Rohrreibungsverluste in Druckleitungen von Wasserkraftwerken

Autor(en): Müller, W. / Stratmann, H.

Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 83 (1965)

Heft 8

PDF erstellt am: 02.05.2024

Persistenter Link: https://doi.org/10.5169/seals-68099

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

SCHWEIZERISCHE BAUZEITUNG

25. Februar 1965

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREINS S.I.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE G.E.P.

Rohrreibungsverluste in Druckleitungen von Wasserkraftwerken

Von Dr. W. Müller und dipl. Ing. H. Stratmann, Winterthur

1. Theoretische Grundlagen

In der bekannten Formel von Darcy-Weissbach1) für den Druckhöhenverlust h_v in einem Rohr vom Durchmesser D und der Länge L

(1)
$$h_v = \lambda \frac{L}{D} \frac{c^2}{2g}$$

kommt die Rohrreibungszahl λ vor. Sie ist eine dimensionslose Rechnungsgrösse, die von der Reynoldsschen Zahl $Re = D c/\nu$ (v kinematische Zähigkeit des strömenden Mediums) und von der verhältnismässigen Wandrauhigkeit $\varepsilon = k/D$ (k ideelle Höhe der Unebenheiten) abhängt.

Im laminaren Bereich, d.h. bei Reynoldsschen Zahlen unter 2300, ist $\lambda = 64/Re$. Bei turbulenter Strömung bildet sich an der Wand eine laminare Grenzschicht, die bei den üblichen Abmessungen von Druckleitungen etwa 0,02 bis 2 mm dick ist. Solange diese Dicke grösser ist als die Rauhigkeitserhebungen, spricht man von einem hydraulisch glatten Rohr. Bei ihm ist die Rohrreibungszahl nur von Re abhängig. Hierfür gilt nach Prandtl und v. Kármán die Gleichung

(2)
$$\frac{1}{\sqrt{\lambda}} = -2,0 \log \frac{2,51}{Re \sqrt{\lambda}}$$

Im hydraulisch rauhen Bereich verschwindet der Einfluss der Reynoldsschen Zahl; λ ist nur noch von ε abhängig entsprechend

(3)
$$\frac{1}{\sqrt{\lambda}} = -2,0 \log \frac{\varepsilon}{3,71}$$

1. Strömungswiderstand

geraden Rohrabschnitten in Ab-

hängigkeit von der Reynoldsschen

Die Bildstöcke dieses Aufsatzes wur-

den uns von Gebrüder Sulzer AG.

Winterthur zur Verfügung gestellt.

a hydraulisch glatt, Gl. (2) b hydraulisch rauh, Gl. (3) c Uebergangsgebiet, Gl. (4)

Bild

Zahl Re.

Zwischen diesen Grenzbereichen liegt ein Übergangsgebiet, dem insofern grosse Bedeutung zukommt, als die meisten Rohrströmungen der Praxis in ihm liegen. Das gilt vor allem auch für Druckrohrleitungen mit grossen Durchmessern und grossen Geschwindigkeiten, bei denen sich die Reynoldszahlen in der Grössenordnung von 106 bis 107 bewegen. Nur bei stark verrosteten Leitungen kann sich eine vollständig rauhe Strömung einstellen. Im Übergangsgebiet kann nach C. F. Colebrook gesetzt werden:

1) Drei Veröffentlichungen aus neuerer Zeit über Rohrströmungen sind im Literaturverzeichnis am Schluss des Aufsatzes unter [1], [2], [3] angegeben.

in

(4)	1	2.0.1	2,51	ε
(4)	$\sqrt{\lambda} = -$	- 2,0 log	Re / λ +	3,71

Bild 1 zeigt die Kurven nach Gleichung (4) für verschiedene Wandrauhigkeiten e in der üblichen Darstellung mit Re als Abszisse und λ als Ordinate. Die Kurve a gilt für hydraulisch glatte Rohre nach Gleichung (2) und der Bereich rechts der strichpunktierten Kurve für hydraulisch rauhe Rohre nach Gleichung (3).

Wählt man als Abszisse den Ausdruck

(5)
$$x = \log\left(Re \cdot \varepsilon\right) / \frac{\lambda}{8} = \log Re^*$$

und als Ordinate

(6)

$$y = \frac{1}{\sqrt{\lambda}} + 2 \log \varepsilon$$
,

so werden die Grenzbereiche der hydraulisch glatten und der hydraulisch rauhen Strömung durch die Geraden a und b, Bild 2, dargestellt, während sich im Übergangsgebiet für jede gleichgeartete Rauhigkeitsform gleich welcher Grösse eine einzige Kurve c entsprechend Gleichung (4) ergibt, die sich asymptotisch an die beiden Grenzgeraden anschmiegt. Die analytischen Gleichungen lauten dann für die Kurve c $y_c = 2 x + 1,141 - 2 \log (3,3012 + 10^x)$ (7)

(8)
$$y_a = 2 x + 0,104$$

und für die Kurve b

(9)
$$v_b = 1.141$$

Im Ausdruck für Re* (Reynoldssche Zahl der Rauhigkeit) $k c^*$

(10)
$$Re^* = \frac{k c}{v} \left| \frac{\lambda}{8} \right|^2$$

wird die Geschwindigkeit

(11)
$$c^* = c \left| \frac{\lambda}{8} \right| = \left| \frac{\tau_0}{\varrho} \right|$$

nach Prandtl als Schubspannungsgeschwindigkeit bezeichnet, wobei το die Schubspannung an der Rohrwand darstellt.

DK 627.844:532.55

In Bild 2 sind Messergebnisse nach Versuchen von Kessler, Freemann, Corp und Rubble eingetragen, die an neuen Stahlrohren von handelsüblicher Güte gewonnen wurden. Aus ihnen ergab sich die Übergangskurve d, die mit der Kurve c verhältnismässig gut übereinstimmt. Die Kurve d kann somit für Vergleichszwecke herangezogen werden.

Die Grösse der Wandrauhigkeit k (beziehungsweise des Wertes $\varepsilon = k/D$, der in den Gleichungen (3) und (4) vorkommt), stellt nicht eine ausmessbare Länge dar, sondern lediglich eine Vergleichsgrösse, welche auch die Form und die örtliche Verteilung der Unebenheiten berücksichtigt. Den Zusammenhang zwischen der Theorie von *Prandtl-Colebrook* und der wirklichen Grösse der Rauhigkeitserhebungen, wie ihn die Gleichungen (3) und (4) ausdrücken, hat *J. Nikuradse* durch umfangreiche Versuche abgeklärt, bei denen er die Rohrinnenfläche mit Sandkörnern von gleichem Durchmesser gleichmässig mittels einer Lackschicht belegte. Damit ist es möglich geworden, die mössige künstliche Sandrauhigkeit k_s auszudrücken, deren Rauhig-

Tabelle 1 Druckverlustmessungen an geschweissten Druckleitungen

keitserhebungen bekannt sind. Drückt man also die natürliche Rauhigkeit durch diejenige künstliche Rauhigkeit aus, die unter sonst gleichen Bedingungen den gleichen Reibungswiderstand erzeugt, so ist die Bedingung der geometrischen Ähnlichkeit erfüllt, und die Rechnung liefert richtige Resultate.

Die Übergangskurve d in Bild 2 kann je nach der Rauhigkeitsform sehr verschieden aussehen. Für gleichförmige Sandrauhigkeit ergibt sich die in Bild 10 mit e bezeichnete Gestalt, das heisst, die Kurve folgt bis zu verhältnismässig grossen Werten von Re^* der Grenzgeraden für hydraulisch glatte Strömung und nähert sich dann von oben der Geraden für rauhe Strömung. Bei natürlicher Rauhigkeit verlaufen die Kurven ohne Wendepunkt und zweigen schon bei kleineren Re^* -Werten von der Grenzgeraden a ab.

Dieses unterschiedliche Verhalten lässt sich mit Hilfe der Grenzschichttheorie wie folgt erklären: Die Dicke der laminaren Grenzschicht ist angenähert proportional zum reziproken Wert der Reynoldsschen Zahl: Bei kleinen Werten von *Re* ist sie gross und nimmt mit wachsendem *Re* ab. Bei der gleichmässigen Sandrauhigkeit nach *Nikuradse* bleiben die Spitzen der Sandkörner bis zu verhältnismässig grossen *Re*-Werten innerhalb der Grenzschicht, so dass sich in diesem Bereich eine hydraulisch glatte Strömung ausbildet. Diese geht dann aber rasch, das heisst bei verhältnismässig geringer Zunahme von *Re*, in eine hydraulisch rauhe Strömung über.

Bei der natürlichen Rauhigkeit durchstossen einzelne Spitzen der Unebenheiten schon bei verhältnismässig niedrigen *Re-*Zahlen die dabei noch dicke Grenzschicht und bewirken eine Störung der glatten Strömung, also ein Ausweichen der Kurve ins Übergangsgebiet. Bei zunehmender Geschwindigkeit, also grösseren *Re-*Werten, wird die Grenzschicht dünner, und es ragen immer mehr Unebenheitsspitzen über sie hinaus, die der Strömung mehr und mehr den Charakter einer hydraulisch rauhen geben. Je nach der Art, wie schnell die mittleren und kleineren Rauhigkeitserhebungen an Einfluss gewinnen, verändert sich der Verlauf der Übergangskurve im *x*, *y-*Diagramm.

2. Durchgeführte Messungen

Die in den letzten Jahren von Gebrüder Sulzer an verschiedenen, verhältnismässig neuen Anlagen durchgeführten Messungen dienten im wesentlichen dem Nachweis eingegangener Garantieverpflichtungen bezüglich des Druckverlustes in Verteilleitungen. Ausserdem ist es von grossem praktischem Interesse, über das wirkliche Verhalten ausgeführter Druckleitungen von Wasserkraftwerken zuverlässig unterrichtet zu werden, um so genaue Unterlagen für die Projektierung neuer Anlagen sowie brauchbare Massstäbe für die Beurteilung ausgeführter, durch den Betrieb veränderter Leitungen zu erhalten.

Nr.	Anlage	Betriebs- beginn	Versuchs Jahr	- Länge m	D mm	Wassermenge m ³ /s	<i>Re</i> 10 ⁶	λ 10 ⁻²	ε 10 ⁻⁵	k_s mm	Bemerkungen
1	Biasca	1960	1961	1050	2914	13,47-53,02	3,74-14,71	0,850-1,060	0,7	0,020	Druckschacht
2	Lünersee	1958	1958	1026	2251	4,20-30,01	1,58-11,32	0,836-1,199	0,7	0,016	
3	Lünersee	1958	1958	1361	2110	3,54-30,01	1,42-12,04	0,811-1,119	0,3	0,007	Druckschacht
4	Riddes 1	1956	1958	1817	1.571	5,65-13,88	3,05- 7,50	0,905-1,026	0,7	0,011	
5	Riddes 2	1956	1958	1817	1571	5,30-13,89	4,86- 7,50	0,898-1,007	0,5	0,008	
6	Lucendro	1945	1958	1509	915,8	1,83- 5,78	1,69- 5,35	0,997-1,150	2,0	0,018	
7	Grenoble		1947	200	796,3	0,32- 0,97	0,54- 1,53	1,174-1,449	2,5	0,020	Laboratoire Dauphinois
8	Vendets	1942	1942	335	1400	- 7,1	1,7 - 4,05	1,0	1,5	0,021	
9	Portillon	1941	1941	2638	946	- 4,86	0,85- 4,0	1,33	20	0,20	Bandagierte Druckleitung
10	Palü	1927	1937	132	1125	1,64- 3,82	1,26- 2,94	1,127-1,253	5,5	0,062	
11	Palü	1927	1937	108	1075	1,64- 3,82	1,32- 3,07	1,091-1,289	5,8	0,062	
12	Barberine	1923	1938	108	1100	1,53- 4,14	1,13- 3,07	1,185-1,265	7_	0,077	
13	Barberine	1923	1938	192	1050	1,53- 4,14	1,19- 3,22	1,368-1,440	18	0,189	
14	Cavaglia	1921	1937	96	1020	1,43- 4,03	1,21- 3,47	1,830-2,154	110	1,100	vor Reinigung
15	Cavaglia		1937	96]	1020	1,43- 4,31	1,14- 3,43	1,026-1,196	2,5	0,025	nach Reinigung
16	Löntsch	1908	1938	179	1052	0,80- 4,78	0,64- 3,80	1,342-1,454	22	0,232	
17	Löntsch	1908	1938	179	1122	0,80- 4,78	0,60- 3,56	1,315-1,510	27	0,303	

Nr. 1-6 Messungen Gebrüder Sulzer [4] Nr. 7 Messungen Barbé [5] Nr. 8 und 9 Messungen Electricité de France [6] Nr. 10-17 Messungen Hoeck [7]

Bild 3. Druckleitung Cavaglia vor der Reinigung in natürlicher Grösse (Messtrecke 1) [7]; massgebliche absolute Rauhigkeit $k_s = 3,2$ mm.

Grossversuche an in Betrieb stehenden Anlagen bereiten allerlei Schwierigkeiten, die die Genauigkeit beeinträchtigen können. Einen einwandfreien Beharrungszustand einzuhalten, wäre wohl die wichtigste Voraussetzung für zuverlässige Ergebnisse, lässt sich aber nur in den seltensten Fällen erreichen. Sowohl die Durchflussmenge als auch Temperatur und Druck des Wassers sollten während der Zeit der Messung konstant bleiben. Weiter sollte die Messstrecke mit den genügend langen Anlauf- undAblaufstrecken möglichst gerade sein und eine gleichmässige Rauhigkeit aufweisen. Da diese Voraussetzungen meist nicht voll erfüllbar sind, ist es notwendig, die Versuchsbedingungen so zu wählen, dass sich die geringsten Fehler ergeben.

In Tabelle 1 sind die Hauptdaten der untersuchten Anlagen sowie die Messergebnisse zusammengestellt. Dort sind auch Messungen an älteren Anlagen angeführt worden, da sie interessante Vergleichsmöglichkeiten bieten.

Für die Beurteilung der erzielten Oberflächengüte einer ausgeführten Rohrleitung ist die äquivalente Sandrauhigkeit ks nach Nikuradse massgebend. Wenn die Messung im vollständig rauhen Bereich durchgeführt werden kann, lässt sich aus dem λ-Wert, den man nach Gleichung (1) aus den Messwerten ermittelt, die relative Wandrauhigkeit ε mittels Gleichung (3) und hieraus k_s leicht berechnen. Im allgemeinen müssen Messungen an ausgeführten Anlagen unter Betriebsbedingungen durchgeführt werden, die im Übergangsgebiet liegen. Dabei bleibtnichts anderes übrig, als die Sandrauhigkeit ks anhand der Übergangskurve nach Gleichung (4) abzuschätzen, indem man die Versuchskurve mit jener vergleicht. Mit Rücksicht auf die geringere Fehlerempfindlichkeit des versuchsmässig bestimmten Druckverlustes bei grösseren Geschwindigkeiten und die bessere Annäherung an den hydraulisch rauhen Bereich wird man diesen Vergleich bei möglichst grossen Reynoldsschen Zahlen durchführen. Das trifft, wie aus Tabelle 1 ersichtlich ist, für die in den Jahren 1958-1961 durchgeführten Messungen besonders gut zu. Trotzdem ergibt diese graphische Näherungsmethode infolge unvermeidbarer Streuung der Versuchswerte und dem weitgehend hydraulisch glatten Verhalten der Messstrecken gewisse Ungenauigkeiten, weshalb bei dem in Tabelle 1 angegebenen k_s -Werten eine Fehlertoleranz von $\pm 20\%$ eingeräumt werden muss.

Der Einfluss dieser Toleranz auf die Rohrreibungszahl λ bleibt jedoch infolge der logarithmischen Abhängigkeit nach Gleichung (4) zwischen den beiden Grössen sehr gering. Für ein Rohr von beispielsweise 2000 mm Durchmesser und mit einer mittleren Strömungsgeschwindigkeit von 4,5 m/s ergibt sich für $\nu = 1,5.10^{-6}$ m²/s die Reynoldssche Zahl zu 6.10⁶. Bei einer angenommenen mittleren Rauhigkeitshöhe von 0,02 mm ist $\varepsilon = 10^{-5}$ und $\lambda = 0,00941$. Beträgt diese Höhe 0,03 mm, also 50 % mehr, so steigt λ auf 0,00993, also um nur 5,5 %; beträgt sie nur 0,01 mm, also 50 % weniger, so sinkt λ auf 0,00909, also um nur 3,4 %.

Bei den Messungen, die in neuerer Zeit von Gebrüder Sulzer an den Anlagen Nr. 1 bis 6 durchgeführt worden sind, handelt es sich um vollkommen geschweisste Rohrleitungen mit Bitumenglattstrichen. Als Korrosionsschutz wurde die metallisch blank sandgestrahlte Rohrinnenfläche spritzverzinkt und mit einem drei- bis vierfachen Bitumen-

Bild 4. Druckleitung Cavaglia nach der Reinigung in natürlicher Grösse (Messtrecke 1); massgebliche absolute Rauhigkeit $k_s = 0.03$ mm.

anstrich versehen. Der Deckanstrich ist teilweise als Heissbitumen-Spritzfilm aufgebracht und zur Beseitigung der porenbildenden Luftbläschen geflämmt, teilweise auch durch Infrarotbestrahlung in die Rohroberfläche eingebrannt worden. Diese sorgfältige Behandlung liess sehr geringe Reibungsverluste erwarten. Tatsächlich ergaben die Messungen absolute Rauhigkeitshöhen von nur 0,01 bis 0,02 mm.

Die Wassermengen wurden aus den gemessenen elektrischen Leistungen unter Berücksichtigung der bekannten Gruppenwirkungsgrade der Maschinen ermittelt. Eine zusätzliche Kontrolle ergab sich aus den Messungen des Nadelhubes der Freistrahlturbinen unter Verwendung der Düseneichkurve. Besondere Sorgfalt erforderten die Druckmessungen vor und nach den Messstrecken sowie die genaue Ermittlung des massgebenden Rohrdurchmessers. Dieser wurde aus zahlreichen Einzelmessungen bestimmt, die über die ganze Länge der Messstrecke vorgenommen wurden.

An der Leitung Nr. 7 hat das Laboratoire Dauphinois Grenoble [5] Messungen durchgeführt, an den Leitungen 8 und 9 die Electricité de France [6], während die Leitungen 10 bis 17 von E. Hoeck [7] untersucht wurden. Bei allen diesen Leitungen handelt es sich ebenfalls um vollständig geschweisste Druckrohrleitungen bzw. Druckschächte, so dass die Ergebnisse miteinander vergleichbar sind.

3. Die Ergebnisse

Was bei der Betrachtung der Tabelle 1 zunächst auffällt, ist der grosse Unterschied zwischen den Werten für die absolute Rauhigkeit der älteren, von E. Hoeck gemessenen Leitungen und denen der neueren Leitungen, die von Sulzer erstellt worden sind. Hieraus wird deutlich, wie sehr sich die sorgfältige Oberflächenbehandlung gelohnt hat. Tatsächlich sind die dabei erhaltenen k_s -Werte im Vergleich zu bisher veröffentlichten Versuchsergebnissen als überaus günstig zu bezeichnen.

Eine höchst bemerkenswerte Vergleichsmöglichkeit bietet die Leitung Nr. 14 der Anlage Cavaglia im Zustand vor der Revision. Dieses Kraftwerk stand bis zum Zeitpunkt der Messung während 16 Jahren im Betrieb und wies eine mit dicken Rostwarzen bis zum 8 mm Höhe in 2 bis 3 cm Abstand besetzte Oberfläche auf. Bild 3 zeigt den Zustand eines Wandteiles vor der Reinigung. Da damit gerechnet werden musste, dass sich die Unebenheiten stark verschieden verteilen, wurden drei Messstrecken von verschiedener Länge gewählt. Die Reinigung ergab zwar keine völlig glatte, aber doch eine recht gute Oberfläche, wie auf Bild 4 zu sehen ist. Sehr beachtenswert ist aber der Erfolg: Die absolute Rauhigkeit verringerte sich bei der günstigsten Messstrecke (3) auf rund 2,3 % und die Rohrreibungszahl auf etwa 55 %. Bei den beiden andern Messstrecken waren die absoluten Rauhigkeiten vor der Reinigung, wie aus Bild 5 hervorgeht, wesentlich grösser. Dementsprechend ergab sich auch eine stärkere Verringerung. Der Unterschied zwischen den Messstrecken ist fast ganz verschwunden. Dass sich diese bedeutende Verbesserung des Leitungsverhaltens energiewirtschaftlich vorteilhaft auswirkt, ist leicht einzusehen.

Eine äusserst wertvolle Bereicherung der vorhandenen Unterlagen stellen die Versuchsergebnisse des Laboratoire Dauphinois in Grenoble

Bild 5. λ , *Re*-Diagramme mit den Messergebnissen an der Druckleitung Cavaglia vor und nach der Reinigung [7]. Messtrecke 1: D = 1200 mm, $\varepsilon = 2,7 \cdot 10^{-3}$, $k_s = 3,2$ mm. Messtrecke 2: D = 1150 mm, $\varepsilon = 3,0 \cdot 10^{-3}$, $k_s = 3,4$ mm. Messtrecke 3: D = 1020 mm, $\varepsilon = 1,1 \cdot 10^{-3}$, $k_s = 1,1$ mm. (ε - und k_s -Werte vor der Reinigung.)

a hydraulisch glatt, b hydraulisch rauh, c Uebergangsgebiet.

an einem Versuchsrohr von 800 mm Durchmesser dar, über die *R. Barbé* in [5] berichtet hat. Diese Messungen wurden mit laboratoriumsmässiger Genauigkeit durchgeführt und bieten wegen der grossen Abmessungen eine willkommene Vergleichsgrundlage zu den Grossversuchen an bestehenden Leitungen, die zwangsläufig unter ungünstigeren Bedingungen und daher mit geringerer Genauigkeit durchgeführt werden mussten. Die gemessenen Rohrreibungszahlen folgen, wie aus Bild 6 ersichtlich ist, im λ , *Re*-Diagramm einer Kurve, die angenähert parallel zur Kurve a für glatte Rohre und in geringem Abstand zu dieser verläuft.

Die Ergebnisse der genauen Messungen von Grenoble bestätigen in jeder Hinsicht – sowohl qualitativ als auch quantitativ – die von Sulzer gemachten Beobachtungen. Das zeigt sich beim Vergleich der Messpunkte von Barbé nach Bild 6 mit denen von Sulzer nach den

> Bild 9. λ , *Re*-Diagramm mit den Rohrwiderstandskurven nach den Versuchen von Gebrüder Sulzer an neuen Leitungen.

- 1 Druckleitung Lucendro
- 2 Druckleitung 1 Riddes
- 3 Druckleitung 2 Riddes 4 Druckleitung Lünersee
- 4 Druckleitung Lünersee 6 Druckschacht Biasca
- 5 Druckschacht Lünersee
- 7 Laboratoire Dauphinois

Schweiz, Bauzeitung · 83. Jahrgang Heft 8 · 25. Februar 1965

Bild 10. χ , γ -Diagramm mit den an neuen Druckleitungen ermittelten Messkurven:

- hydraulisch glatt Druckschacht Biasca 1 a
- hydraulisch rauh b
- Uebergangsgebiet С
- natürliche Rauhigkeit d
- nach Colebrook
- Sandrauhigkeit nach e Nikuradse
- Druckleitung Lünersee 2 Druckleitung 3 Riddes 1 4 Druckleitung Riddes 2 5 Druckleitung Lucendro
- Laboratoire Dauphinois 6

Bildern 7 und 8, die sich auf die Druckleitung 2 des Kraftwerkes Riddes bzw. auf den Druckschacht des Kraftwerkes Biasca beziehen.

Der Vergleich mit der Prandtl-Colebrookschen Theorie geht aus Bild 9 hervor. Die Übereinstimmung ist aufs Ganze gesehen recht gut. Gegenüber den Kurven nach Gleichung (4) von Colebrook für verschiedene Wandrauhigkeiten ɛ im Übergangsgebiet verlaufen die eingetragenen Messkurven jedoch etwas steiler, im Sinne einer langsameren Angleichung an die hydraulisch glatte Rohrströmung bei abnehmender Fliessgeschwindigkeit. Die gleiche Erscheinung ist ebenfalls von L. Hopf auf Grund eigener Versuche sowie solcher von Fromm gemacht worden, worüber in [8] berichtet wird. Sie lässt sich wie folgt erklären: Bei der Bildung einzelner Rostwarzen werden zunächst, das heisst bei kleinen Re-Zahlen, also kleinen Geschwindigkeiten, nur einzelne Warzenspitzen als Rauhigkeitsursachen wirksam, was sich im x, y-Diagramm darin äussert, dass die wirklichen Übergangskurven bei kleinen x-Werten stärker von der Grenzlinie für hydraulisch glatte Strömung abweichen, um dann angenähert parallel zu dieser zu verlaufen, bis schliesslich auch die niedrigen Rauhigkeitserhebungen an Einfluss gewinnen und die Kurven dem Grenzwert für hydraulisch rauhe Strömung zustreben.

Bei den älteren Leitungen liegen die Kurven, die sich aus den Messungen von E. Hoeck ergaben, im *λ*, Re-Diagramm, Bild 11, weit auseinander. Verhältnismässig niedrige \u03c4-Werte ergab die Cavaglia-Leitung nach der Reinigung. Günstig sind auch die beiden Palü-Leitungen sowie die eine von Barberine II. Dagegen weisen die beiden Löntsch-Leitungen sowie die zweite von Barberine II stark rauhes Verhalten auf, wie aus dem hohen Wert für ε bzw. k_s (Tabelle 1) und dem flachen Verlauf der Kurve zu ersehen ist.

Ein unterschiedliches Verhalten von Druckleitungen und Druckschächten lässt sich aus den Versuchen nicht feststellen. Theoretisch sollte ein Druckschacht kleinere Druckverluste ergeben als eine oberirdisch verlegte Druckleitung, da Expansionen und kleinere Knicke wegfallen. Der Unterschied bleibt aber ohne Zweifel äusserst gering.

In diesem Zusammenhang ist auch ein Vergleich zwischen glattwandigen und bandagierten Druckrohrleitungen interessant. Obwohl nur spärliche Versuchsergebnisse vorliegen, scheint es verständlich, dass die Innenfläche, die infolge der Bandagierung leicht gewellt ist, zu grösseren Druckverlusten führen muss. Eine Wellenhöhe von etwa 0.01 mm ist von gleicher Grössenordnung wie die natürliche Oberflächenrauhigkeit glattwandiger Rohre. Erfahrungsgemäss ist nun aber der Einfluss wellen- oder riffelartiger Inkrustationen auf den Druckverlust verhältnismässig gross. Nach G. Thibessard [9] kann die

Bild 11. A, Re-Diagramm mit den Rohrwiderstandskurven nach Versuchen von E. Hoeck [7] an älteren Leitungen:

9	Löntsch	(Nr.	15)	13	Palü	(Nr.	19)
0	Löntsch	(Nr.	16)	14	Palü	(Nr.	18)

- 11 Barberine II (Nr. 4) 15 Cavaglia vor der Reinigung (Nr. 10) *)
- 12 Barberine II (Nr. 3) 16 Cavaglia nach der Reinigung (Nr. 13)
- hydraulisch glatt

b hydraulisch rauh

*) fällt mit $\lambda = \infty 0.02$ ausserhalb des Bildes.

äquivalente Sandrauhigkeit k - insbesondere bei wellenförmiger Oberfläche - einen bis zu zehnfach grösseren Wert als die effektive Rauhigkeitshöhe annehmen. Daher ist zu vermuten, dass eine bandagierte Rohrleitung im neuen Zustand einen um mindestens 5 bis 10 % grösseren Druckverlust aufweist als eine sonst gleiche unbandagierte Rohrleitung. Die Messungen an der Anlage Portillon [6] mit einem um etwa 30 % höheren Druckverlust weisen eindeutig in diese Richtung.

Literaturverzeichnis

- [1] Herning, F.: Stoffströme in Rohrleitungen. Düsseldorf 1961, VDI-Verlag.
- [2] Richter H.: Rohrhydraulik. 4. Auflage. Berlin 1962, Springer-Verlag
- [3] Kirschmer O.: Tabellen zur Berechnung von Rohrleitungen. Heidelberg 1963, Strassenbau, Chemie und Technik Verlagsges.
- Müller W. und Stratmann, H.: Rohrreibungsverluste in Druckrohr-[4] leitungen von Wasserkraftanlagen. «Technische Rundschau Sulzer» 1964, H. 3, S. 111-120.
- [5] Barbé R.: La mesure dans un laboratoire des pertes de charge de conduites industrielles; «La Houille Blanche» 2 (1947) pp. 191-203.
- Coefficients des formules usuelles de perte de charge déduites des [6] mesures effectuées par le Service d'Essais E.D.F.: «La Houille Blanche» 2 (1947) pp. 419-421.
- Hoeck E .: Druckverluste in Druckleitungen grosser Kraftwerke; [7] Zürich 1943, Verlag Leemann.
- [8] Hopf L.: Die Messung der hydraulischen Rauhigkeit; «Zeitschr. f. angew. Math. u. Mech.»; 3 (1923), S. 329-339.
- [9] Thibessard G .: Les facteurs de perte de charge dans les conduites de grand diamètre devant la corrosion; Centre Belge d'Etude et de Documentation des Eaux, No 54 (1961/IV), pp. 235-241.

Adresse der Verfasser: bei Gebr. Sulzer, Winterthur