Formen von Wolframablagerungen und Veränderungen der Drahtdicke in einer Halogenglühlampe

Autor(en): Mäder, F. / Res, M. / Biffiger, J.

- Objekttyp: Article
- Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins : gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Band (Jahr): 61 (1970)

Heft 13

PDF erstellt am: 31.05.2024

Persistenter Link: https://doi.org/10.5169/seals-915951

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Formen von Wolframablagerungen und Veränderungen der Drahtdicke in einer Halogenglühlampe

892-902

Von F. Mäder, M. Res und J. Biffiger, Wabern/Bern

Anhand von Figuren werden typische Formen der Wolframablagerung, einzelne Wolframkristalle, sowie Draht-Wachstum und -Verjüngung in einer Halogenglühlampe des Typs 6,6 A, 200 W gezeigt. Die geometrisch symmetrische Lage der vorgefundenen Ablagerungen an der Wendel wird mit der Temperaturverteilung und mit seitlichen thermischen Strömungen in Zusammenhang gebracht. Die im Halogenkreisprozess festgestellten Störungen führten zu Windungskurzschlüssen und Drahtunterbruch. Es wird versucht, einige dieser Erscheinungen mit Berufung auf Literaturangaben zu erklären.

1. Einleitung

Bei Untersuchungen an Halogenglühlampen wurde versucht, die Ursachen der Lampenausfälle festzustellen. Es wurde festgestellt, dass Wolframkristallisation, Ablagerungen an den Wendeln und Veränderungen des Drahtdurchmessers zu den häufigsten Fehlerquellen zählten. Die Wolframablagerung an beiden Wendelenden war geometrisch ungefähr symmetrisch verteilt. Sie führte so, wie das Dickenwachstum des Drahtes zu Überbrückungen einzelner Windungen der Wendel und dadurch zu Windungskurzschlüssen. Verjüngungen des Wolframdrahtes hatten dagegen Drahtunterbrüche zur Folge. Zur besseren Übersicht sind im Text photographische Aufnahmen der als charakteristisch zu betrachtenden Fehler abgebildet.

2. Die Prüflinge

Bei den in einer Kleinstleuchte mit abgeschlossenem Hohlraum von etwa 645 cm³ Inhalt betriebenen Lichtquellen handelt es sich um Flugplatzbefeuerungslampen von 6,6 A, 200 W, in Halogenausführung. Bei den Versuchen waren die Lampen mit einfachen Wendeln (Fig. 1a) [1]¹) und Doppelwendeln (Fig. 1b) [2] ausgestattet. Da die Lampen aus lichttechnischen Gründen nicht nur mit dem Nennwert 6,6 A, 200 W, betrieben wurden, mussten Versuche mit verschiedenen Belastungen der Lampen im Laboratorium durchgeführt werden. Die untersuchten Lampen brannten mit Lichtstärken *I*, welche zwischen 1...100 % der Lichtstärken bei vorschriftsmässigem Betrieb *I*_v betrugen (*I*/*I*_v × 100 %).

1) Siehe Literatur am Schluss des Aufsatzes.

621.326.72 Des figures illustrent les formes typiques des dépôts de tungstène, des cristaux de tungstène isolés, ainsi que l'accroissement et la contraction du filament d'une lampe à halogène du type de 6,6 A, 200 W. La disposition symétrique des dépôts sur le filament est mise en relation avec la réparitition de la température et les courants thermiques latéraux. Les perturbations constatées dans le cycle d'halogène ont causé des courts-circuits aux spires et une rupture du filament. L'exposé tente d'élucider quelquesuns de ces phénomènes en se basant sur les données bibliographiques disponibles.

Kurzzeitig brannten die Lampen auch mit einer Belastung von 200 %. Die mittlere Lebensdauer von 1000 h wurde dabei mit etwa 1800 h weit überschritten. Allerdings wurden die Prüflinge nur etwa 400 h mit dem Nennwert betrieben. Die Betriebstemperaturen der in der Leuchte brennenden Lampen bewegten sich bei horizontaler Brennlage der Wendel je nach der Belastung wie folgt:

Temperatur der Wandung über der Wendelmitte	447900 °C
Temperaturen der Wandung unter der Wendelmitte	346810 °C
Temperatur zwischen der Verschmelzung und der	
Seitenwandung	287660 °C
Temperaturen der Wendel	18803020 °C
(Einzelheiten siehe [9].)	

Lampen die eine starke Wolframablagerung und Kristallisation aufwiesen, waren öfters mit dem von *E.G. Zubler* und *F.A. Mosby* [3] beschriebenen typischen Bruch über der Mo-

Abschätzung	der	Temperatur	an	der	ersten	Doppelwindung
(Abschnitt 2)						

Betriebs- strom A	I/I _v ⋅ 100 %	Wendeltemperatur °C	Temperatur an der Grenze Wandung Verschmelzung °C	Temperatur an der ersten Doppelwindung °C
7,52	200	3020 ¹)	660 ¹)	2500^{2}
6,6	100	2740^{1}	570 ¹)	2300^{2}
6,16	70	2640 ¹)	520 ¹)	2200^{2}
5,8	50	2370 ¹)	480 ¹)	2000^{2}
5,33	30	2220^{1}	420^{1}	1850^{2}
4,09	5	1880 ¹)	290^{1}	1680^{1}

Verteilung von Wolframablagerungen 1, 2, 3 Abschnitte der Wendel; E Messpunkt: Stromzuleitung an der Lampenwandung-Verschmelzung (schon im Lampeninneren)

a) Einfache Wendel	b) Doppelwendel	Ablagerungsform
Abschnitt 1 Halterung 06 mm, gemessen vom Punkt <i>E</i>	Abschnitt 1 Halterung 06 mm, gemessen vom Punkt <i>E</i>	Pulverform
Abschnitt 2 Erste bis vierte Win- dung, 68 mm, ge- messen vom Punkt E	Abschnitt 2 Übergang von der Halterung zur er- sten Doppelwin- dung, 68 mm, ge- messen vom Punkt E	Kristallgruppen Maximum der Wolf- ramablagerung
Abschnitt 3 Restlicher Teil der Wendel, gemessen vom Punkt E von 68 mm bis zu et- wa 1819 mm	Abschnitt 3 Restlicher Teil der Wendel, gemessen vom Punkt E von 68 mm bis zu et- wa 1517 mm	Einzelne Wolframkri- stalle und Verände- rungen der Draht- dicke durch Abla- gerung und Abtra- gung

Bemerkung: Die Abmessungen beziehen sich auf die Originallampe.

Folie behaftet, der durch Überhitzung in der Verschmelzung entsteht. Die Wolframablagerung (Fig. 1, 2, 3 und 4) konnte schon bei den ersten vorläufigen Untersuchungen mit blossen Augen erkannt werden. Hier kam ebenfalls ein typischer von J.A. Moore und C.M. Jolly [2] als Erosion der Wendelenden bezeichneter Fehler zum Vorschein. Durch Überbrückung einzelner Windungen entstand an mehreren Stellen gleichzeitig ein Kurzschluss.

Um vor allem die mit der Wolframkristallisation verbundenen Störungen eingehend zu untersuchen, wurden fehlerhafte Wendeln mikroskopischen Untersuchungen unterworfen. Zu diesem Zweck wurde ein Stereomikroskop verwendet. Vorher wurden die Kolben der Prüflinge entfernt, um die zu beobachtenden Wendelabschnitte dem Mikroskopieren zugänglich zu machen.

3. Untersuchungsergebnisse

Auf den Wendelhalterungen wurden Ablagerungen in Form eines grauen bis schwarzgrauen Pulverbelages ohne metallischen Glanz gefunden. Von der Halterung zur ersten Doppelwindung der Doppelwendel und zur ersten bis etwa vierten Windung der einfachen Wendel, bildeten sich an beiden Wendelenden die grössten Ablagerungen in Form von Kristallgruppierungen. Von hier bis zur Wendelmitte wurden einzelne Kristalle gefunden. Weiter waren, vor allem an Doppelwendeln, Verjüngungen und Dickenwachstum des Wolframdrahtes deutlich zu erkennen.

3.1 Wolframablagerungen an den Wendelenden

Da die Ablagerungen an der Wendelhalterung wohl nicht als Hauptursache des Lampenausfalles anzunehmen sind, werden sie im weiteren nicht mehr behandelt. Anders muss die Wolframkristallisation am Übergang zwischen Wendelhalterung und Wendel beurteilt werden. Die der Halterung unmittelbar benachbarten Wendelteile weisen nämlich eine intensive Kristallgruppenbildung auf. Schon von P. Bayle [5] wurde bei Experimenten mit aktiviertem 185 W die maximale Wolframablagerung an beiden Wendelenden einer aus drei einfachen Wendeln bestehenden, horizontal brennenden «Halogenglühlampe» gefunden. Eine Wolframablagerung zwischen der Wendelhalterung und der ersten Windung einer Halogenglühlampe ist auch von E.G. Zubler und F.A. Mosby [3] beschrieben. Beim Vergleich beider Arbeiten ist bei der dafür verantwortlich gemachten Temperatur eine Differenz zu finden. Danach liegt das Ablagerungsmaximum nach P. Bayle [5] etwa zwischen 2240 und 2600 °C (abgelesen aus einer in der Arbeit von P. Bayle veröffentlichten Abbildung), während von E.G. Zubler und F.A. Mosby die Temperatur deutlich unter 2000 °C gefunden wurde.

Auch bei den folgenden mikroskopischen Beobachtungen wurde ein Ablagerungsmaximum an beiden Wendelenden vorgefunden. Die Verteilung des abgelagerten Wolframs über die Wendel ist in Fig. 1 schematisch dargestellt.

Die begutachteten Prüflinge wiesen grösstenteils Ablagerungsformen auf, wie sie in Fig. 1 dargestellt sind.

An der ersten bis vierten Windung an beiden Wendelenden (Fig. 2) wurde auch hier eine intensive Wolframablagerung vorgefunden. Die nach dem Windungskurzschluss entstandedenen Schmelzkugeln liegen in und an der Grenze des Abschnittes 2 der Wendel. Zur besseren Einsicht zeigt Fig. 3 ein Detail des Abschnittes 2 der Wendel. Es handelt sich um eine aus dem Abschnitt 2 der Wendel herausgebrochene Windung.

Die Kristalle wuchsen in Richtung der Wendelachse (senkrecht zum Beobachter) empor und führten zum Lampentod. Nach Überbrückung zweier benachbarten Windungen durch diese Wolframkristalle entstanden Windungskurzschlüsse.

Die in Fig. 1, 2 und 3 gezeigte Regelmässigkeit und die geometrische Symmetrie des Ablagerungsortes stehen in gutem Einklang mit den Beobachtungen von *P. Bayle* [5] bzw. *E.G. Zubler* und *F.A. Mosby* [3]. Der Grund dieser Erscheinung sollte vor allem in der niedrigeren Betriebstemperatur der Wendel (Ablagerungselement) im Abschnitt 2 der Wendel im Vergleich zur höheren Temperatur im Abschnitt 3 gesucht werden. Deshalb wurde eine indirekte Abschätzung der Temperatur an der ersten Doppelwindung einer Doppelwendel (Abschnitt 2 der Wendel) vorgenommen. Die Ergebnisse sind in Tabelle I zusammengestellt.

Die Ermittlung der Temperatur im Abschnitt 2 der Wendel (Fig. 1b) erfolgte rein geometrisch so, dass zwischen den graphisch aufgezeichneten Meßstellen für Wendeltemperaturen und Temperaturen an der Grenze Wandung—Verschmelzung Geraden gezogen wurden, wobei im Schnittpunkt mit den

Fig. 2 Einfache Wendel mit Wolframablagerung im Abschnitt 2

über Abschnitt 2 der Wendel gezogenen Senkrechten die Temperaturwerte der ersten Doppelwindung von einer Temperaturskala abgelesen wurden. Für die maximale Wolframablagerung, ob sie nun als Ablagerung am Wendelende nach *P. Bayle* [5] oder als «Enderosion und Kristallisation» nach *E. G. Zubler* und *F. A. Mosby* [3] oder hier als Ablagerung im Abschnitt 2 der Wendel bezeichnet ist, wird wohl die dafür günstige Temperatur zwischen

Fig. 3 Detail einer Wolframkristallisation an einer Windung der einfachen Wendel

1800 und 2000 °C nach *R. F. Rolsten* [6] als kritisch anzusehen sein.

Wolframjodid zersetzt sich bei Temperaturen über 1400 °C, eine merkliche Wolframverdampfung entsteht aber erst bei etwa 2200 °C. Das Gleichgewicht liegt hier deshalb auf Seite der Wolframablagerung. Demnach wäre an jenen Abschnitten der Wendel ein Anhäufen von Wolframablagerungen zu erwarten, die eine Betriebstemperatur zwischen 1400 und 2200 °C aufweisen. An den hier

Fig. 4

Überbrückungen einzelner Windungen einer Doppelwendel im Abschnitt 2 durch Wolframkristalledendriten

Die kritische Stelle für den Windungskurzschluss liegt zwischen der ersten und zweiten Windung im Bild, von rechts nach links beobachtet. Auch die benachbarten Windungen, vor allem die dritte Windung von rechts, weisen ein intensives Wolframkristallwachstum auf

angeführten Halogenglühlampen ist bei variierten Betriebsströmen tatsächlich diese örtlich begrenzte kritische Temperatur im Abschnitt 2 einer Doppelwendel (erste Windung 1680...2200 °C) vorgefunden worden.

Die emporgewachsenen Wolframkristallgruppen überbrücken die einzelnen Wendelwindungen. An den fraglichen Stellen ist deshalb mit Windungskurzschlüssen zu rechnen. Eine gut ausgebildete, als typisch für die durch Wolframablagerung im Abschnitt 2 einer Wendel entstandene Überbrückung, ist die in Fig. 4 dargestellte Wolframdendritengruppe anzusehen.

Bei diesen Prüflingen waren häufig auch Spuren seitlich gerichteter thermischer Strömungen zu erkennen, worüber noch unter Ziff 3.3 (Fig. 11) gesprochen wird. Deshalb

ist es nicht ausgeschlossen, dass auch diese Strömungen an der Bildung der Ablagerungsmaxima im Abschnitt 2 der Wendel teilnehmen.

3.2 Einzelne Kristalle

Eine weitere Ablagerungsform, die hauptsächlich im Abschnitt 3 der Wendel (Fig. 1) vorgefunden wurde, sind einzelne Wolframkristalle. Da beim Betrieb unter variierten Strömen der Beginn des Kristallwachstums an der Wendel nicht regelmässig beobachtet werden konnte, konnten die zu dieser Kristallisation führenden Bedingungen nicht objektiv genug festgestellt und beschrieben werden. Dennoch scheint es nützlich, die möglichen Folgen des Kristallwachstumes auf den Lampentod an Hand der Fig. 5, 6 und 7 darzulegen.

Fig. 5 zeigt ein unregelmässig jedoch nicht vereinzelt wahrgenommenes Beispiel von Wolframkristallen an zwei benachbarten Windungen des Abschnittes 3 der Wendel. Die gegeneinander wachsenden Wolframkristalle machen auf die Gefahr eines Windungskurzschlusses aufmerksam. Tatsächlich liessen Reste von Kristallen, die an durch Windungskurzschluss ent-

Das in Fig. 7 abgebildete einzelne Wolframkristall stammt aus dem Abschnitt 3 (in der Nähe des Abschnittes 2) einer Doppelwendel. Es soll die Mächtigkeit des Kristallwachstumes demonstrieren. Es ist auch nicht auszuschliessen, dass die Kristallachse in einem anderen Falle nicht von der Windung hinweg, sondern zur benachbarten Windung orientiert sein kann, wodurch ebenfalls eine Windungskurzschlussgefahr entsteht.

Über das Wachstum einzelner Wolframkristalle sind einige Literaturangaben zu finden. So wurde laut *R.F. Rolstone* [6] in einem Halogenzyklus mit Wolframchlorid oder Wolframbromid ein Anwachsen des Wolframdrahtes durch Ablagerungen beobachtet, aus welchem nach mehreren Stunden sehr grosse Kristalle emporwuchsen. Auf Grund ähnlicher Betriebsbedingungen in der Halogenglühlampe könnte dies zur

Erklärung des in Fig. 5, 6 und 7 gezeigten Wolframkristallwachstumes herangezogen werden. Da bei den in Fig. 5 und 7 dargestellten Prüflingen auch Jod anwesend war, kann diese Erklärung auch um dieses chemische Element erweitert werden.

Für die Bildung einzelner Wolframkristalle im Abschnitt 3 der Wendel (Fig. 1) könnte man sich auch an die Angaben von *K. Moltière* und *D. Wagner* [7] über die Herstellung von Wolframeinkristallen stützen. Da-

Fig. 6 Wachstum eines einzelnen Wolframkristalles von einer Windung einer einfachen Wendel zur anderen im Abschnitt 3 der Wendel

nach wurde an Stelle des einfachen Glühdrahtes ein «Stacheldraht» benützt. Die Enden eines dünnen geschnittenen Wolframdrahtes wurden in kurzen Abständen als Kristallisationszentren auf einen stärkeren Wolframdraht aufgeknüpft. Sie ragten 2...3 mm quer zum Draht heraus. Neben Dickenwachstum des Glühdrahtes wuchsen an den «Stachelspitzen» gut ausgebildete Kristallpolyeder hervor. Es drängt sich der Gedanke auf, ob sich die Scheitel einzelner Windungen der Wendel in der Halogenglühlampe nicht ähnlich wie die Spitzen dieses «Stacheldrahtes» verhalten. Da beim Halogenkreisprozess in der Glühlampe neben Ablagerungen auch Verjüngungen des Wolframdrahtes entstehen, könnten beim letzteren Vorgang die die Struktur des Glühdrahtes bildenden Wolframkristalle entblösst und dadurch zu Kristallisationszentren werden. Damit wären beide Bedingungen für dieses «Stacheldrahtverfahren» auch bei den Wendeln der Halogenglühlampe erfüllt und zwar:

a) Die aus der Wendelachse herausragenden einzelnen Windungen könnten mit den Wolframdrahtstacheln verglichen werden.

b) Die die Struktur des Wolframdrahtes bildenden Wolframkristalle werden bei den Verjüngungserscheinungen im Laufe des Halogenkreisprozesses entblösst und könnten damit zu Kristallisationszentren werden, ähnlich wie die geschnittenen Enden (eigentlich entblössten Wolframkristalle) der dünnen Wolframdrähte «Stacheln» beim Stacheldrahtverfahren nach K. Molière und D. Wagner [7].

Da das Wachstum einzelner Kristalle an einer Wendel in verschiedenen Richtungen verläuft, sei darauf hingewiesen, dass die Achsen der die Struktur des Wolframdrahtes bildenden Kristalle beim Wickeln der Windungen in verschiedene Richtungen orientiert werden. Sobald sie durch Abtragungsprozesse entblösst und zu Kristallisationszentren werden, beginnt das Emporwachsen der einzelnen Wolframkristalle, wie sie in Fig. 5, 6 und 7 zu sehen sind. Es geschieht in der Richtung, die durch die Kristallachsen der ursprünglich im Wolframdraht anwesenden Kristalle bevorzugt wird. Auf die verschieden orientierten Achsen einzelner Wolframkristalle in Hinsicht zur Achse des Ablagerungsdrahtes ist ein Hinweis bei *R. F. Rolsten* [6] zu finden.

3.3 Veränderung der Drahtdicke

Bei dem untersuchten Lampentyp wurde in vielen Fällen an ein und demselben Prüfling ein Dickenwachstum neben

Fig. 7 Mächtigkeit des Wachstums eines einzelnen Wolframkristalles einer Doppelwendel im Abschnitt 3

gleichzeitiger Drahtverjüngung beobachtet. Fig. 8, 9 und 10 zeigen den Zustand eines Wolframdrahtes im Halogenkreisprozess der im Zeitpunkt eines Windungskurzschlusses oder Drahtunterbruches vorlag. Das bei höher als 2200 °C verdampfende Wolfram wird hier von dem zur Lampenwandung gewandten Wendelteil abgetragen. Es verbindet sich mit Jod und wird zurück zur Wendel an den zur Doppelwendelmitte (Wendelachse) gerichteten Wendelteilen transportiert. Da-

Fig. 8

Veränderungen des Drahtdurchmessers — Verjüngungen und Dickenwachstum des Drahtes Die relativen Abmessungen an den zum Beobachter gewandten Wendelteilen sind im unteren, die an den dem Beobachter entfernten Wendelteilen im oberen Bildteil eingezeichnet. Sie sollen auf den Dickenunterschied des ursprünglich gleichen Drahtdurchmessers aufmerksam machen, der durch Unregelmässigkeiten im Halogenkreisprozess zustande kam

durch entsteht eine Verjüngung des Wolframdrahtes an den Abtragungsstellen, wie sie aus Fig. 8 ersichtlich ist. Die den verjüngten Stellen gegenüberliegenden einzelnen Windungen weisen dagegen ein Anwachsen der Drahtdicke auf. Alle dem Beobach-

Fig. 9 Anwachsen der Drahtdicke durch Wolframablagerung Die Gestaltung der Oberfläche kann mit einer Echsenhaut verglichen werden

ter näher liegenden Windungen sind verjüngt. Die Windung rechts im Bild wurde mechanisch abgebrochen. Die dem Beobachter ferner gelegenen Windungen zeigen ein merkliches Dickenwachstum. Ein Blick auf die Oberfläche eines dickeren Drahtteiles gibt Aufschluss über den Mechanismus

des Drahtdickenwachstumes. Der Charakter ist an einem Beispiel in Fig. 9 wiedergegeben.

Durch diese intensive Wolframablagerung entstand zwischen zwei benachbarten Windungen eine allmähliche Windungskurzschlussgefahr auf Grund einer Brückenbildung durch verdickte Windungen, wie dies an vielen Prüflingen festgestellt werden konnte. Die ver-

Fig. 10 Drahtverjüngung unmittelbar vor dem Drahtunterbruch

Im Vordergrund der Bildmitte die völlig verjüngte Windung. Man vergleiche sie mit der dahinterliegenden Windung, deren Drahtdicke etwa 3× grösser als die der verjüngten Windung ist jüngten Wendelteile erhitzen sich durch erhöhten Widerstand, und es folgt ein Glühfadenunterbruch, wie er in Fig. 10 angedeutet ist.

Über die Unregelmässigkeit im Wolframrücktransport zur Wendel berichtet u.a. W. Schilling [1]. Der Charakter der Drahtverjüngung und des Profilwachstums wurde bei den hier beschriebenen Prüflingen häufiger an Doppelwendeln vorgefunden. Zur Erklärung dieser Vorgänge können noch einige Gedanken erwähnt werden. R.F. Rolsten [6] spricht z.B. über Metallabtragung vom Draht bei niedrigen Drücken, wenn der Verdampfungsanteil den Ablagerungsanteil überschreitet. J.A. Moore und C.M. Jolly [2] schreiben einerseits über die Beschleunigung der Wolframverteilung durch den Wasserdampfzyklus entlang der Wendel und anderseits über erosive Einwirkung von Sauerstoff oder Wolframoxyd am Wendelende. Da bei den untersuchten Lampen öfters ein Bruch über der Mo-Folie vorgefunden wurde, ist die Anwesenheit von Sauerstoff gegebenenfalls von Wasserdampf im Lampeninneren der hier geprüften Halogenglühlampen durchaus zu erwarten. Zur Überlegung kann eine weitere Tatsache angeführt werden. An den mit dem gezeigten Kristallwachstum, den Drahtprofiländerungen und dem Bruch über der Mo-Folie behafteten Lampen, konnten grösstenteils Spuren seitlich gerichteter thermischer Strömungen festgestellt werden. Es ist nicht ausgeschlossen, dass diese Strömungen die Verlagerung des Wolframtransportes von der Wendelmitte in Richtung zu den Wendelenden und Halterungen unterstützen oder bevorzugen. Ein Beispiel solcher thermischen Strömungen ist in Fig. 11 zu sehen. Auf diesem Bild ist die von J. Guanter [8] beschriebene ideale thermische Strömung (senkrecht durch die Bildmitte laufend) zu sehen. Daneben sind Spuren von merklich seitlich gerichteten Strömungen im Lampeninneren in Richtung des Überganges von der ersten Doppelwindung (Abschnitt 2 des Wendels) zur Wendelhalterung an der Kolbenwandung vorhanden. Die in einer Wirbelspirale endende thermische Strömung (deutlicher auf der rechten Bildseite) liegt in der Höhe des Überganges Halterung - erste Doppelwendelwindung. Da es sich bei diesem Lampentyp um keinen Ausnahmefall handelt, wäre es möglich, auch über eine indirekte Einwirkung der seitlich gerichteten thermischen Strömungen auf die Drahtprofilände-

Bull. ASE 61(1970)13, 27 juin

Fig. 11 Seitlich gerichtete thermische Strömungen

rung nachzudenken. Dabei wären die seitlich verlaufenden Strömungen mit Wolframhalogeniden, gegebenenfalls mit Wolfram angereichert. Das Wolfram würde im Abschnitt 2 der Wendel abgelagert und von dort auf Grund der an dieser Stelle zu niedrigen Wendeltemperatur nicht mehr verdampfen, also am Kreisprozess nicht mehr teilnehmen. Daher würde es auch nicht mehr zur Wendelmitte (Abschnitt 3 der Wendel) zurücktransportiert. Damit könnten diese seitlich gerichteten thermischen Strö-

mungen das Gleichgewicht des Halogenkreisprozesses störend beeinflussen und die maximale Wolframablagerung im Abschnitt 2 der Wendel begünstigen.

4. Zusammenfassung

Bei Untersuchungen an Halogenglühlampen des Typs 6,6 A, 200 W, für Flugplatzbeleuchtung wurde versucht, den Ausfall von Lampen zu erklären. Obwohl die Prüflinge eine längere (1800 h) als die mittlere Lebensdauer von 1000 h hinter sich hatten, scheint es nützlich, auf den Zusammenhang von Windungskurzschluss und Drahtunterbruch mit den einzelnen beobachteten Veränderungen am Wolframdraht hinzuweisen. Mikroskopische Aufnahmen der Wendeln brachten zum Vorschein, dass die Wolframablagerungen mit bestimmten Gesetzmässigkeiten auftraten. Die Stellen der maximalen Ablagerung an den Wendeln konnten begrenzt werden. Sie wurde als Abschnitt 2 einer Wendel bezeichnet. Bei diesem Lampentyp liegen sie beim Übergang zwischen Halterung und Wendelenden. Als Hauptursache des Lampenausfalles kann man den durch Brückenbildung aus Wolframkristallen zwischen einzelnen Windungen hervorgerufenen Windungskurzschluss bezeichnen. Am übrigen Teil der Wendel (Abschnitt 3) konnten vereinzelte Kristalle beobachtet werden, die entweder von einer Wendelwindung zur anderen oder gegeneinander wuchsen und auf diese Weise ebenfalls einen Windungskurzschluss anstrebten. Die charakteristischen Merkmale dieser Wolframablagerungen werden an Hand von Bildern dokumentiert.

Die Einwirkung des Halogenkreisprozesses auf die Lebensdauer der Lampe konnte auch durch Veränderung der Drahtdicke nachgewiesen werden. Dabei führen Verjüngungen zu Drahtunterbruch und Dickenwachstum zu Windungskurzschluss. Auch dieser Vorgang wurde mit Bildern belegt.

Spuren thermischer Strömungen, die bei vielen Lampen an der Kolbenwandung hinterlassen wurden, weisen darauf hin, dass vor allem die seitlich gerichteten Strömungen am Lampenausfall mitwirken können. Man könnte dies mit der Ablenkung des um die Drahtachse zirkulierenden Kreisprozesses in Richtung nach den Abschnitten 2 der Wendeln begründen. Da die maximale Wolframablagerung um Abschnitt 2 einer Wendel wohl durch die thermische Inhomogenität an der Wendel hervorgerufen wird, wäre die schwierigste Aufgabe in der Verlegung der dafür verantwortlichen Temperatur zwischen 1800 und 2000 °C (gegebenenfalls zwischen 1400 und 2200 °C) vom Abschnitt 2 der Wendel weg in Richtung zur Halterung zu suchen. Noch vorteilhafter wäre es, diese Temperatur beim Lampenbetrieb überhaupt nicht aufkommen zu lassen.

Die an Hand von Bildern gezeigten Störungen traten beim Lampenbetrieb unter variierten Strömen in Erscheinung. Zur genaueren Feststellung der Bedingungen, welche den Betrieb unterbrechen, wäre es notwendig, Serien von Lampen unter verschiedenen konstanten Bedingungen zu betreiben. Damit könnten dem vorgefundenen Kristallwachstum und den Veränderungen der Drahtdicke noch engere Grenzen gesetzt werden.

Die Autoren danken Dr. W. Lotmar für die Berechnungen und den Entwurf der Beleuchtungsoptik zu den mikroskopischen Aufnahmen und H. Dudli für die mit der Wiedergabe der mikroskopischen Beobachtungen verbundenen Arbeiten.

Literatur

- W. Schilling: Derzeitiger Entwicklungsstand auf dem Gebiete der Halogenglühlampen. Lichttechnik 20(1968)12, S. 139A...142A.
 J. A. Moore and C. M. Jolly: The quartz-iodine tungsten lamp. Mecha-
- [2] J. A. Moore and C. M. Jolly: The quartz-iodine tungsten lamp. Mechanism, design and performance. G. E. C. Journal of Science and Technology 29(1962)2, p. 99...106.
- [3] E. G. Zubler and F. A. Mosby: An iodine incandescent lamp with virtually 100 per cent lumen maintenance. Illum. Engng. 54(1959)12, p. 734...740.
- [4] G. R. T'jampens und M. H. A. van de Weijer: Glühlampen mit bromund chlorhaltigem Füllgas. Philips techn. Rdsch. 27(1966)7, S. 165...171.
- [5] P. Bayle e. a.: L'utilisation d'un radioélement pour l'étude de la cinétique chimique des lampes à incandescence contenant de la vapeur d'iode. Comptes rendus hebdomadaires des séances de l'académie des sciences 258(1964)3, p. 4710...4712.
- [6] R. F. Rolsten: Iodide metals and metal iodides. New York/London, John Wiley, 1961.
- [7] K. Molière und D. Wagner: Herstellung von Einkristallen hochschmel-
- zender Metalle durch thermische Zersetzung von Halogeniddämpfen. Zeitschr. Elektrochemie 61(1957)1, S. 65...69.
- [8] J. Guanter: Neuere Lichtquellen und deren Anwendung. Bull. SEV 58(1967)11, S. 490...497.
 [9] F. Mäder, M. Res und J. Biffiger: Erfahrungen mit einer Halogenglüh-
- [9] F. Mäder, M. Res und J. Biffiger: Erfahrungen mit einer Halogenglühlampe 6,6 A, 200 W, für Landepistenbefeuerung. Bull. SEV 60(1969)22, S. 1039...1044.

Adresse der Autoren:

Dr. F. Mäder, M. Res und J. Biffiger, Eidg. Amt für Mass und Gewicht, 3084 Wabern/Bern.