The Ludas Latrunculorum and Laus Pisonis 190-208

Autor(en): Richmond, John
Objekttyp: Article
Zeitschrift: Museum Helveticum : schweizerische Zeitschrift für klassische Altertumswissenschaft = Revue suisse pour l'étude de l'antiquité classique $=$ Rivista svizzera di filologia classica

Band (Jahr): 51 (1994)
Heft 3

PDF erstellt am: 26.04.2024
Persistenter Link: https://doi.org/10.5169/seals-39789

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

The Ludus Latrunculorum and Laus Pisonis 190-208

By John Richmond, Dublin

The game of Ludus Latrunculorum (to which I shall refer as $L L$) is mentioned incidentally in many Latin authors. At sites both in Rome and in widely distant areas of the Roman world archaeologists have found incised on stone diagrams used for playing the game, and a very large number of small round disks or hemispheres, many of which may have served the same purpose ${ }^{1}$. A few representations also exist which possibly show players at $L L^{2}$. If we could reconstruct the game it would give us an interesting clue to an aspect of everyday life difficult to realise, and would help to clarify several obscure passages in texts. The locus classicus for the game is found in the Laus Pisonis (to which I shall refer as $L P$) in a passage (190-208) that presents difficulties for commentators. This paper attempts to advance their solution by examining the knowledge we have of the game, and briefly considers the light shed on its problems by what is known of similar Greek games. I set out the passage ${ }^{3}$ and my tentative translation ${ }^{4}$:

> 190 Te si forte iuuat studiorum pondere fessum non languere tamen lususque mouere per artem, callidiore modo tabula uariatur aperta

[^0]calculus et uitreo peraguntur milite bella, ut niueus nigros, nunc et niger alliget albos.
sed tibi quis non terga dedit? quis te duce cessit calculus? aut quis non periturus perdidit hostem? mille modis acies tua dimicat: ille petentem dum fugit, ipse rapit; longo uenit ille recessu, qui stetit in speculis; hic se committere rixae audet, et in praedam uenientem decipit hostem; ancipites subit ille moras similisque ligato obligat ipse duos; hic ad maiora mouetur, ut citus effracta prorumpat in agmina mandra clausaque deiecto populetur moenia uallo. interea sectis quamuis acerrima surgant proelia militibus, plena tamen ipse phalange aut tantum pauco spoliata milite uincis, et tibi captiua resonat manus utraque turba.

200 decipit] diripit Maehly 202 obligat $]$ adligat Cortius 203 effracta ed. uet.: et fracta S 205 sectis] septis Senftlebius: lectis Maehly 207 tantum Baehrens: etiam S.
"When you are weary with the weight of your studies, if perhaps you are pleased not to be inactive but to start games of skill, in a more clever way you vary the moves of your counters on the open board, and wars are fought out by a soldiery of glass, so that at one time a white counter traps blacks, and at another a black traps whites. Yet what counter has not fled from you? What counter gave way when you were its leader? What counter [of yours] though doomed to die has not destroyed its foe? Your battle line joins combat in a thousand ways: that counter, flying from a pursuer, itself makes a capture; another, which stood at a vantage point, comes from a position far retired; this one dares to trust itself to the struggle, and deceives an enemy advancing on its prey; that one risks dangerous traps, and, apparently entrapped itself, countertraps two opponents; this one is advanced to greater things, so that when the formation is broken, it may quickly burst into the columns, and so that, when the rampart is overthrown, it may devastate the closed walls. Meanwhile, however keenly the battle rages with cut-up soldiers, you conquer with a formation that is full, or bereft of only a few soldiers, and each of your hands rattles with its band of captives."

Name

That the game referred to is the Ludus Latrunculorum hardly requires demonstration, although the word latrunculus ${ }^{5}$, since it was very awkward to fit

[^1] calculus ibit (Ars 2.207), and non stulte latronum proelia ludat (Ars 3.357).
into dactylic poetry, does not occur in the passage above. We know from Varro and Festus that latro originally meant 'a mercenary soldier' or 'a bodyguard', two meanings that overlap, and that the older poets used latro to mean miles ${ }^{6}$. $L L$ was 'the game of little soldiers' and this fits in well with the military terminology constantly used by the author of the Laus Pisonis ${ }^{7}$.

Board

Varro (Ling. 10.22) compares the orderly arrangement of the full paradigm of the adjective albus in six rows each of six columns to that of a tabula ... in qua latrunculis ludunt ("a board on which they play with little soldiers"). Many such diagrams have been found cut into stone: each has a grid of rectangular cells ${ }^{8}$ either with equal numbers of cells along adjoining sides of the board or with approximately equal numbers. Lamer refers to an example with 8×8 cells on the middle of the lower step of the Basilica Iulia at Rome ${ }^{9}$, and there is an interesting Greek terracotta with a board of 6×7 cells ${ }^{10}$. In this paper I have provided diagrams with boards of 8×8 squares, but the precise dimensions do not affect the discussion. It is important to note that all our evidence points to boards that did not differentiate the cells in the kind of chequered pattern familiar to us from chess and draught boards ${ }^{11}$.

[^2]
Number of Players

That the number of players was two is clearly implied by the story in Seneca (Dial. 9.14.7) of the prisoner taken away to execution who adjured his opponent not to claim falsely that he had been winning the game that was interrupted by the final summons. Their mimic armies were distinguished by the colours black and white (LP 194): these are the colours that predominate in counters that have been discovered, although occasionally other colours have been found ${ }^{12}$.

Kinds of Counters

It has often been argued that the counters on either side were of different powers and classes like the men in chess. R. G. Austin has shown, however, that the passage of Isidore ${ }^{13}$ on which this belief was based refers to an early form of backgammon, played with the aid of dice and hence known as alea, as well as its more usual name of lusus tabulae, or, in Greek, $\tau \dot{\alpha} \beta \lambda \eta^{14}$. It will be necessary later to revert to this problem when discussing the word mandra. The counters found by archaeologists are usually flattish disks or hemispheres, not differentiated into classes by their form ${ }^{15}$. Sometimes counters are found inscribed with numbers, letters, or words, but the inscriptions lend no support to the theory that there were different classes of counter in $L L$.

Moves of Counters

We come next to consider the method of movement of the counters. Ovid (Trist. 2.477) describes them as moving to the attack recto ... limite "by a straight path", a phrase that, when considered with the rectangular grid of the board, must remind one irresistibly of the limites or 'paths' that Roman surveyors laid out in a rectangular grid, when engaged in the kind of land division

12 Lamer (cf. n. 1 supra) 2016, 40-51 and A. Tilley (ClRev 6, 1892, 335-336) refer to NSc (1887) 396, for an account of a find of 816 counters of hemispherical shape coloured dark-blue, yellow, and white found in a tomb in Perugia perhaps of early imperial date. The texts, however, insist on two colours, cf. n. 30 infra.
13 Isidore, Etymol. 18.67.
14 R. G. Austin in his article, "Zeno's game of $\tau \dot{\alpha} \beta \lambda \eta$ (A.P. ix. 482)", JHS 54 (1934) 202-205, acknowledges a debt to L. Becq de Fouquières, Jeux des Anciens (Paris 1869) 371-377.
15 G. Lafaye in Daremberg/Saglio (cf. n. 2 supra) 3,994b and 5,128-129; Steiner (cf. n. 2 supra) 39-40 and Taf. 20; and Ch. and Cl. Holliger, "Römische Spielsteine und Brettspiele", Gesellschaft Pro Vindonissa: Jahresbericht 1983 (Brugg 1984) 5-24. However, Murray (cf. n. 17 infra) 33, mentions a group of 18 disks found at Richborough, of which 11 were marked with concentric circles. We may suspect that these circles were decorative, like those often found on modern draughtsmen.

Diagram I

Diagram II
known as centuriatio ${ }^{16}$. This fits in with the kind of grid we have postulated above (see Diagram I). Each set of counters would naturally be drawn up some little distance from the other to imitate real warfare, and it was possible for them to move forward against the enemy recto limite. Moves in a sideways direction must have been essential to admit any manœuvring other than simple head-on collision, and to permit the surviving forces to come in contact after the loss of some counters (see Diagram I, where a possible position is shown). Backward movements of retirement are attested by Ovid in two passages that will be considered later (Ars 3.359 and Trist. 2.479-480). Moves of some length seem to be attested by LP 198-199: longo uenit ille recessu / qui stetit in speculis; I indicate in Diagram II the kind of manœuvre that seems to be envisaged. A move of two or three squares seems scarcely to merit the description longo uenit ille recessu. It is simplest to postulate a move of as many squares as desired, provided that none of the squares traversed is occupied by another counter. Persuasive support may be found for this view in the fact that in many lands games played on the kind of board that we have considered (a 'latticed' board, to use Murray's term) provide for such a move ${ }^{17}$.

[^3]Ovid's silence on the subject of diagonal moves, which would be described by the adjective obliquus, seems to be significant, and if diagonal moves were permitted one would expect to find chequered boards, which, as remarked above (p. 166), never occur.

Method of Capture

Evidence for the method of capture is found in three passages: unus cum gemino calculus hoste perit, Ov. Ars 3.358 ("when one counter perishes by a twin foe"); cum medius gemino calculus hoste perit, Ov. Trist. 2.478 ("when a counter perishes in the midst by a twin foe"); and calculus hac (sc. tabula) gemino discolor hoste perit, Mart. 14.17 .2 ("a counter of differing colour perishes on this [board] with a twin enemy"). The second passage is the most explicit and implies that a black counter standing between two whites, or vice versa, was captured. This is a common method of capture and is technically known as capture by 'interception' ${ }^{18}$. So far as I know, it always operates both vertically and horizontally but not diagonally (I use these terms regarding diagrams on the printed page), so it seems reasonable to assume this for the Roman game.

Two passages of the Laus Pisonis raise a difficulty:
... ... uitreo peraguntur milite bella,
ut niueus nigros nunc et niger alliget albos (193-194) and
ancipites subit ille moras, similisque ligato
obligat ipse duos (201-202).
("wars are fought out by a soldiery of glass, so that at one time a white binds blacks, and at another a black [binds] whites"; "that one undergoes doubtful delays, and, like one bound, himself binds two"). Some have taken the verb ligare ('to bind') and its compounds in these passages to mean 'to capture'. In the former passage alliget could not be used in the plural, because of the metrical requirements of dactylic verse, so that there may well be no significance in the use of the singulars niueus and niger, and the passage could be interpreted simply to mean that white pieces capture black and black white, though this seems rather banal, even for our author. Similarly, in the latter passage obligat could not have been replaced by obligant in the plural, but in this case the singular ipse, used emphatically in antithesis with duos, forces one

[^4]

Diagram III

Diagram IV
to admit that, if ligare and its compounds do mean 'to capture', then it is stated that one counter can capture two.

Now, if ligare and its compounds mean 'to capture' and if it is meant that one counter can capture two, then the most probable interpretation of these passages would seem to be that indicated by the upper two ranks (7 and 8) of Diagram III. The move indicated would result in the capture of the two white counters by 'intervention' to use Murray's term ${ }^{19}$. It seems less probable that the other two possibilities in Diagram III could be intended.

However, there are two objections: the first is that the phrase ancipites subit ille moras (LP 201) is left unexplained, and the second, which is fatal, is that the reference in Seneca set out below clearly implies that a counter that was 'bound' could be rescued. Seneca (Epist. 117.30), remarking that we must ignore trifles when urgent matters require our attention, gives an example: nemo qui ad incendium domus suae currit ... prospicit ut sciat quomodo alligatus exeat calculus ("no man who runs to the burning of his house looks ... to know how a 'bound' counter may escape"). Clearly a calculus alligatus was somehow immobilised, as the word mora (LP 201) also implies. Such a situation would obtain if a counter were hemmed in at the corner of the board as illustrated in the upper left of Diagram IV. Yet subit, LP 201, seems to imply

19 Murray (cf. n. 17 supra) 54 , reports a game from Siam played on a latticed board of 8×8 cells in which the counters have the unlimited orthogonal move we have considered above, and captures are made both by 'interception' and by 'intervention.' There are also more distant parallels in which a counter is allowed to occupy a position in which he would be subject to capture, provided that he can instantly effect the capture of the counters which threaten him (e.g. the Chinese game of 'Wei-k'i' or 'Wei-chi' - the 'Go' of the Japanese - and another Chinese game, known as 'Sixteen Soldiers,' cf. Murray, 89-92 and 100-101).
purpose ${ }^{20}$, and such a counter almost certainly has arrived at this position passively rather than actively. Furthermore, in the same passage ancipites ${ }^{21}$, whatever its meaning, does not seem to describe such a situation.

This consideration suggests the theory that a counter orthogonally adjacent to two hostile counters (but not in the same rank or file so as to be liable to capture) may have been alligatus and incapable of movement. I illustrate in Diagram IV (top right) the kind of position I envisage. Obviously, if either of the counters adjacent to it were moved away or captured, it would recover its liberty of movement ${ }^{22}$. However, there seems to have been available to a player a method of relieving his own calculus alligatus from its immobility by bringing up a supporting counter. The clues are given in two passages of Ovid, one of which unfortunately is so badly corrupted that it has defied convincing correction:
bellatorque sua prensus sine compare bellat, aemulus et coeptum saepe recurrit iter
(Ars 3.359-360)
sua RAs suo ω suus ς tuus ς and
discolor ut recto grassetur limite miles, cum medius gemino calculus hoste perit,
\{mare $\} \mathrm{M}$
ut $\{$ male $\} \mathrm{G}+\{$ uelle sequens $\} \mathrm{MG}+$ sciat et reuocare priorem,
\{mage\} \{uelle sequi\} $\quad \mathrm{G}^{2}++$
\{dare\} \{bella sequens\} Landi
nec tuto fugiens incomitatus eat.
(Trist. 2.477-480)
("a warrior caught without his companion wages war, and, as a rival ${ }^{23}$ [or "and his rival"], often runs back the journey he has begun"; "how a soldiery of differing colour attacks on a straight path, when a counter perishes in the midst by a twin foe, how (it?) may know to ??? (text corrupt: [?]'how a following counter may know how to wage war') and to recall the one in front, and how $i t^{24}$ may retire safely not without a companion".)

These passages seem to imply that an unsupported counter ${ }^{25}$ even when

20 Cf. OLD, s.v. (7).
21 'Dangerous' is a common meaning in Neronian Latin, cf. ThLL II 25,32-48. However, cf. also n. 27 infra.

22 The passage from Seneca just considered could imply no more than this.
23 One may think of the kind of rivalry between two soldiers in the same army depicted by Julius Caesar (Gall. 5.44).
24 The subject of 'may retire' is not made clear. I assume the counter in front is meant.
25 Despite the weight of manuscript evidence and the editors I believe (? with Lamer, cf. n. 1 supra, 1977,68) that one must read suo ... (rather than sua ...) sine compare as the compar is presumably a calculus. The frequent use of compar to mean 'a wife' may have induced scribes to change to the feminine, cf. n. 43 infra.
alligatus could, if another ${ }^{26}$ counter on the same side advanced to support it, escape the alligatio and safely retreat (coeptum ... recurrit iter and reuocare priorem). If this interpretation is correct, it is probable that a rule provided that a calculus alligatus, if it received the support of a counter of the same colour on an orthogonally adjacent square, became free to move again. Such a released counter could, I think, be described as similis ligato before its release. Diagram IV (lower left) illustrates what I mean ${ }^{27}$.

Austin, 26, has interpreted ligatus and alligatus differently ${ }^{28}$: "a 'blocking' manœuvre was also employed (LP 201, similisque ligato / obligat ipse duos), but a man so blocked (alligatus, Sen. Epp. cxvii, 30) could be extricated by a skilful player." It is not evident from this exactly what Austin meant by 'blocking'; in such a position as that in Diagram V (left) the white counter on b5 is indeed blocked, but the player of the white counters can free it, not by bringing up support but by successively withdrawing his own counters on b4 and b5. Austin does not explain how there is any difficulty in freeing a blocked counter. On the theory I advance (illustrated in the right hand position in Diagram V) the white counters on f 4 and g 3 are alligati, but White, by advancing the counter on f 1 to f 3 , can give the counters on f 4 and g 3 the support necessary to enable them to move (sideways in the case of f4, backwards in the case of g 3). The support of a friendly counter on f 3 makes each of its two adjacent comrades similis ligato; had they not that support, they would in fact be ligati. It may fairly be said of the counter on g 3 that similis ... ligato / obligat ipse duos (LP 201-202).

Austin (30), in his translation of LP 192-208 renders ancipites subit ille moras, similisque ligato / obligat ipse duos as "another courts blockade on either flank, and, under feint of being blocked, himself blocks two men". In a note he explains "experiment clearly illustrated this operation; ancipites means something like 'enfilading'. Mora is probably used quite generally, and is not a technicality meaning 'check', as supposed by Becq de Fouquières and others". Unfortunately Austin does not give any details of the experiments to which he appeals. Neither does he support the meaning he gives for ancipites by appeal to any parallel, so he must assume that it at least was used in a technical sense.

[^5]

If it does not simply mean 'dangerous' (cf. n. 21 supra), it may be suggested that it has the usual meaning of 'ambiguous' referrring to such positions of reciprocal alligatio as that in the right-hand side of Diagram V, where on the theory here advanced the counters on $\mathrm{f} 4, \mathrm{~g} 3, \mathrm{~g} 4$ and h 3 are all immobilized.

Mandra - Defensive Positions

A further difficulty is presented by the word mandra found in LP 202-204:

... ... hic ad maiora mouetur,

ut citus effracta prorumpat in agmina mandra, clausaque deiecto populetur moenia uallo;
and Martial 7.72.7-8:
sic uincas Nouiumque Publiumque
mandris et uitreo latrone clusos.
The original sense of the Greek $\mu \alpha \alpha^{\prime} \delta \rho \alpha$ as 'cattle-pen', and the reference in LP 204 to moenia and uallo have naturally led scholars to suggest that there were on the board markings or counters that indicated some kind of fortifications that could be sapped or stormed. The find of a group of counters in three colours seemed to lend some support to this view ${ }^{29}$, but the constant literary references to two colours only ${ }^{30}$ and the fact that archaeologists usually find

[^6]two colours only argue against it^{31}. Furthermore, in Latin the original meaning of 'cattle-pen' seems to be found only in scholarly writing and ecclesiastical works where the writer is thinking of Greek, but elsewhere the meaning is always 'flock of animals' or one closely derived from that meaning ${ }^{32}$. Austin (cf. n. 28 supra), 28, believes that mandra simply refers to a group or formation of counters, and that in the $L P$ one must understand it to refer to the counters when drawn up as an acies to engage the enemy, and that agmina refers to the same counters when pursued in retreat. In Martial, then, mandris must be taken in a hendiadys with uitreo latrone meaning 'the formations of glass soldiers'. If this be granted, it will follow that in LP 204 moenia and uallo are metaphorical expressions ${ }^{33}$ to denote the defending ranks of counters. deiecto ... uallo is the result of effracta ... mandra, and populatur moenia refers to the capture of the scattered counters. Such is Austin's interpretation, and he continues (29): "In short this meaning satisfies the essential principle of the game, which was the manœuvring of pieces in massed formation as far as possible all our authorities agree that a piece which strayed too far and became isolated endangered himself and his whole side ${ }^{34}$. The theory has been abundantly confirmed by practical experiment; it was found that the best tactics consist in massing one's pieces in a solid block (i.e. mandra), but that when once the enemy has succeeded, by skilful play and usually at some sacrifice to himself, in breaking through that block, he has free room to manœuvre in its rear and gradually to 'ravage the citadel'." As Austin gave no details of his experiments, one is at a loss to know exactly what he envisaged. In particular he does not indicate how the opposing mandra is to be attacked and broken. I consider this problem in the following paragraphs.

The size of the mandra obviously would depend on the number of counters used. The only direct evidence is to be found in the Trier relief ${ }^{35}$: on it there survives a damaged representation of slightly more than half a board on which there seem to be almost thirty counters. The surviving edge of the board appears to be about ten squares long. That would suggest about sixty counters

[^7]

Diagram VII

Diagram VIII
for the two sides, and agrees reasonably well with the figure of sixty counters apparently given for the game of π ó $\lambda \varepsilon I \varsigma$ by Photius ${ }^{36}$. Consider such a position as Black has established in Diagram VI. It will be clear that even with a marked inferiority of numbers he can maintain an invincible position by moving only his counter on c7. Austin gives no indication of the number of counters he used, but simply wrote (cf. n. 28 supra), 27: "the number of men would presumably vary according to the size of the board, which does not seem to have been stereotyped". On the assumption that a square board is in use, it may be inferred that, if the number of counters on either side is less than the number of squares on each side of the board, there must be an open flank or a gap in the line of counters against which an opponent can manœuvre. Even in those circumstances, however, an impregnable position can be established by taking a shorter line to defend one corner only of the board (as in Diagram VII).

Black, even with a marked inferiority of material, can maintain an impregnable position by moving only his counter on b7. Here Black has had to sacrifice a considerable amount of territory, and it is possible that in such a deadlocked position the player with the larger amount of territory in his occupation was considered to have won ${ }^{37}$. However, if we may rely on the indications in the relief from Trier, the number of counters for each player was well in excess of the number of squares along each side of the board. Then a position as shown in Diagram VIII could arise. If Black is forced to move, he can retreat one square by moving b4-b5. On the rules as we have reconstructed them White would be liable to capture if he occupied b 4 , so with his next move

[^8]

Diagram IX

Diagram X

Black can restore the position by the move b5-b4, and repeat that sequence of moves indefinitely. If capture by intervention was allowed, White could occupy b4, capture the black counters on a4 and c4, thus breaking the mandra and leaving the way open for the penetration of the black position. With a greater number of counters, however, Black in Diagram VIII could keep his front line intact and move an extra counter behind his line.

If there is a compulsion on each side to use its alternate move ('Zugzwang' is the technical term used by chess players), then a four-square formation such as that adopted by Black in Diagram IX (left) could be conquered if it were completely surrounded, as in such circumstances no move would be possible for the surrounded side. It may also be noted that a single counter on a corner square would also be secure from capture unless the compulsion to move forced him away. However, if Black had a free counter able to roam the empty spaces on the board, it could provide the moves that would make both of these positions invincible.

Another possibility is that if a number of a player's counters was surrounded on all orthogonally adjacent squares, as Black's are in Diagram X, they were all liable to capture ${ }^{38}$.

One must admit that it is hard to see from the information at our disposal how a mass of hostile counters could have been attacked with success. The

38 This is the rule in the game of 'Wei-k'i', but in that game an empty interior square can preserve the surrounded formation. Even if such a rule existed in $L L$ the compulsion to move would force the withdrawal of the surrounded counters until the empty squares were occupied, unless there were a free counter to move on the interior empty squares. There is a temptation to refer the proverbial phrase 'ad incita (or incitas) redigere' as referring to such a state of immobility, but the explanation of Isidore (Orig. 18.67) refers to another game (cf. n. 14 supra).
assumption of a compulsion to move is not unreasonable, and might well have seemed so natural as to require no comment; but accepting capture by intervention has little or no warrant in the sources, and, as they are so explicit on the capture by interception, it must surely be an explanation of last resort. Yet clearly something is required besides the compulsion to move ${ }^{39}$, and even capture by intervention is inadequate, if the compulsion to move does not force a defender to withdraw a counter as in Diagram VIII and thus give the opportunity for his opponent to effect capture by intervention.

Appendix

It remains briefly to discuss whether the Greek game π ó $\lambda 1 \varsigma$, or π ó $\lambda \varepsilon ı \varsigma$, should be considered in connexion with this Roman game. It is first found mentioned in a comic fragment from Cratinus ($P C G \mathrm{IV}$, fr. $61=56 \mathrm{~K}$.):

$$
\begin{aligned}
& \text { П } \alpha v \delta \text { ıoví } \alpha \alpha \text { то́ } \lambda \varepsilon \omega \varsigma ~ \beta \alpha \sigma ı \lambda \varepsilon \tilde{u}
\end{aligned}
$$

кגì кúva каì π ó $\lambda ı v$ そ̃v $\pi \alpha i \zeta o u \sigma ı v$.
("O son of Pandion, king of the city rich in clods of earth, you know the one we mean, and the 'dog' and 'city' that they play.")

Pollux (9.98) tells us that in a game called $\pi \lambda \imath v v^{i o v}$ two sides composed of many $\psi \tilde{\eta} \varphi \circ$ (each called $\kappa v ́ \omega v$) distinguished by colour effected captures by interception on a $\pi \lambda ı v \vartheta$ íov (called π ó $\lambda 1 \varsigma$), which had "places arranged [with]in lines" ($\chi \omega ́ \rho \alpha \varsigma ~ \varepsilon ̇ v ~ \gamma \rho \alpha \mu \mu \alpha \tilde{\varsigma} \varsigma ~ \check{\varepsilon} \chi \circ v \delta ı \alpha \kappa \varepsilon \imath \mu \varepsilon ́ v \alpha \varsigma$), and quotes the fragment from Cratinus ${ }^{40}$. The word $\pi \lambda ı v \vartheta$ iov here probably simply means a 'board'41. It is possible that some of Plato's references to $\pi \varepsilon \tau \tau o i ́$ have this game in mind, but one cannot be sure. If they have, one may especially notice the passage in the Republic (487 B) which envisages the losing side as hemmed in and unable to

[^9] playing with counters are surrounded by skilful players and have no move to make, so ..." ${ }^{42}$. A passage too in Aristotle's Politics (1253 a $4=1.1 .9$) that mentions $\pi \varepsilon \tau \tau$ oí may perhaps refer to ‘ π ó $\lambda \iota \varsigma$ ': ó ä $\alpha \mathrm{o} \lambda \iota \varsigma ~ \delta i \alpha ̀ ~ \varphi u ́ \sigma ı v ~ к \alpha i ̀ ~ o u ̉ ~ \delta ı \alpha ̀ ~$

 nature and not by chance without a city is either bad or superhuman, like the 'brotherhoodless, lawless, hearthless' one who was reviled by Homer. For by nature he is both of that kind and one who lusts for war, inasmuch as he is without ties just as in a game of counters.")

Polybius (1.84.7) seems to refer to a war game when he describes the action of Hamilcar, who broke enemy forces into small parties which he redu-

 ("for he cut off and surrounded many of them in partial actions like a good player at counters, and destroyed them without battle"). The passages from Plato and Polybius seem consistent with what we know of $L L$. Whether Pollux and later writers who comment on earlier authors knew what they were writing about is a difficult question to answer: they may have wrongly identified earlier games with those of their own age. Photius tells us that $\pi \dot{\prime} \lambda \varepsilon ı \varsigma$ was played with 60 counters ${ }^{44}$. This is at least consistent with the representation on the Trier relief which very probably shows a game at $L L^{45}$.

[^10]All we can say with confidence is that the Greek game π ó $\lambda \varepsilon \iota \varsigma$ may have been the same as, or very like, $L L^{46}$.

46 I must here express my thanks to Professor Heinz Hofmann, who invited me to read an earlier version of this paper at a celebration on 25th April 1992 in Groningen to mark the retirement of our friend, Dr. H. Schoonhoven; to Professor Margarethe Billerbeck, who secured me photocopies of obscure publications; to the Director of the Beethoven-Gymnasium in Bonn, who provided me with a copy of a paper by A. Schmitt, "Spiele wie die Römer spielten", Jahresbericht des Beethoven-Gymnasiums (1977-78) 17-33, which constructs modern games with the information we have on Roman games; and to drs. J. P. Jongejan, who sent me a photograph of a tabula for $L L$ at Rome. I am obliged to the editors' referees for some useful criticisms and alternative ideas. They suggested I refer readers also to J. Väterlein, Roma ludens. Kinder und Erwachsene beim Spiel im antiken Rom, Heuremata 5 (Amsterdam 1976) and the review by H. Herter in Gnomon 50 (1978) 675-678.

Propertius 4.8.77f.

By Allan Kershaw, Pennsylvania State University

Cynthia lays down the law: colla cave inflectas ad summum obliqua theatrum, aut lectica tuae sudet aperta morae.

Sudet has been most recently, and roundly, condemned by W. S. Watt (MusHelv 49, 1992, 238): "Editors who defend sudet are wasting their effort; it is quite certainly corrupt." Two problems, it seems to me, remain: one concerns the text, the other interpretation.

First, the variant operta ($V^{2} V o$) has in modern times been disregarded. This neglect might be the result of Lachmann's comment, "Operta scribas an aperta nihil interest. Puellae vehebantur in operta lectica, quae aperitur, cum deposita est ad colloquendum." I suggest that the choice of word here is of great importance to the understanding of this couplet. As part of her formula legis (4.8.74) Cynthia forbids Propertius to look for other girls under any circumstances; whether they are on open view in the theatre (77), or, quite the contrary, they are concealed from view in a closed carriage.

This contrast between what is readily visible and what is not appears elsewhere in Propertius (2.15.5f.):
nam modo nudatis mecumst luctata papillis, interdum tunica duxit operta moram.

[^0]: 1 H. Lamer in an excellently comprehensive but somewhat confusing article, "Lusoria tabula", RE 13,2 (1927) 1900-2029, gives plentiful detail. I shall normally refer in this paper to the diagrams as 'boards' and to the disks and hemispheres as 'counters.' K. Schneider, "Latrunculorum Ludus", RE 12,1 (1924) 980-984 (at 981,25) suggests that a kind of roughly rectangular tesserae each with one rounded end, specimens of which are illustrated in the article "Tessera" by G. Lafaye in Daremberg/Saglio (cf. n. 2 infra) 5,128, was used in $L L$. He argues that the word moraris found on one must be a reference to the term mora used in the game and discussed later in this paper (p . 170ff.), and that the fact that the hemispherical kind of counter used in the game is found in a burial at Perugia (cf. n. 12 infra) in association with such tesserae argues for their being used in the one game. As our literary sources refer constantly to the calculi, and sometimes to glass, but never to bone, which was the material of the tesserae, I consider that the negative argument outweighs Schneider's inferences.
 2 Cf. Ch. Daremberg/E. Saglio, Dictionnaire des antiquités classiques (Paris 1877-1919) 3,992995 (G. Lafaye, "Latrunculi") and P. Steiner, "Römisches Brettspiel und Spielgerät aus Trier", Saalburg Jahrbuch 9 (1939) 34-45, Taf. 19-22.
 3 For the text cf. Ae. (= E.) Baehrens, Poetae Latini Minores I (Lipsiae 1879) 221-236; R. Verdière, T. Calpurnii Siculi De Laude Pisonis ... (Bruxelles 1954) and A. Seel, Laus Pisonis: Text, Übersetzung, Kommentar (Diss.) (Erlangen 1969). I have not seen G. Martin, Laus Pisonis (Diss.) (Cornell 1917).
 4 An English translation (with a text) will be conveniently found in J. W. and A. M. Duff, Minor Latin Poets (London 1934). Austin (cf. n. 28 infra) 30 gives one that incorporates his conclusions about $L L$.

[^1]: 5 Ovid with his accustomed dexterity alludes to the word latrunculus: latrocinii sub imagine

[^2]: 6 Varro, Ling. 7.52, latrones dicti ab latere, qui circum latera erant regi, atque ad latera habebant ferrum, quos postea a stipatione stipatores appellarunt, et qui conducebantur: ea enim merces graece dicitur $\lambda \alpha \dot{\tau} \rho \circ \mathrm{v}$. ab eo ueteres poetae nonnumquam milites appellant latrones ("there were named from latus [a side] latrones [bodyguards], who were at a king's side, and had iron [weapons] at their sides. Afterwards they called them stipatores [bodyguards] from stipatio [crowding], and [there were named latrones] those [soldiers] who were hired, for that hire is called $\lambda \alpha \dot{\alpha} \rho \circ$ v in Greek. Hence the old poets sometimes call soldiers latrones"). Cf. Festus $118 \mathrm{M}, 314 \mathrm{M}$.
 7 Lamer (cf. n. 1 supra) 1978, 55 notes the following and similar military terms used in the $L P$ and elsewhere with reference to the game: miles, hostis, bellare (also bella, LP 193, bellator, Ov. Ars 3.359, proelia, Ov. Ars 3.357), perire, imperator.
 8 I shall often call these cells 'squares'. I assume that it is the arrangement that interests Varro rather than the actual number of 36 items.
 9 Cf. Lamer (n. 1 supra) 2004, 15. This is quite a common size ("A number of stone 'boards' have been found in Roman sites in Britain, with squared markings, generally showing 8×8 squares, although the measurements vary", Austin, n. 28 infra, 26). The damaged relief at Trier (cf. P. Steiner, n. 2 supra, Taf. 19) shows a board of which the only intact side seems to have about ten cells.
 10 Daremberg/Saglio (cf. n. 2 supra) 993, figg. 4366, 4367; Lamer (cf. n. 1 supra), 1997,551998,10. It should be noted that artists working on a small scale tend to reduce in their representations the actual number of squares on such boards.
 11 I assume that the two "gaming-boards of the checkerboard pattern" referred to by Dr. M. Mitsos (W. K. Pritchett, "Five Lines' and $I G \mathrm{I}^{2} 324 "$, California Studies in Classical Antiquity $1,1968,199$, n. 36) are in fact latticed boards.

[^3]: 16 For centuriatio see O. A. W. Dilke, The Roman Land-surveyors (Newton Abbot 1971) 133158, and J. Bradford, Ancient Landscapes (London 1957) 145-216. In my diagrams I have put the counters in the cells between the lines. If limes ('path') has its full meaning it may be that the counters were actually placed on the intersections of the lines, as the limites surround the plots of land that correspond to the cells. In practice this simply gives slightly more room, and leaves the game otherwise unaltered. If the terracotta at Athens represented by G. Lafaye (cf. n. 2 supra), 993a, (also illustrated in Murray, cf. n. 17 infra, 26, fig. 13) is intended to represent a position from play, it is disconcerting that there should be shown twelve counters, some on squares, some on lines and some on intersections.
 17 H. J. R. Murray, A History of Board Games other than Chess (Oxford 1952) 9, where it is stated: "in the oldest games [in the old world] ... on a latticed board, a man can move

[^4]: orthogonally any distance, provided the cells passed over are empty and the cell to which it is moved is also empty". I think this should be qualified by the insertion of the word 'probably' before 'can'. Lamer, however, (cf. n. 1 supra) 1930, 28, does not accept that the words in $L P$ 198-199 necessarily imply moves of more than one square.
 18 Murray (cf. n. 17 supra) 54-55, reports this method of capture for many 'war games' from Asia and Africa. The distinction of 'war games' and 'race games' is an important criterion established by Murray.

[^5]: 26 This involves taking Trist. 2.480 to mean (by a common poetic idiom) et tuto fugiens non incomitatus eat.
 27 Whatever the precise nature of ligare and its compounds may have been in the game, the translation 'trap' is the best I can find to convey the idea in English. Anything that is 'trapped' inevitably is also delayed. A referee suggests on ancipites moras ($L P 201$) "es besagt vielleicht, dass der betreffende Stein vorübergehend (während einem oder mehreren folgenden Zügen) unbeweglich (similis legato) bleiben musste, dann wäre auch anceps nicht nur ein ungefähres Synonym von periculosus, sondern würde gemäss seiner Etymologie ($a \mathrm{mb}$ - = 'auf / nach beiden Seiten') und eigentlichen Bedeutung besagen: der calculus darf weder vorwärts noch rückwärts bewegt werden".
 28 R. G. Austin, "Roman Board Games I [II]", Greece and Rome 4 (1934-35) 24-34, and 76-82.

[^6]: 29 Cf. n. 12 supra.
 30 Usually black and white, but occasionally red and white. (Red and white ivory chessmen were common in the last century, and appear in Alice in Wonderland.) References in Lamer (cf. n. 1 supra), 1926, 51.

[^7]: 31 As explained above (p. 167) the passage of Isidore alleged as supporting evidence has to be ruled out of court. No marks have been found on boards or on hemispherical counters; the marks found on tesserae (cf. Lafaye, n. 1 supra, 128-129) do not seem to be appropriate for indicating classes.
 32 Cf. L. Traube, Vorlesungen und Abhandlungen, 3 Bde. (München 1909-1920) 3,56-59. The examples of the meaning saepta, claustra pecorum given in ThLL VIII, 271,44 are from Schol. Iuv. 3.237, the Glossaries, and ecclesiastical Latin.
 33 One thinks of Sparta's soldiers as her wall and the individual men as bricks (Plut. Apophth. Lac. 228 E), and of the celebrated General Thomas J. (Stonewall) Jackson.
 34 This seems to be exaggerating the evidence. Presumably Austin is thinking of the two passages of Ovid discussed above (Ars 3.359-360 and Trist. 2.477-480). He may also have in mind the passages from Aristotle and Polybius which I discuss in my appendix; their relevance is not certain.
 35 Cf. n. 9 supra.

[^8]: 36 Cf. n. 44 infra.
 37 The only games classified as 'territorial' by Murray (cf. n. 17 supra) 92, are Wei-k'i (cf. n. 19 supra) and 'Reversi,' which was invented in Europe between 1880 and 1890.

[^9]: 39 It is not impossible to believe that there may have been a rule requiring a player to move one of his capturing counters into the space occupied by a hostile counter as he captured it. This would have made possible a sacrifice with the intention of inducing an opponent to weaken his position. Austin may have something of this sort in mind, but there is no warrant in our sources for it.

 $\dot{\text { ó } \mu о \chi \rho o ́ \omega v ~ \tau \eta ̀ v ~ \varepsilon ̇ \tau \varepsilon \rho o ́ \chi \rho \omega v ~ a ̀ v \varepsilon \lambda \varepsilon ı ̃ . ~}$
 41 The meaning 'a table of numbers divided into squares' is given by $L S J$ from Vettius Valens 321.1 K . $=308.1$ Pingree. It is true that the two tables can be divided into squares, as could Varro's paradigm (p. 166, above), but it is possible that the diminutive $\pi \lambda \iota v \vartheta$ iov is simply the equivalent of the Latin tabella, and implies no more than 'a statement summarised on a writing tablet'. The manuscripts of Vettius Valens give the headings as kavóviov $\alpha^{\prime} \pi \lambda ı v$ viov, кavóviov $\delta \varepsilon u ́ \tau \varepsilon \rho \circ v$ кaì $\pi \lambda_{1} v$ viov and the like.

[^10]: 42 One must be cautious, especially since a position of immobility could arise in $\tau \alpha \dot{\beta} \beta \lambda \eta$, as explained by Austin in his article cited above, n. 14. At Resp. 422 E ($\dot{\varepsilon} \kappa \alpha ́ \sigma \tau \eta \gamma \grave{\alpha} \rho ~ \alpha v ̇ \tau \tilde{\omega} v-\mathrm{sc}$.
 that Plato had the game π ó $\lambda \varepsilon 1 \varsigma ̧$ in mind. At Leges 739 A the reference to a move ќ́vo $\pi \varepsilon \tau \tau \tilde{\omega} v \dot{\alpha} \varphi$ ' i $\varepsilon \rho \rho 0$ is explained by the scholiast (drawing on Clearchus of Soli, Arcesilaus frg. 11

 1973,39, esp. 1972,27). In the Eryxias falsely ascribed to Plato (395 B) it is said that some counters, if moved, could inflict defeat on opponents so that they would have no counter

 counters derive their power from the current situation on the board, and not from some intrinsic superiority to other counters.
 43 We know that $\alpha \check{\zeta} \zeta \xi^{\xi}$ was used to describe a lone counter (or 'blot') in $\tau \alpha ́ \beta \lambda \eta$ (cf. n. 14 supra). It is possible that the word was used in π ód\&ı̧ too. If so, Ovid's sine compare could well translate it, as $\check{a} \zeta \cup \xi$ is often used in Greek Tragedy with the meaning 'unmarried', and compar is often used of a husband or wife (the instances given at ThLL III 2004, 79 are mainly from inscriptions). Rufinus (Hist. 3.30.1) uses compar to translate $\sigma \dot{\zeta} \zeta \gamma \gamma o c ̧$.
 44 Photius, Lexicon, s.v. $\pi \dot{\prime} \lambda \varepsilon 1 \varsigma ~ \pi \alpha i \zeta \varepsilon ı v ~(t h e ~ p a r a d o s i s ~ g i v e s ~ t h e ~ n u m e r a l ~ a s ~ \xi ' ; ~ P o r s o n ' s ~ c o n j e c-~$ ture of the odd number ζ^{\prime} seems implausible - see the discussion of Lamer, cf. n. 1 supra, 1927, 10); Hesychius (s.v.) tells us that $\delta(\alpha \gamma \rho \alpha \mu \mu \tau \sigma \mu$ ós, which according to Pollux (9.99) $\dot{\varepsilon} \gamma \gamma \dot{\varrho}$

 45 Cf. p. 166 and n. 9 , supra.

