischenwandlers; $L_{\rm m}$ Hauptinduktivität des Zwischenwandlers; $R_{\rm t}$ Mauptinduktivität des Zwischenwandlers; $L_{\rm m}$ Hauptinduktivität des Zwischenwandlers; R_1 , R_2 Wicklungswiderstände (Primär und Sekudär); $R_{\rm t}$ Dämpfungswiderstand; U_1 , U_2 Ein- bzw. Ausgangsspannung des Zwischenwandlers; i Primärstrom (Momentanwert)

3.2 Die Übertragung von hochfrequenten Signalen durch kapazitive Spannungswandler

Die Untersuchungen sollten die Antwort auf die Frage geben, welche Wandlergrössen die Wandler-Übertragungsfähigkeiten der hochfrequenten Signale vorwiegend beeinflussen. Als Mass dieser Eigenschaften wurde der Verstärkungsfaktor W_k gewählt, der in diesem Fall durch folgendes Verhältnis definiert ist:

$$W_{\rm k} = \frac{U_{\rm 2h}}{U_{\rm 1h}} \tag{27}$$

 $\begin{array}{l} \mbox{Analogschema des kapazitiven Spannungswandlers}\\ 1,5,7 \mbox{ Proportional-Verstärker; } 2,3,4,6,8 \mbox{ Integratoren (I-Verstärker);}\\ L_{\rm w} = L + L_2 \mbox{ Induktivität der Drosselspule und Streuinduktivität des}\\ Zwischenwandlers; R_{\rm b} \mbox{ Ohmscher Anteil der Bürdenimpedanz; } R_{\rm w} = R_1 + R_2 \mbox{ Wicklungswiderstand des Zwischenwandlers und der Drossel;}\\ L_{\rm b} \mbox{ Induktiver Anteil der Bürdenimpedanz} \end{array}$

Weitere Bezeichnungen siehe Fig. 10a und b

worin U_{1h} und U_{2h} die Scheitelwerte des Eingangs- und Ausgangssignals sind.

Die Untersuchungen begannen mit der Ermittlung der Wandlerkreisfrequenzen der gegebenen Wandlertypen bei unveränderlichen Sekundärbürden und Dämpfungswiderständen. Für die Kapazität $C_e = 50$ pF ergaben sich folgende Kreisfrequenzen:

— für den Wandler mit Eısatzkapazität 20 nF ist $\omega_0 = 2,2 \omega_n$, — bei C = 55 nF betlägt $\omega_0 = 3,8 \omega_n$,

worin $\omega_n = 2\pi f_n$ die Nennkreisfrequenz des Netzes ist.

Die eigentlichen Untersuchungen beruhten auf der Bestimmung der Frequenzkennlinien der gegebenen Messwandler. Dies erfolgte durch Anlegen von Sinusspannungen an die Eingangsklemmen mit differenten Kreisfrequenzen ω_w und konstanten Scheitelwerten bei gleichzeitiger Bestimmung des Amplitudenwertes des Ausgangssignals. Dabei wurde vorausgesetzt, dass die Zeitkonstante des Eingangssignals $T_{so} = \infty$.

Weitere Bezeichnungen siehe im Text

Anhand einer beträchtlichen Anzahl von Messungen wurde festgestellt, dass allgemein die Eingangssignale mit im Bereich der Eigenfrequenzen des Wandlerkreises liegenden Frequenzen verstärkt, bei gewissen Frequenzen dagegen die Ausgangssignalamplituden im Vergleich zu den Eingangsscheitelwerten reduziert werden. Für den Frequenzbereich $\omega_w = 1...10\omega_n$ erhielt man auf diese Weise die in Fig. 12 dargestellten Kennlinien

$$W_{\rm k} = f\left(\frac{\omega_{\rm w}}{\omega_{\rm n}}\right)$$

der beiden Wandlertypen. Wie aus diesen Charakteristiken hervorgeht, besteht für jeden Wandler ein Frequenzintervall $\omega_n < \omega < \omega_g$ in welchem Wk > 1 ist, also die Eingangssignale verstärkt werden; ω_g ist dabei die Grenzkreisfrequenz des Wandlers. Das Überschreiten dieser Grösse dagegen hat

die Verkleinerung der Scheitelwerte der Eingangssignale zur Folge ($W_k < 1$).

Vergleicht man die Kennlinien zweier kapazitiven Spannungswandler für verschiedene Ersatzkapazitäten und gleiche Dämpfungswiderstände, so erkennt man deutlich wie diese Ersatzkapazitäten den Wert des Verstärkungsfaktors Wk beeinflussen (Kurve 1 und 2). Aus dem Vergleich der Kurven 2 und 3 dagegen, die sich für ein und denselben Wandler bei verschiedenen Dämpfungswiderständen ergeben, ist der Einfluss des kleineren Leistungsverlustes am Dämpfungswiderstand auf die Verstärkung der hochfrequenten Signale sichtbar.

Werden die Kennlinien der Wandler gemäss Fig. 13 abhängig vom Verhältnis ω_w / ω_0 dargestellt, so erkennt man, dass kapazitive Spannungswandler die für die Glieder der zweiten Ordnung charakteristische Frequenzlinien aufweisen: Die Maximalwerte der Verstärkungsfaktoren verschiedener Wandler treten beim Verhältnis $\omega_w / \omega_0 = 0.9$ auf für alle Eingangssignale mit Kreisfrequenzen $\omega_w > 3 \omega_0$ dagegen wird $W_{\rm k} \approx 0$, d.h. dass in diesem Fall die hochfrequenten Spannungssignale praktisch nicht in den Sekundärkreis übertragen werden. Daraus ergeben sich wichtige Folgerungen für die Abschätzung der Übertragungsfähigkeiten von hochfrequenten Schwingungen und Oberwellen praktischer Wandler, dessen Eigenfrequenzen ω_0 bekannt sind.

Um auch die Übertragungseigenschaften der Kapazitiven Wandler bei Eingangsspannungen mit Nenn-Netzfrequenz und den ihnen überlagerten hochfrequenten Schwingungen zu erkennen, wurde den gegebenen Wandlern die Summe der beiden Komponenten aufgedrückt. Die Zeitkonstante des Schwingkreises wurde in diesem Fall gleich 20 ms angenommen; die Anfangsamplitude der Schwingungsspannung hatte den gleichen Wert wie die Amplitude der netzfrequenten Spannung.

Wie zu erwarten war, gilt das bishergesagte bezüglich der Übertragung von hochfrequenten Schwingungen auch dann, wenn diese Oszillationen der Grundschwingung sich überlagern.

4. Schlussfolgerungen

Die theoretischen Untersuchungen hatten den Zweck, die Übertragungsfähigkeit von hochfrequenten Schwingungen der induktiven und kapazitiven Spannungswandler zu erkennen. Wie aus diesen Betrachtungen hervorgeht, ist das Übertragungsverhalten für beide Arten der Wandler vor allem von den Frequenzen des Eingangssignals und den Eigenfrequenzen des Wandlers abhängig. Werden den Spannungswandlern hochfrequente Schwingungen aufgedrückt, deren Kreisfrequenz im Bereich der Wandler-Eigenschwingung liegt, so hat es die Verstärkung der Spannungsscheitelwerte zur Folge. Als Mass der Übertragungsfähigkeit von hochfrequenten Spannungen wurde der Verstärkungsfaktor W gewählt, der ein Quotient der Ausgangs- und Eingangsamplitude ist. Der Wert dieser Grösse wird von den einzelnen Bauteilen des Wandlers beeinflusst.

Bei kapazitiven Spannungswandlern ist die Übertragung der hochfrequenten Schwingungen von der Ersatzkapazität des Spannungsteilers sowie von der Leistungsaufnahme des Dämpfungswiderstandes abhängig. Hohe Werte der Verstärkungsfaktoren, also hohe Scheitelwerte der sekundären Überspannungsimpulse, treten praktisch bei grossen Ersatzkapazitäten und kleiner Leistungsaufnahme des Dämpfungswiderstandes auf.

Kapazitive Spannungswandler verhalten sich wie Glieder zweiter Ordnung: die Maximalwerte der Verstärkungsfaktoren treten bei $\omega_w = 0.9 \omega_0$ auf, alle Schwingungen bzw. Oberwellen für die $\omega_w > 3 \omega_0$ ist, werden im Wandler ausgefiltert.

Literatur

- M. J. Battisson a. o.: Calculation of switching phenomena in power systems. Proc. IEE 114(1967)4, p. 478...486.
 E. Born: Schneller Selektivschutz an kapazitiven Spannungswandlern. ETZ-A 86(1965)17, S. 557...560.
 G. Bosenberger: Abbildungstreue kapazitiver Spannungswandler.

- ETZ-A 86(1965)17, S. 557...560.
 [3] G. Rosenberger: Abbildungstreue kapazitiver Spannungswandler. ETZ-A 86(1965)6, S. 161...166.
 [4] A. Drouault: Réponse d'un transformateur de tension à une brusque chute de tension primaire. Rev. Gén. Electr. 75(1966)12, p. 1373...1376.
 [5] G. A. Gertsch: Transformateurs de tension capacitifs et leur fonctionnement avec les relais de protection de réseaux. Rapport CIGRE No. 318, 1966. 318, 1966. [6] J.-C. Gov
- [6] J.-C. Gougeuil: Comportement des réducteurs de tension en régime transitoire. Rev. Gén. Electr. 75(1966)6, p. 817...829.
 [7] W. Hermstein und H. Kettler: Messwandler für Höchstspannungsnetze. Siemens Z. 39(1965)11, S. 1224..1229.
 [8] H. Kahnt: Kapazitive Spannungswandler. ETZ-B 11(1959)12, S. 476...479.
 [9] M. Letchurge Fixed et al. (2019)

- S. 476...479.
 [9] M. Lefebvre: Etude de la réponse d'un réducteur de tension capacitif pendant un court-circuit aux bornes du circuit primaire. Rev. Gén. Electr. 75(1966)12 p. 1383...1385.
 [10] H. Petry: Strom- und Spannungswandler für schnellen Netzschutz. Elektrizitätswirtsch. 67(1968)7, S. 167...174.
 [11] L. Seguin: Untersuchungen über einen schnellen elektronischen Distanzschutz für Höchstpannungsnetze. Dissertation, Technische Hochschule Berlin, 1964.
 [12] H. Ungrad: Probleme bei der Disposition statischer Schutzrelais. Dissertation, Technische Hochschule, Wien, 1967.

- [11] M. Organ. Technische Hochschule, Wien statscher Schulztents. Dissertation, Technische Hochschule, Wien 1967.
 [13] R. Vendre: Comportement des transformateurs condensateurs de tension pendant les régimes transitoires. Rev. Gén. Electr. 75(1966)12, p. 1377...1382.

- p. 1377...1382.
 [14] The effects of coupling-capacitor potential-device transients on protectiverelay operation. Trans. AIEE Part II 70(1951)-, p. 2089...2096.
 [15] H. Annel. The principe and metering properties of capacitor voltage-transformers. Asea J. 31(1958)7, p. 91...97.
 [16] R. Zahorka: Unterschwingungen in Reihenschwingkreisen mit sättighter Derschutzen Derschutzen beiten Schwing. barer Drossel unter Berücksichtigung dieser nichtlinearen Schwin-gungen bei Erdungs-Spannungswandlern und kapazitiven Spannungs-wandlern. Dissertation, Technische Hochschule Darmstadt, 1968.
- -condensa-G. A. Gertsch, K. Antolic et F. Gygax: Transformateurs-condensa-teurs de tension et relais de protection. Rapport CIGRE No. 31-14, [17] 1968
- [18] M. Pohl und H. Schröder: Einfluss der Ausgleichsvorgänge in kapa-zitiven Spannungswandlern auf den Richtungsentscheid von Distanz-schutzgeräten. ETZ-A 90(1969)4, S. 84...88.
- [19] H. Klingler: Messwandler als Betriebsmittel. Siemens Z. 40(1966), 9, S. 667...672.
- N. Korponay: Transientes Verhalten und Einsatzmöglichkeiten von Stromwandlern verschiedener Bauart. Brown Boveri Mitteilungen [20] N 56(1969)11/12, S. 597...608.

Adressen der Autoren:

A. Bogucki, Dr.-Ing. hab.; Z. Pilch, Dipl. Ing.; W. Winkler, Dr.-Ing., Poli-technika Śląska, Wydział Elektryczny, Gliwice (Polska) und N. Korponay, AG Brown, Boveri & Cie., Abt. UTM, 5400 Baden.