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Abstract. Wo study a class of inhomogeneous BCS models (with complex momentum dependent
interaction coefficients) in terms of a generalized perturbation theory with possibly singular
perturbations in the thermodynamic limit. We start from the averaged homogeneous model, which

we formulate by recent algebraic mean-field techniques. We arrive at a C*-dynamical system over

a classically extended observable algebra, the KMS states of which are in a bi-unique correspondence

to the unperturbed ones. For the momentum dependent gap parameters a rigorous form of
the self consistency equation is derived. The macroscopic phase is evaluated as the average of the

momentum dependent gap parameter phases.

1 Introduction

In discussing many body systems there is a big difference between a strictly microscopic
derivation of a collective phenomenon and its anticipation by making an intuitively motivated
ansatz. In a strictly microscopic discussion the collective variables should be formulated in

terms of (limits of) microscopic expressions, which often have the form of an averaging
procedure. Only these are able to provide a unified, consistent theoretical description and

give then also relevant information on the fluctuations, the microscopic quantities undergo
around the average value. This may be important for a detailed analysis of (quantum) noise.

In superconductivity the ad hoc use of a macroscopic wave function (with a macroscopic

phase) does not comply with the requirements of microscopic consistency (at least
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not in every aspect, as show the discrepancies of its dynamics). In order to obtain a more
comprehensive microscopic understanding of the collective phenomenon in (traditional)
superconductors we elaborate here a class of inhomogeneous BCS models, where the kinetic
energy and pairing interaction are momentum dependent. Since the coupling parameters of
the latter are of dynamical origin it is not unreasonable to attribute to them a momentum
dependent complex phase. More details of the models are described in Section 2.

The basic idea of our approach is to consider the inhomogeneities as perturbations from
the homogeneous BCS-model. which has averaged kinetic energy and interaction constants.
In fact, the deviation from a homogeneous model in our model class may be so strong that it
transcends the class treated in [1], the latter apparently comprising all previous BCS-models
of mathematical physics beside the macroscopically inhomogeneous ones. (The macroscop-
ically inhomogeneous ones employ a parameter dependent scaling in the thermodynamic
limit which is more similar to hydrodynamics than the usual quantum field theory [2], [3],
[4].) There are nowadays several developments to a perturbation and stability theory with
strategies somehow related to ours. Let us mention only the path integral approach with
quantum fluctuations about the most probable classical path |5], [6], and the idea of (7), |8j.
[9], to consider a quantum lattice system as a perturbation from a purely classical one.

Here we use rather recent tools of algebraic mean-field theory to introduce the homogeneous

temperature GNS-reprcsentation [10], [XI]. with its 0 dependent limiting dynamics
[l|. This concerns especially the classical part of the dynamics, which is connected with a

flow on a classical parameter space. In [12] it has been emphasized that such a classical

part arises by extending the physical limiting dynamics from local observables to global
ones if one uses the grand canonical GNS-representation space. This extension procedure is

here replaced by the application of a general rigorously derived scheme [1], how to extract
from the limiting Heisenberg generator a differential equation. The solution of this gives a

multiplicative cocycle in the state space of the one lattice algebra. We carry this through
for the homogeneous physical, reduced, and gauge dynamics. The classical dynamics takes

place here on the small phase space Eg isomorphic to the one-dimensional torus. The used

method is, however, generalizable to rather arbitrary parameter spaces. The form of the

homogeneous limiting dynamics in Prop. 3.4 follows then from the mentioned general scheme.

It transcends the original quasi-local electron algebra 21 and constitutes a C- dynamical
system in the C" algebra Cß C(Eß,$i) of continuous functions from the "phase space" Eß
into the electron field algebra. Both the physical (non-reduced) dynamics and the gauge
transformations (of the first kind) have a non-trivial classical part, that is a rotation on the
torus.

We show that the gauge invariant KMS-states for the reduced dynamics, as well as

their extremal pure phase components, minimize the free energy density. Instability or
metastability does not arise in spite of the mean-field character of the model.

The main part of our investigation is the construction of the limiting dynamics of the
inhomogeneous model. Again one starts with the limiting Heisenberg generator applied to
local observables, where now only the commutators with the perturbations (relative to the
homogeneous local Hamiltonians) have to be calculated. The thermodynamic limit of these
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applied to an observable in the finite (momentum) region A is the commutator with a local
element Pf 6 Cß, that is a bounded local, effective perturbation. In our model class the
limit of the P^, with A tending to the infinite lattice, would in general be totally divergent.
Nevertheless, the limit of the iterated commutators in the perturbation expansions of the
finite time translations applied to local elements may be shown to converge (Appendix).
This limiting dynamics is then extended to all of Cj and constitutes again a C*-dynamical
system with the same classical part as the homogeneous model.

In spite of the rather singular perturbations in our model class the inhomogeneous KMS
states are shown to correspond to the homogeneous counterparts in the analogous way as
for bounded perturbations (13|. This connection is made manifest by the identical classical
parametrization of the pure phase states in both cases. Thermodynamic stability expresses
itself again by the minimalization of a free energy density. The latter has the same values
as in the homogeneous case but is much harder to calculate.

The momentum dependent gap parameters with their (momentum dependent) complex
phases are shown to satisfy as a necessary condition the gap equation in a precise version
for the thermodynamic limit. There is a systematic degeneration for its solutions, which is

parametrized by a momentum independent phase (from the mentioned torus). This macroscopic

phase is here disclosed as the average value of the momentum dependent microscopic
phases.

According to Gorkov |14| the position dependent gap parameters are proportional to the

macroscopic wave function of the Cooper pair condensate. Since only the homogeneous part
of our gap function is directly connected with the condensate, the Fourier transform of our
momentum dependent gap parameter should not be identified with the macroscopic wave
function. Our considerations suggest rather that the rigorous elaboration of Gorkov's idea

requires a macroscopically inhomogeneous BCS- model, which at the present has not been

studied from this point of view.

Altogether one may state that rigorous perturbation theory has a much wider range
of applicability than using bounded perturbations only. This nourishes the hope that
certain aspects of our treatment may be transferred to the perturbation of Green's functions,
provided that the latter starts — not with a free but — with an interacting symmetrized
model.

2 Introduction of the Model-Class

We consider the conduction electrons of a metallic superconductor in a sequence of increasing,
finite volumina Vn. The effective interactions between the electrons are split into two parts:
One part is subsumed into a lattice periodic external potential and gives rise to the Bloch
wave functions with energies er, where the momenta k are taken from a V„ dependent set.
This set is finite, if the er are restricted to a shell around the Fermi energy ep. In this
momentum region one has as second part a pair-pair interaction which is in the average
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attractive.

The Bloch eigenstates are used to realize the electronic CAR-algebra as a tensor product.
With increasing volumina Vn the set of considered Bloch momenta /C becomes countably
infinite. Considering a numbering i : AC —> N, we have for each k i(k) two spin values
o G {t,4} and the CAR-algebra 21 for the considered set of states is

21 ^<g)<B, (2.1)
k£N

with 03 M, M2 ®M2. Here we have considered two spin values in the algebra 03

leading by a generalized Jordan-Wigner representation to (2.1). (Comp. Eq. (2.2) below,
[13, Chap. 5.2.2], and [15]).

We introduce a quasi-local structure in momentum space by associating the local algebra
2lA := rg)jfceA«B with each finite subset A e £ := {A C N | |A| < co}, even if there is no
corresponding volume in position space for A. Dropping the embedding operators we have
2lu := (JV6r 2l,\ as a norm dense sub-algebra of 21.

According to our numbering i we take into account pairs of electrons in the Jordan
Wigner representation for annihilation operators cra, k € /C, a 6 {t, 4}

((g) (oz®CTz)) ® (t72®<7-)® (g lb)
V

J l ' \=i(k)+l '
M-k)-l y OO s

ch 0 (oz®oz)\®(o-®H2)®[ <g IL,), (2.2)

where ox, ay, oz are the Pauli matrices and a± \(ox ± toy). If i(k) k G N we write
Ckf := c£î and c_H := c_^.

The local Hamiltonian for a finite set A of Bloch modes is obtained by adding to the
Bloch energy the pair-pair interaction. Since the latter is due to a complicated mechanism

involving infinitely many phonon exchanges, the exact values of the effective pair coupling
energies are not known. They are usually calculated up to second order perturbation theory
[16|, [17], and in the original BCS-paper [18] they are assumed momentum independent.
We allow rather arbitrary complex values with non-trivial dynamical phases for them and
obtain (see e.g. [19], [20], [21])

#a := Y2£k (cUckt + c-k'c-ki) - 5Z zrfz(ixc'-kA-k>Ak'r, (2.3)
9kk'

k£.\ k,k'€A

with gkk' JjkA for all A", k' € N. Introducing the pair annihilation and number operators

bk C-kiCkt, ilk <iiCkt + c*_klc-ki, (2-4)

we write
9kk'

Jfc6.\ ifc.fc'CA

HA J2£*n*- E 7\TÒ^'' (2'5)
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Mote that bk and rik are embeddings of the same operators b o_ ® ct_ and n j(u2 <8> U2 +
Ua ® cr2) + 112 ® 112 at the lattice site k € N.

As mentioned in the Introduction the basic idea behind our approach is to consider a

driven inhomogeneous BCS-model as a perturbation of a homogeneous one. The latter is

abtained uniquely by averaging the given model data

£ ¦= l»gK\^£k' 0<9 := aSîâp ^ 9kk'' (2'6)

and has the local Hamiltonians

H0A:=-£enk- £ fi-bfo, A 6 £. (2.7)
*6A A:.*:'(EA '' '

/l.s a general assumption of our investigation we assume the validity of Eq. (2.6).

In order to arrive at a well behaved perturbation theory one has to require that the
perturbations

Py := H y - Hl J2 6ekTik - TT, £ Sgkk,blbk, (2.8)
A.-SA

' '
k.k'e.\

with
feit := £k - £¦ Sgkk- ¦= !lkk' - 9 (2.9)

be "small" in some sense. In mathematical physics the most common assumptions imply
that {||Pa|| I A G £} be a bounded net. This allows still for the interesting case, that the

{P\ | A £ £} do not converge in norm in 21 but in a weaker sense in certain representations
ar as a so-called "quasi-symmetric" net [1], [22]. We found, however, that a much weaker

postulate allows for a reasonable dynamical perturbation expansion.

2.1 Model Assumption
We say that the BCS-model is in the allowed model class, it the constants (2.9) satisfy the

following rela tions:

lim 5ek 0, lim ògkki =: 5gk exists with lim Sgk 0 (2-10)
k—>oc k'—too k-ioo

and

lim —- S~] 6gkk. - Sgk - 8gk. 0. (2.11)
Ae£ A *—' I

1 ' k.k'£.\

Here lim denotes the net limit over the index set £.
Ae£

Observe that no summability assumption for the óek and 5gk or their squares has been

formulated, so that ||P\|| may tend to infinity in a rather strong sense.

Concerning the symmetries of our model class we introduce first the internal symmetries
(in reference to the pair structure of the Hamiltonians). Let be V(93) the group of all unitary
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and anti unitary operators in C1. For each r € V(93) we define an (anti-) automorphism by

((g
rakr" r unitary,

Q$ vakv a anti unitary,
ken

and by linear and norm continuous extension (where ak G 03 for all k G N). If o,(HA) /7,\
for all A G £. nt. is called a strict internal symmetry of the model [23].

The gauge group (of the first kind) U(l) acts as a strict internal symmetry group, where

vt e'"-- */2 ® é"',,/2 G M2 ® M2, 0 G [0, 2tt[. We write for convenience

K*~av, ö 6 [0,2t[. (2.13)

For later use we introduce the gatige group for pairs

Ù(1) U(1)/{11,-11}.

An example for an anti-automorphic internal symmetry is the time reversal transformation,

which, however, is not spontaneously broken in the considered models.

The spatial symmetry in our model class is an approximate invariance against
permutations of the fc-indices. The group P of all finite fc-permutations acts in 21 via *-
automorphisms [24|. Most of our considered states are in the folium* JFP(21) which is generated

by the Bauer simplex (5p(2l) of all permutation invariant states. It is remarkable that
our introduced model class has equilibrium states, which transcend this quasi-permutation
invariance.

3 Equilibrium Properties of the Homogeneous BCS-Mod(

The homogeneous model, defined in terms of the net (P°)Ae£ of local Hamiltonians (2.7),
is a (permutation symmetric) mean-field model, for which there exists a well elaborated,
operator algebraic strategy of treating its dynamics [1], [26], [27| and its equilibrium states
[10]. [11]. [23]. [28|. [29], [30]. Let us reproduce the basic steps, supplementing some new
features needed in the subsequent discussion.

We discuss the limiting Gibbs states of the homogeneous model which constitute the

starting point for the further investigations. The unique equilibrium state of a system with

'The notion of a folium is introduced in [25]: A folium ZFC&) of a C* -algebra 51 is a norm-closed,
convex subset of the state space 6(21) with ip/\ e ^(21) for all ip 6 TtfUZ) and A € 21. ^>a is the state
{ipA ;•) (<p;A' A) I {tp;A'A), for A e 21 with {ip;A*A) # 0 and <pA ip otherwise (i.e. ^(21) is closed
under perturbations from 21). There is a one-to-one order preserving correspondence between folia in S(2l),
(quasi-equivalence classes of) representations of 21, and central projections in the universal von Neumann
algebra 23îu of 21. U ZF FC&), Ut, and ct € 9JÎ„ n OT'U are in correspondence, then ZF consists just of the
fljr-normal states on 21, that is linh(^)* a OTny rijr(2l)" r^OT„.
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local Hamiltonian Hy at inverse temperature ß jAj-. > 0 (with absolute temperature T
and Boltzmann constant kß), is given by the Gibbs state u/,//a as an element in the state
space ©(2lA) of the local algebra 21A

J>^ ^ _> c. .4 ^ (wWfc .4) ;=
trA(exp{-/?PAM)

x x trA(exp{-/57/A})

Without changing the notation we extend oi '"A to a state on 21 by continuation with the
trace state. Each «/-accumulation point w of the net (w/)'HA)Aei: is called a limiting Gibbs
state. The state space 6(21) of 21 is uj*-compact and thus at least one accumulation point
exists.

In order to fix a given particle density, we introduce the chemical potential p G R and
the reduced local Hamiltonians H\ by

H\ := H.y - pN.y, Ag£, (3.1)

with the local number number operator

Ah :=$>*, Ae£, (3.2)
(sg A

which counts electrons in the lattice region A. Correspondingly, the homogenized reduced
local Hamiltonian PAr is obtained from PA by replacing e with e — p. in Eq. (2.7). u0'H*
has two external parameters, the chemical potential p G R and the inverse temperature
ß > 0, which are fixed in the following1. The PA, Eqns. (2.8) and (2.9), do not depend on
the chemical potential.

We determine the limiting Gibbs states of the homogenized model by using the symmetries

of the model and the minimum principle of the free energy density for limiting Gibbs
states:

3.1 Proposition
Let be ß > 0 and PAr as introduced above. Every limiting Gibbs state u)q of the net of local
Gibbs states to0'H* minimizes the functional fo(ß, ¦) of the free energy density on ©p(2f):

fo{ß, ¦) : 6p(2t) —> R, u —> fQ(ß,uj) := lim jl (<u, ; H°f) + ltrA (et Hiï))) ¦

where pA G 2lA is the density matrix ofuj\<n^. fo(ß. •) is a w*-continuous affine functional on
the Bauer simplex Sp(2l).

The set 6°,(2l) C <5p(2l) of states with minimal free energy density

/o(/;) := M{f0(ß,oj) \ to G 6p(2f)} inf{/o(/?,w) | u € 3f6p(21)}

TIf the thermodynamic limit of the local Gibbs states is determined at fixed particle density, the chemical
potential // will vary with the local region A. Nevertheless these local chemical potentials converge in the
thermodynamic limit [31]. Here we use this limiting value.
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is a Bauer simplex with extremal boundary d,.6°(2l) 6°,(2l) Cid, 6p(2t) ^ %.

All states ç G r3r6"(21) arc product states (g g determined by solutions g G 6(03) of
ken

the self-consistency equation'

t-xp{-J/,"r(g)}
ß

tr» (exp {-/9/1^)})' l^J
with the effective Hamiltonian h°T := (e - p) n - g ((g ;b)b*-r (g : b*) b). We noie that there
are also solutions g of Eq. (3.3) such that, (g g $ ©"(21).

ken

PROOF: The convergence, the «"-continuity, and the affinity of /o(/i, ¦) is proved in [11,

Proposition 3.9] and the minimum principle for limiting Gibbs states in [10, Theorem 2.3],
or [11. Section 4]. ©p(2l) anti ©j(21) are Bauer simplices with the stated extremal boundary
according to |24, Theorem 2.8], |11. Theorem 4.4|. The self-consistency condition (3.3) is

shown in (28, Theorem II.4], [32, Satz 1.7.5], [10. Proposition II.5], and [11. Theorem 5.4].
D

If we use the parametrization of product states (g) g G ö,©p(21) in terms of g G ©(03).
ken

we find for the free energy density:

fo{0, ®Q) (£- p) (q ¦ n) - g (g : b*) (g ; 6) + - tr»(pln(ß)).
ken P

For ui G ©p(2l), f0(ß,u>) is obtained by integration of fo(ß, (g) g) with the corresponding
ken

decomposition measure of cj (see Prop. 3.3 below).

The solutions of Eq. (3.3), the minimum principle of the free energy density, and the
symmetries of the local Hamiltonians determine the unique limiting Gibbs state:

3.2 Proposition
For ß > 0 and 7/Ar as above, there exists a unique limiting Gibbs state cJq w*-limujß,H''r.

With the critical (inverse) temperature ßc(ß),

(l \e-p\ Q,

ßdß) I 7^ artanh (^) 0 < \e - p\ < f, (3.4)

l oc |c - Ml > 'i-

this state is given

(i) for ß < ßc (resp. Q < ßc if ßc oc) by the product state lJq fg) poi "iti
ken

_ exp(-/j (e - p) n)
e°-tr*(exp(-ß(e-p)n)y ('M

'In the following we identify the states on (B with the corresponding density matrices.
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(ii) for ß > ßc by its extremal decomposition into elements of 9e©jg(21)

2tt

with u)„ (g 0o and

uo J w0-, (3.6)

ke'.

exp(-/?{(e-M)n-A0(e-'V+e'J6)})
00

tr«8(exp(-^{(e-/0n-Ao(e-"ò*+c««6)}))" l'J
A0 is the positive solution of

i) (3.8)
2 ,7(6 - gä + A2

tanh ,g^(g-p)2 + A^

Proof: For /5 < /?c, go in (3.5) is the unique solution of Eq. (3.3) and thus the limiting
Gibbs state Wg is unique. Due to the gauge symmetry of PAr, each limiting Gibbs state Wq

has to bo gauge invariant, i.e. uig u0 o Kg with 6 G [0, 2îr[ and /eg from Eq. (2.13). For
/3 > ße there are solutions g%, ¦d G [0,27t[ of Eq. (3.3) (with A0 > 0 in (3.8)) such that
Uq o Ke Wo+2e for 6 G [0,4 All states in 9e©°(2f) are elements of exactly one orbit of

U(l) in (9r6p(21). The decomposition measure of the unique invariant state ujq m ©/j(^)
into extremal states uj$ is given by the Haar-measure of U(l) [32], cf. also [23]. [30]. O

We discuss explicitly only the case ßc < ß < +oo, but the case 0 < ß < ßc may be

obtained therefrom by continuously deforming the quantities (like A0(ß)) into the region
0 < ßc (which here gives A0(/i) 0). It has some advantages to parametrize the pure phase

states uIq in (3.6) directly in terms of the density matrices g from

Eß:={gt\de[0.2n[}ce(<B), (3.9)

where Qq is from Eq. (3.7). The Lebesgue measure dd/2it (Haar-measure of U(l)) induces
then the measure djt(g) in M\(Eß).

3.3 Proposition
(i) The decomposition (3.6) is the (unique) central decomposition ofuj0. Especially we

fìnti by the spatial decomposition theory for the GNS-representations (U^.ri^A^li) °f
e' qiJ0 and (Ili,H°e,(l°e) of ® g

ken

(H°,H°,n°) r(ll0e,floe,ü0e)dp(e)
JE,

with the corresponding decomposition of the associated von Neumann algebra

r-m

anS := nS(a)" / anS<TO, 3R° -.= n°(on".
¦IE,,
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(ii) The smallest C-algebra Cß C QJc^ tvhicii contains all "mean held operators"

a0 := sdimn^^a*), a G 03, (3.10)
'' ke\

has the *-isomori>hic realizations

C/J^21®C(P/))^C(P)3.2f) (3.11)

where ® denotes an arbitrary C tensor-product, C(Eß) the continuous complex functions

and C(Eß,<ä) the continuous 2l-vaiued functions on Eß. ak G 21(k) is the embedded

a G 03 and s-limA<=£ denotes the limit in the strong operator topology on 03(7^°,).

Each (p G ZFq the smallest folium containinguig, has a unique cr(ZF0,Cß) continuous
extension to Cß. which is also denoted by tp. For this ip we have the following relations:
Setting /v(/) := {</>; ^® /). / € C(Eß). there is a ßv a.e. unique measurable family
Eß 3 g —> tpg G 6(21) with: For A € C(Eß, 21) Cß define tpe G &(Cß) by (<pe : .4) :=
(<pe;A(6)). Then

(To:A)= j (<pe;A)dpv(e)= I (tpe : A(g)) dt^(g). AeC(E0,K)*Ce (3.1 2)
' E3 J Ej

is the central decomposition of ip G &(Cß) in Cß, and

(tp;A)= j (tpe;A)dpv(g), A G 21 (3.13)
Je3

is the central decompositions of tp in 21.

Proof: (i) Obviously (3.6) is the decomposition into permutation invariant product states,
which coincides with the central decomposition according to [33]. The rest follows from the
spatial decomposition theory on the standard Borei space ©(21) (cf. e.g. [34]).

(ii) (3.11) may be derived as in [27]. For A G Cß there is a net (AA)A££. .4A G 2lA. such that
a(9J^,97i^,)-limAe£^A .4. Then for tp 6 ZF°ß C 9J$„ limA€£ {tp : AA) exists and defines

(tp;A). (3.12) and (3.13) are restrictions of the central decomposition on 97i°. cf. also [33].
D

In the sense of [33]. Eq. (3.13) constitutes a parametrization of the central decomposition
in a uniform way for all tp G ZF%.

We study the limiting dynamics (limiting gauge transformations) which arc induced by

the local Hamiltonians (local particle number operators) H\, where

H\ stands for H\. Hf, NA G 21A. (3.14)

We use here and in the following the sign ~ to indicate a variable symbol. The PA are

connected with ß-depondent one-particle Hamiltonians h° G C(Eß,(B)

h°(g) for /i°(g). h°T(g), n G 03, (3.15)
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and unitaries
ù°i(g):=exp(itì,0(g)).

The mentioned connection between H\ and h°(g) is most easily obtained by means of the

limiting Heisenberg generator, the first quantity to be determined in a systematic discussion
of a mean -field dynamics in a prescribed representation.

We stipulate for the following that 21 be identified with the isomorphic sub-algebra
n°,(2l) C Cj C <B(H°ß). Then one obtains

s-lim[//°v..4] [Jr7f,.4], A G 2tA,

with Hf G C(Eß,y.) and HA°(g) J^k€Ah0k(g) for Q G E0- ^k(ß) is the embedding of

h°(g) at site /,- in 21. For h0r(g) we find the same one-particle Hamiltonian as introduced in
Proj). 3.1 and h°(g) becomes h°(g) := h0r(g) + pn.

Each h° h°, h0r. n gives rise to a flow 7° 7}', 7,°'', 7," on Eß, which is the solution of

'1 /~n-»•^<7?e;a> (7?e;[Â°(7?e),a]).

Eß parametrizes grand canonical equilibrium states, so that 7(0rg commutes with /i0r(7(0rg).
Thus 7(0r id. Further rfg exp(itpn) g exp(—itpn) since h0r(g) h°(g) — pn, and

yfg exp(—it n) g exp(itn).

3.4 Proposition
For each net of local Hamiltonians (gauge transformations) H\, A G £, there is a unique
C dynamical system (Cß, R. ¥30), rm for rli0, r'i0r. k" such that for A G C(Eß, 21) =i Cß:

if0 [A) s-lime""°.4Ac-""°, for all t G R, (3.16)

where A —> .4A G 21A is a quasi-symmetric net with s-lim AA A jl). rf is given by

TÌm(A)(e)=ari>)A(^g), Q€Eß, (3.17)

where au, u G U(03), is from (2.12). It holds

JO dur ß li ßOr ,0 „iTt T, OKld K^Olf (3.18)

PROOF: (3.16) and (3.17) follow from a combination of [1] with [22, Prop. 4.2]. See also

[26], [27]. (3.18) is a consequence of (3.17) and the remarks before Prop. 3.4. D

The considered flows 7,° on the differentiable manifold Eß, which is homeomorphic to the
torus T. are obviously differentiable

-f-t^g=-i[h°(^g),^g} G 03*, for all g G Eß, (3.19)
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where 03* contains the tangent spaces of Eß. Eq. (3.19) gives rise to the vector field

\°g:= -i{h°(g),g}, for all g G Eß. (3.20)

Using the phase angle parametrization of (3.6), (3.7), we have e.g.

TSV Qd+W e-i*Vew'" (3.21)

and

\«g» -i[n,g} 2— q*. (3.22)

For a one-times differentiable function / G Cl(Eß) we introduce

(Â°7)(0) := |7?*/(ß)lt=o jtf(^e)\t=Q=: (x0g;df(g)) (3.23)

where the total differential df(g) may be realized by an element in 03** 03 (which is not
unique). À0* extends to C\ := 21® C\E0) =i C'(Ea,21) by

{\°*A}(p) := jtA(y?g)\t=0, for all g G Eß. (3.24)

Let us further introduce C\ A := 21A ®Cx(Eß) Cl(Eß,<äA) and Cß0 := {JA€CClßA}

3.5 Proposition
Let be r( exp(2tZ^°) the * -automorphisms of Prop. 3.4. Then Cß0 is a core for the

corresponding generators Lß0 and for A G Cl(Eß, 2tA) Cß A one has

[L0°A}(q) \Hßh\e), A(e)) - i [X°'A](q). (3.25)

PROOF: The form of (3.25) follows from Eq. (3.17) by differentiation. Since the h° and w"

are in C^, rf leaves Cp invariant. By the product structure of «„, each C0 A is left invariant.
Thus C}0 is a core for Lß0 [34]. D

The minimizing set ©^(21) in Prop. 3.1 is in ©(21) whereas the dynamics (Cß, R, if0) acts
in Cß. By means of Eq. (3.12) we extend the states in ©^(21) to states on Cß and denote the

corresponding minimizing set by &°ß(Cß), in spite of the elements in ©°(2I) not all being in
.P° C .Pp(2l).

3.6 Proposition
The set &°ß(Cß) (affine homeomorphic to ©S(2l)J is homeomorphic to M\_(Eß) by means of

f io90dp(g), p(EM+(Eß),
JEß

5 We renounce in our simple cases to introduce total differentials and Poisson brackets for functions in
r1'-ß.o-



Gerisch and Rieckers 739

winch is the central decomposition on Cß. &°ß(Cß) is (therefore) a Bauer simplex with compact
extremal boundary de&°j(Cß) {cJq | g G Eß}.

6°ß(Cß) consists of all ß-KMS-states of(Cß, R, rii0r) (which minimize f0(ß, ¦) of Proposition

3.1) and is a face in 6(Cß). Its elements are called "stable thermal phases at ß".

PROOF: There is a bi-unique reduction of wfj G &ß(Cß) to a state on 21 which is affine

homeomorphic to M\(Eß) according to Prop. 3.3 (ii). By direct calculation every uj^ G

dc&°ß(Cß) satisfies the /3-KMS-condition for r'i0T [29| and by convex superposition so do

all toß, p G M\(Eß). Let be u a /i-KMS-state to (Cä,R, r0Or). Then it. has the central
decomposition to JE uiedp(g) [35], [36], where ue G ©(21) and we|9i(t| sees the dynamics

with h°kr(g) li,<)r(g). But ue\%.k} is then the unique KMS-state to this dynamics for all
k G N. It has the form (3.3) and minimizes the free energy.

4 Equilibrium Dynamics and KMS-States of the Inho¬

mogeneous Model

Similar to the homogeneous case we extract the first information on the inhomogeneous
equilibrium dynamics from the limiting Heisenberg generator acting on local observables.

In the spirit of a perturbation theory we employ the homogeneous representation space H°3

resp. the "homogeneous C*-algebra" Cß C 03("H"). The weak topologies w-, s-, o-w- refer
to this representation. Thus we study for A G 2lA

s-lim[M,\ .4] s-lim[P"(,r), .4] + s-lim[P;V, .4]
yen " .ven yen

where P\ H^r and PA are from Eqns. (2.5), (2.7), and (2.8), respectively, using (3.1),
(3.2).

s-lhn[PA,,/l] [PA\.4], (4.1)

4.1 Lemma
Under the model Assumption 2.1 it holds for A G 21A, A G £,

/V..-li ./''
A'e£

where
PaA Y,6hk G C(Eß,*A) C C(Eß,X) Cß (4.2)

keA

with
Shk(g) 5eknk - ôgk (g : b) b*k - 6gk (g;b') bk. (4.3)

PROOF: First we consider the case 6gkk> 6gk + Sgki for the inhomogeneities in (2.9). 6gk

has to be chosen according to the model Assumption 2.1. For .4 G 2lA and A' D A wo have

[PA, A] [J2 Sek nk - ±-(J2 69k K) £ bk.) - -L(£ b'k) £ ô^b*), a]
ke.\ ' ' keA' k'e.\' '' ' ke.v k'e.v
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*e.\

- ß>M (-£-1» - (ii, E «a«) [E^
fceA

' '
/fc'eA' ' '

fcgA' /fc'eA

-EM (^E^MmE^) [E^M-
JtEA ' ' /t'€A'

' '

fcgA' t'6A

Now use |l • || -lim r^rr Yl ^9k b*k 0 (since 6gk —> 0) and s-lim p^rr X! ò* =: b*, with ò*j(p)
•Ve£ fcÊ.v

" A'e£ fceA'

(?;&*) 11, comp. (3.10). Thus we have

s-lim[Py, A] [^ fe* nk, a] - []T fy* /j*., a] 6ö - bß [^ fy*7b*,, À
ke.\ ke.\ /t'eA

E (fc(: "* ~ ^5* b'k b'j ~ Sgk bk b'ß) ' A\ ¦

kei\

This proves Eqns. (4.1). (4.2), and with b*ß(g) (g;b*) 11 it follows Eq. (4.3).

Now we consider the case of PA with arbitrary gkki according to the model Assumption 2.1

and choose fy* as lim gkki. Then we have
k'—»oo

0 < mn|[Pv,.4]- [^fetriJt--L J2 {6gk+~cf^)b'kbk,,A}\\
ke.\ ' '

k.k'eA'

i'S II [jv\ E («ft + «ft - ft*-) bkbf. -4] ]
1 ' fc,t'6A'

~ '' '

k.k'ey

with Assumption (2.11). Eqns. (4.1)-(4.3) then follow immediately. Ü

The inhomogeneous coefficients öek and fy**' in PA> make the handling of iterated
commutators incomparably harder than for homogeneous commutators. Nevertheless we may
announce a structure similar to the homogeneous model, the proof of which we indicate in
the Appendix.

For this we introduce the one-particle Hamiltonians hk G C(Eß,$L^) by

hkr):=h0^+Shk (4.4)

with hk from (3.15) and <5hk from (4.3).

For an automorphism group r( in Cß and a bounded selfadjoint operator P G Cß we
denote by (t,)p the perturbed automorphism group (cf. e.g. |13|).
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4.2 Theorem
(i) For each BCS-model satisfying Assumptions 2.1 and for each ß > 0 (ß > ßc(p),

Eq. (3.4), and /tçR fixed) there is a unique C -dynamical system (Cß,R,T|3<¦T',) such

that for each A G CßiA and A G £ there is at0>0 with

rf^(A) a-v,-lim(if«r))p«(A) {if«*)1*(A) for \t\ < t0.

For arbitrary A G C(Eß, 21) Cß, rf(r)(A) writes as

[Tfir)(A)}(g) (<g) eith^)A(y«r)g) (<g) e~ith^) (4.5)
ken ken

with

£-> hk(g) =eknk- (g + 6gk) (g;b) b'k - (g + 5gk) (g;b*) bk eC(^,%j),
and h\ hk — pnk.

(ii) It holds
ß ßr ß ß Br

Tf Tf O Kßt «£( O Tt

(Hi) Denoting
Hßyir)'-=J2hir) eC(P/),21A)^C/3,A,

/teA

the generator L01-^ ofrf has on the core Cl
0 the form

L^A(q) [H0A{r)(e),A(e)}-iX°^A(g), A G Cl(Eß,*A) ^C\

/3,0

ß,A-

PROOF: Appendix. O

If the asymptotic behaviour of A —> PA is more restrictive (PA could be a quasi-symmetric
net), the C*-dynamical system rf of the inhomogeneous model can be obtained as the

thermodynamic limit of the local dynamics as in Prop. 3.4 for the homogeneous model. For
this treatment and more technical details we refer to a future work.

Let us here remember the numerical parametrization of Eß in terms of i)(g) Arg (g ; b*).

Together with
A 1/1 53ky i | I, fy/fc | AA* := (1 + —) g (g;b) H A0,

l g \ \ g i

and Ao from Eq. (2.8), we obtain

hk(e) hÌ= eknk - [A*e-«"+^>0* + A*e'<"+M'>ò*]

where

5ßk := -Arg (l + ^ft-)
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is a microscopic fluctuation around the macroscopic phase d.

Since we are looking for the grand canonical equilibrium states, we have a more detailed
look at HlA G C(E0,y.A) =i C0,A with

H*{q) Pf "(e) £ {(ek - p)nk - Ak[e-'^^b'k + e«*+»*\]} (4.6)
itea

The corresponding automorphisms rfr arise with the flow 7t0r* id and leave the center of
Cß invariant.

4.3 Theorem
(i) The extremal ß-KMS-states we for the C*-dynamical system (Cß, R, r/3r) are indexed

with g € Eß and are locally given as uA := uie\cß A

(tveA;A) trA(e-^-0H^A(g)), A eC(Eß,<äA) ^ C0,A. (4.7)

ui0 fE uiedji(g) is the unique gauge invariant ß-KMS state.

(ii) Replace in Uq of (3.7) -d by g G Eß with ß Arg (g ; b*) and extend this state ujg to Cß

in the way of Prop. 3.3 (ii) leading to the restrictions WgA on Cß>A for all A G £. Then

it holds
«>A Ka)Pa%) Ka)^¦ fof aii A e Z> t4-8)

where the perturbed KMS-state is defined in the sense of [13. Corollary 5.4.5]. It holds
(w%A)p% (cJoA)p^e), with lü^a on the right hand side as state on 21 and (u$A)p°<-e)

extended to CßtA. Varying g G Eß one obtains a homeomorphism between de&ß(Cß)
and de&ß(Cß). which expresses a stability of the (pure) phase structure against the
considered singular perturbations.

(Hi) The set of all ß- KMS-states for (Cß, R, r0r) constitutes a Bauer simplex &ß(Cß) which
is affine homeomorphic to M\(Eß).

(iv) Consider to G de&ß(Cß) as state on 21. Then the free energy density f(ß,u) exists and
it holds f(ß,to) f0(ß) foiß-u) (see Prop. 3.1).

PROOF: (i) Clearly Eq. (4.7) defines extremal ß-KMS-states. If w is extremal /3-KMS, then
it is a factor state. But it must have the form

[ ^Ap(p), ^e&(C0),
Je0

cf. Eq. (3.12), and [35], [36]. A necessary condition is, that w is pure on the center of Cß and

thus dp(g') S(g — g')d g'. It sees locally HA(g) and has necessarily the form (4.7).

Now use the parametrization ê G [0. 27r[ of Eß. For u>e° G deGß(ß) it holds u>e° o kô,

ujeo This implies the gauge invariance and the uniqueness of u>0.
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(ii) Eq. (4.8) is calculated in terms of the density matrices. Since Pv|cflA Pa, A Ç A', it
defines a mapping of lOq onto ue for all g G Eß, which is clearly bi-unique and «/-continuous.

(iii) Obvious.

(iv) The restriction of a factor state u)e G de&ß(Cß) to 21 is given by the product state (use
(4.6) and (4.7))

e-ßK(e)
fg) gk with gk -— _ghr(pU-
ken tr<s(e 0hk(ei)

Then one calculates

g-^>-ritEh-rt(i-^-(a))
1 '

/c^/t'eA
K *

-ÏTiaEft*^*'6*^' ^4'9)
*€A

with £* \/(e* — p,)2 + A£. Now use that (gk ; b*&*) is uniformly bounded and condition
(2.11) in our model assumption. Thus the last term in Eq. (4.9) vanishes in the
thermodynamic limit. Again using (2.11) and the convergences lim A* Ao, lim ek e,

k—,00 k—>oo

lim fy* 0, lim 5dk 0, and lim Ek E0 y/(e — p.)2 + Aq, we find for the (net) limit:
k—»oo k—>oo

&<*»:%) - (-")('-^^(f))-(â'*""(f))-"ke
rOr

^C?/;tr)- (410)

We find for the entropy density of the factor state Cg) gk G de6ß(Cß) (as state on 21):
ken

lim—trA ((g) £*ln(g) gk) lim —T V tr<s(ß* In £>*) tropin g)
A«c |A| Vsa ibsA ' Ae£ |A| ^

since limfc^oo gk g. Now the first equality in (iv) follows with Prop. 3.1. The second one
follows in the same way by replacing PA with PAr in (4.9) and (4.10).

In Propositions 3.1 and 3.2 we have determined the limiting Gibbs states of the
homogeneous BCS model with the help of the minimum principle for the free energy density as

a functional on ©p(21). (iv) demonstrates that the free energy alone is not suited to identify

specific KMS-states (or even limiting Gibbs states), because there are arbitrarily many
states ui ei 6P(21) or w G 6p(2l) with the same free energy density fo(ß)- For the inhomogeneous

model the permutation symmetry of the limiting Gibbs states (KMS-states) is lost
and there is no obvious domain where the free energy density has to be varied.
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4.4 Theorem
Denoting

>/fo ft)2 + A2, and ßk ß + 6ßk

for all k G AC the complex gap parameters A*c '** of the extremal ß-KMS-state states
satisfy the "self-consistency equations"

Proof: An elementary calculation shows for gk exp(-£ - ßhTk(gT)), g% G Eß:

1 v- A*_ _iÔL t (ßEkS!(e»«Œ^) - UÌEè'-'-(f)
/teA ' ' keA

A°e-»tanh(^ ^°e-*
2P0 V 2 / g

Using lim^oop,* e/ + fy* and (1 + ^)A0 Ate~Ml, it follows

*"-"• - sàD»+'•>£•-* *¦¦'(")
itea

1

E A* _itì //tf£/t\
gì* e l tanhJ 2P* V 2 7

1 '

keA

D

Thus we have demonstrated that in our model class, which is rather large for a perturbation

theory, the dynamics and KMS-states may be determined explicitly and have the

expected shape. In the special case, that the perturbations constitute a quasi-symmetric
net |l] one can employ [22] to derive that the unique gauge invariant /i-KMS-srate u>0 of
Theorem 4.3 is the unique limiting Gibbs state. In our general case the corresponding state
ment is still unproven, in spite of having at hand the minimum principle of the free energy
density for extremal KMS-states. The equality of the inhomogeneous and homogeneous free

energy density demonstrates how coarse grained the thermodynamic level is in comparison
to the quantum statistical equilibrium states.

The self-consistency equation (4.11) for the /c-dependent complex gap parameters A*e~"'',
are here rigorously formulated and deduced in the thermodynamic limit. They have here

solutions which are fixed up to a fc-independent, global phase ß. The other way round ß

is obtained as the average of those ßk which correspond to a solution of the gap equation.
This makes explicit the collective nature of the macroscopic phase angle.
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Appendix

A Proof of Theorem 4.2

(i) We consider only the special choice of the coupling constants

fy/t/t' fyfc + fyfc', (A.l)

i.e. we use the asymptotical form of the <?**.. The general case follows with

Pa - (]T fc*n* - JL J2 (fy* + fy7) 6*6*<) J (A.2)lim
A6£

keA ' ' k.fc'eA

Hm || — Y^ (ô0kk> - fyfc - fyfc') 6*6*.I 0
' '

fc,fc'eA

according to the Assumption 2.1. Now use [13, Proposition 5.4.1]

||r;p(.4)-r,(.4)||<(el(l«-l)||.4||, P G Cß

for the difference term. Thus it suffices to prove (i) for

P\ E£* "* ~ 177 E ^9k + 59k'i b'kbk''

keA ' '

fc.fc'SA

We estimate the perturbation series of (rf (r,)PA for these inhomogeneities and show that
all occurring limits can be interchanged. We consider only the case (r, )Pa. The reduced

dynamics (Tf0r)PA can be treated in the same way.

To simplify the notation, we write:

.4' := rf°(.4), for A G C0.

We divide the rather lengthy proof in a number of Lemmata. Their proofs will be

sketched while for details we refer to a future work in a more general context, which includes
the present results.

A.l Lemma
For An & %i- >' & N. and t, tu...,tneR it holds

Si.i?[p;-,[..,[^,^]...]] [^,[..,[*,4]...]] (a,,

->ßwith Pçi £ ôhk G C(Eß,%}) from Eq. (4.2).
ken
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PROOF: One can show that [PA, [••-, [PA Afi] • • •]] is a fixed polynomial in the following
kinds of operators:

7TT / o-k Xk, X G 03 and a* G C with lim a* 0, (A.4)
|A| ^ *-eo

ßn, BrleC(Eß,<äcl).

A-, Y Xk is uniformly bounded and strongly convergent (Prop. 3.3 (ii)), A-{ ^ a* i* converges
fce£ 'fce£

in norm to 0 and Pn is fixed. Thus s-limA6£ [PAn, [• • •, [PA An] • ¦ ¦]] exists. The (norm-)
limit of a monomial in operators as given in (A.4) vanishes if it contains a term vh Y ak xk-

ken
Moreover, the commutator of such a monomial with PA vanishes in the limit as well as
the commutator of PA with rk YI xk- This allows to write down the n-fold commutator

fce£

[PtA, [¦ ¦ ¦, [PA,.4n] • • ¦]] up to terms vanishing in norm for large A G £ and (A.3) follows.
D

A.2 Lemma
For An G 21n, n G N. and t G R it iioJds

aTim/(di-i'''"'di4^M--[p--4'J--]] (A'5>

fadti---f^dtn[p^.[--.[p^..^

PROOF: For each w G Wlß„ we show lim /J di, ¦ ¦ ¦ /„'"-' dt„ (w : [PA\ [..., [PA', .4n] ...]]>

/od'i""/o""' d*n(w;[Pn'",[»-, [Pff'.^nl ¦•¦]])¦ The n-fold commutators in (A.5) are

uniformly bounded in norm for all t,ti,..., tn and sufficiently large A G £. This allows to apply
the dominated convergence Theorem (Lebesgue) which is still valid fot the nets indexed by

£ [32, Prop A2.2.3] and we find:

inn
.\e£ [dti-.-f^dt^u^.l-,^,.^-

The strong and the <r strong topology coincide on norm bounded sets [37, Lemma II.2.5]
and the a-strong topology is finer than the rr-weak topology. Thus Lemma A.l implies

h6m<W;[PA-,[.--,[PlSAy.-.]]) (W;[P^,[...,[P^,An]...]]). D

A.3 Lemma
Let be n G N. il G £. and set

Cn := max {|£>*| ||E«e*n*| ' |E«ftftï| ' L HnH ' H6*H Hfc*nU ' H«ft6*H I k e "} '

ken ken ken
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Then it holds:

(') \\{n\ [•••-[PA'.^n] •••]]! < rt!(12C7n)"C7n \\An\\,

||/td*i •••/'"'dt«[PÂ".[---.[PA1.^] •••]]! < (12Cnt)"Cn \\Anl

00 rt ft x- 1 1

(Hi) E||/o^"7o chn[P^,[-,[p{',An]...]]||<oo, fort<—.

PROOF: We only have to prove (i). Then (ii) and (iii) follow immediately.

At first we estimate the number of monomials of operators as in (A.4) in a commutator
Pa', [' ¦ ¦, [Pa An\ ' ' ']]¦ Using [A, BC] B[A, C] + [A, B]C to factorize the ?i-fold commutators,

one finds that there are at most 6" n! such monomials. Note, that this estimation
Uso counts monomials which vanish in norm for large A.

Now we give a norm estimation of such a monomial. For this we have a look at the
various terms in such a monomial:

[.) The operators Bn in (A.4) are of the form [Mu {¦ ¦ ¦, [Mkl, A^} ¦ ¦ ¦]], ki < n, and Mi,
1 < i < k\, is the time evaluation of some M G { Y 6/t, Y 6*, Y fyfc6fc, Y fyfc6fc- Y öeknk}.

ken ken ken ken ken
This implies:

l|Pn||< (2Cn)*J.4fi||. (A.6)

II.) Now consider a term A; Y xk as in (A.4). The operator .r G 03 is given bv x
ken

[Ni, [¦ ¦ ¦, [Nk2, iV*2+1] • ¦ ¦]], k2 < n - 1, where A, G 03, 1 < 1 < k2 + 1, is the time evaluation
if some N G {b,b*}. This implies:

|-!-X>fc|<(2c7fi)'- + 1. (A.7)
|J ' fc€£

III.) Finally we have to specify rK Y afcxfc, with lim a* 0 in (A.4). Here one finds that
I I

*g£ fc->oo

B B x [N{. [¦¦ ¦. [Nk3. Nk3+i] ¦ ¦ •]], k3 < n - 1, with N, G 03, 1 < ; < k3 + 1, as the time
fcs+i

¦valuation of some N G {6, /;*} as above, a* is given by a* \\ c* and c* € {1, &ek. 5gk, fy*}
1=1

for 1 < i < kz + 1. This implies:

IIt^e^HI-^"^1- (a-8)

IV.) Each monomial contains exactly one term A'n and the number of commutators which
;:an be found in the above terms is exactly n. Thus we have ki + k2 + k3 n and the norm



748 Gerisch ind Rieckers

of a certain monomial M is estimated with Eqns. (A.6)-(A.8) by

||M|| < (2Cçi)k'+ki+l+k3+l ||.4n|| (2Cn)"+2 \\An\\.

Together with the number of monomial 6"n!, (i) follows. O

Now we are ready to prove the main result of Theorem 4.2:

a-w-lim(rf0)^(^n) (rf°)pn(.4n).

We consider the perturbation series [13, Proposition 5.4.1] of (r, )PA(.4n) for +n G 2ln,
ii C A, and t < j^:

00 rt f-l„-i
(rfYHAn) rf°(^n) + E'" / d'>"7 dr„ [p<». [¦ • •. [p(>. .4n] • • •]]

n=0 ^0 ^0

Using Lemmata A.2 and A.3 (iii), we can evaluate the a-weak limit by the help of an
e/3-argument.

Finally, the C*-dynamical system (Cß,M.,r0) is obtained for arbitrary .4 G C,- as

t0(A) := lim(rf°)pn(^).
ng£

The rest of Theorem 4.2 (i) follows by straight forward calculations.

(ii) Compare Eq. (4.5) for t0 and r0T and use Prop. 3.4.

(iii) Differentiate Eq. (4.5) and observe that r, leaves Cß0 invariant.
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