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Abstract. We introduce a definition for a 'hidden measurement system', i.e., a physical entity
for which there exist: (i) 'a set of non-contextual states of the entity under study' and (ii) 'a
set of states of the measurement context', and which are such that all uncertainties are due to a

lack of knowledge on the actual state of the measurement context. First we identify an explicit
criterion that enables us to verify whether a given hidden measurement system is a representation
of a given couple S, [. consisting of a set of states E and a set of measurements E measurement

system). Then we prove for every measurement system that there exists at least one representation
as a hidden measurement system with [0,1] as set of states of the measurement context. Thus,
we can apply this definition of a hidden measurement system to impose an axiomatics for context
dependence. We show that in this way we always find classical representations hidden measurement

representations) for general non-classical entities (e.g. quantum entities).

1 Introduction

In [1], Aerts introduced the 'hidden measurement approach' to quantum mechanics. He

considered the quantum state as a complete representation of the entity under study, but he
allowed a lack of knowledge on the interaction of the entity with its measurement context
during the measurement. This idea can also be put forward as follows: with every quantum

measurement corresponds a collection of classical measurements (called hidden
measurements), and there exists a lack of knowledge concerning which measurement is actually
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performed1. Explicit 'hidden measurement models' have been introduced for some 'typical'
quantum systems (see [1], [2], [4], [5], [6], [8], [10] and [12]).

In this paper, we apply these idea's within a much more general framework. In stead of
only supposing the existence of a set of states for the physical entity (denoted by E), we also

suppose the existence of a set of states of the measurement context (denoted by A) which
corresponds with the collection of hidden measurements. For an as general as possible class

of systems defined by a set E of states and a set £ of measurements (called 'measurement
systems' and abbreviated as m.s.) we will prove that there exists an equivalent representation
as a 'hidden measurement system' (abbreviated as h.m.s.) such that the probabilities that
occur are due to a lack of knowledge on the actual state of the measurement context. .In this
way we find for every m.s., and thus also for quantum mechanics, a classical representation
as a h.m.s.

In section 3.3 we illustrate how an additional structure on the m.s. (for example, the
geometric structure of quantum mechanics) can be induced on the h.m.s. in a natural way.
Thus, the classical representations that we consider respect the symmetries of the given
entity. We also identify the criterion that enables us to verify whether a given h.m.s. is a

representation of a given m.s. (see section 4.2). Such a criterion is an essential tool for any
further study that uses this 'hidden measurement axiomatics' for context dependence. In
[10] and [11] we have build a complete classification of all possible h.m.s.-representations for
a given quantum m.s., starting from this criterion.

For a general definition of the basic mathematical objects that are used in this paper
(rj-fields, cr-morphisms, probability measures, measurable functions etc..) we refer to [7]

and [24]. We mention that from a mathematical point of view, the representation that
we introduce in this paper coincides sometimes with Gudder's proof on the existence for
contextual hidden variable representations2 of systems described by orthomodular lattices
(see [17]). A first theorem on the existence of a hidden measurement representation for
finite dimensional quantum mechanics was contained in [1]. A generalization of this theorem
to more general finite dimensional entities can be found in [3]. The specific case of mixed
states was considered in [9], and the general proof for the existence of a hidden measurement
representation for infinite dimensional entities can be found in [13]. Finally, we remark that
the results presented in this paper (except for section 3.3) where made known in [10].

2 Assumptions of the approach

In this section we consider a situation when there is a lack of knowledge concerning the
interaction of the entity under study with its measurement context, i.e., when the state3

'For a general physical and philosophical background of the idea of hidden measurements we refer to [1],

[3], [5] and [10].
2For the debate on this kind of representations we refer to [16], [19] and [26].
3We exclude the situation of a lack of knowledge concerning the state, i.e., if we write 'state', we mean

'pure state'. For a well-founded definition of state we refer to [21].
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of the entity does not determine the outcome anymore. In such a case, when we perform
a measurement e on an entity in a state p, we might even be lucky if we manage to find
a formalizable statistical regime in the occurring outcomes. As a consequence, a general
theoretical treatment of these measurements is a priori not possible. Nevertheless, after
stating a few reasonable assumptions, it is possible to construct a framework to study these
situations:

Assumption 1 There exists4 a set of possible descriptions of the measurement context on
the precise time that we decide to perform the measurement, i.e., there exists a set of
'relevant' parameters for the measurement context. We call this set of relevant parameters the
'states of the measurement context '.

Assumption 2 The result of a measurement, which is the result of the interaction between
the entity and the measurement context, is completely determined by the state of the entity
and the state of the measurement context, i.e., there is a 'deterministic dependence' on the
initial conditions.

Assumption 3 There exists a statistical description for the relative frequency of occurrence
of the states of the measurement context during the measurement.

We suppose that all these assumptions are fulfilled. In the next sections, we will denote
the set of states of the measurement context as A. For a fixed state of the measurement
context A G A, the measurement process is strictly classical5 (because of the deterministic
dependence), and thus, for every such strictly classical hidden measurement there exists a

strictly classical observable:

•fix ¦ S - Oc (2.1)

Where E is the set of states of the physical entity and Ot is the set of possible outcomes
of measurement e. Thus, we have the following set of strictly classical observables that
correspond with the different possible states of the measurement context:

$a {<?a|A g A} (2.2)

Since there exists a relative frequency of occurrence for states of the measurement context,
there exists a probability measure:

uA :Sa -[0,1] (2.3)

4We remark that 'existence' is not equivalent with 'knowledge'. Thus, we don't have to know the set of
possible descriptions of the measurement context.

5We use 'strictly classical' in stead of 'classical' since we exclude the situations of unstable equilibrimi
that occur in most classical theories.
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Where Bf, is a cr-field of subsets of A. Thus, we are able to compute a probability defined

on subsets of the set of outcomes, for every given initial state, i.e., we obtain an 'outcome

probability' for every measurement e on the entity in a state p:

Pp,e : Be - [0,1] (2.4)

Where Be is a cr-field of subsets of Oe. In fact, we have summarized, and represented, the
'unknown but relevant information' of the measurement process (i.e., all possible interactions
during the measurement, for all possible initial states), in a couple consisting in: a set of

strictly classical observables $a and, a probability measure p,\ defined on these observables.

In the last section of [11] we illustrate how these mathematical objects are encountered in
Aerts' model system for a spin-| quantum entity.

3 An axiomatics for context dependence

In this section we translate the assumptions of the previous section in an axiomatic way.

3.1 Measurement systems (m.s.)

We characterize the physical entities that we consider by the following objects:

• a set of states S and a set of measurements £.

• Ve G £, a set of outcomes Oe represented as a measurable subset of the real line.

• Vp G E,Ve G £ : a probability measure PPte : ßf —> [0,1], where ßc are the measurable
subsets of Oc.

We call E,£ a m.s. and denote the collection of all m.s. as MS. Let Oe Ue(ieOe, Be —

{B E Bf\e E £} and Ve {B Ç Oe|e G £}¦ For a fixed set of outcomes O and a fixed set

of states E, the set of all E,£ G MS with 0£ Q 0 is denoted as MS(E.O). If £ contains

only one measurement e we call it a one measurement system (abbreviated as lm.s.), and

we denote it as E.e. The collection of all lm.s. is denoted as MSo. To summarize all

probability measures that characterize a m.s. within one mathematical object we introduce
a map P^f '¦ E x £ x Be —? [0,1], which is such that Vp G E, Ve G £: PPte is the trace of Pz,e

for a restricted domain {p} x {e} x Be, and for ail B E Be:

Pp,e(B) Pr,e(BnOe) (3.1)

For this collection of m.s. we express in the following definition the relation '.. is repre-
sentable as .' in a mathematical way.
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Definition 1 Two m.s. E.£ and £',£' air called math em citi rally equivalent (denoted by

E,£ ~ £',£',) if there exist two maps : E —> E' and ?;:£—> £'. both one to one and onto,
and if We E £, there exists a o-isomorphism v : B,. —? B,,(,,) such that:

Vp e E,VB e B, : P„,e(S) P<{p)Me)(u(B)) (3.2)

Clearly, theorems on the existence of certain representations of a m.s. can be expressed
in terms of mathematical equivalence. We end this section the notion of 'belonging up to
mathematical equivalence'. Let £,£ G MS and N.N' Ç MS. If there exists E',£' G N such
that E',£' ~ E,£ we write:

E,££N (3.3)

3.2 Hidden measurement systems (h.m.s.)

In the following definition we introduce these m.s. that are related to parameterized sets of
'compatible' strictly classical observables, i.e., strictly classical observables with a common
set of states and a common set of outcomes.

Definition 2 E.£ G MS is called 'strictly classical' if Me E £¦ e is a 'strictly classical
measurement', i.e., Vp G £,VB fc Bc : P„.e(B) fc {0. 1}.

If E, £ is a strictly classical m.s. then, Me E £ there always exists a strictly classical observable

fic : E -» 0,, such that Vp fc E and MB E Be we have Pp,e(B) lB[<pe{p)] Ab is the
indicator6 of B). We use this property in the following definition, where we introduce a

parameterization of a set of strictly classical measurements with common sets of states and
outcomes. In this definition we denote Pp,e>. as Pp \ and the set of all subsets of the set A as

Va-

Definition 3 Let £ {cA|A fc A} and lei Oe be the outcomes ofc\ for all A fc A. E. £ 6 MS
is called a '\-m.s. ' if there exists a set

*A {VA:E->0E|AeA} (3.4)

which is such that Mp E E.VA G A.MB G Be : PP.\(D) 1b[va(p)]- We introduce a map
AA : S x Ve -> VA such that Mp G E,Vo G 0£,MB G V£ : AA; {A G A|<^(p) o} and
AKB UogBAA° (AA° is the image of(p,{o}) and A\H the image of(p.B)).

One easily verifies that we are able to restrict the domain of AA to E x Be. To avoid
notational overkill, we apply the same notations for the map AA when defined on E x Be as

6The indicator ls : Oe — {0, 1} is such that Vo 6 B : lB(o) 1 and Vo € Oe\ß : lB(o) 0.
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when defined on S x Ve (which of the two domains we consider will follow from the context,
or will be specified). For a fixed state p G E, we can consider AAP : Be —? V\, i.e., AA with
the domain restricted to {p} x Be- For every fixed state p G E we can introduce tpp : A —> Oe
which is such that VA G A : fiv(\) <px(p)- Let AA(E x Be) {AA^|p G £,VB fc B£}-

Proposition 1 Let B\ be a sub-o-field of V\ and let AA(E x Be) Ç BA. For all p fc E,
AA : E xBe —> Ba defines a a-morphism, namely AAP : Be —? Ba, andMp G E, <fip : A —» Oe

is a measurable function.

The proof of this proposition is straightforward and therefore omitted.

In the following definition we introduce a probability measure on a collection of strictly
classical observables in the following sense: we consider a new (in general non-classical)
measurement by supposing that one of the strictly classical measurements corresponding with
the strictly classical observables occurs with a given probability. The idea of defining new
measurements by performing one measurement in a collection has been introduced by Piron
(see [21] and [22]). The idea of creating non-classical measurements by considering classical

measurements, equipped with a relative frequency of occurrence, has been introduced by
Aerts in his model system for a spin-| quantum entity (see [1] and [3]).

Definition 4 .4 A-lndden measurement model' YZ,£, u\ consists in:

i) a A-measurement system E,£

ii) a probability measure u\ : Ba —» [0.1] that fulfills AA(E x Be) Ç ßA

Define eß as the measurement which is such that a strictly classical measurement e\ E £
occurs with the probability determined by u, i.e., MB G Ba, the probability that A 6 B is

pt,(B). The lm.s. E,e^ related to Y,,£,pi, is called a 'fiA-h.m.s.'. If ut, is not specified, but
A is, we call it a 'A-h.m.s. '. If p\ nor A are specified, we call it a 'h.m.s. '

Thus, every A-hidden measurement model defines a new one measurement system if we

suppose that pA expresses a lack of knowledge concerning which e\ G £ actually takes place.
Since in general, the measurements eß are not strictly classical, they are related to non-
classical observables. In this definition one easily sees that A can indeed be interpreted as

the set of states of the measurement context in the sense that for every given A G A, e^

determines an interaction between the entity under study and the measurement context.

Proposition 2 Let E.e,, be the lm.s. related to a A-hidden measurement model YZ,£,ii/,
and let PpCfi be the trace of Pz,eu for a restricted domain {p} x {e^} x Be- Mp E E.V7? G Be'-

Pp,e>fB) =pA AAB) (3.5)
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Proof: Since AA(E x Be) Ç BA, Pz,e is well defined:

ExBf —+ [0,1]

AA \ /n„
Ba

Vp G E.Vß G Be: P„„(B) nA({\\9x(p) E B}) /7A(AA

Define the set of all h.m.s. in MS0 as HMS0. the set of all A-h.m.s. in MS0 as HMS0(A),
and the set of all ^A-h-m.s. in MS0 as HMS0(pa)- hi the following definition we extend
Definition 4 to h.m.s. with multiple non-classical measurements, all of them defined in the
same way as we defined eß in Definition 4, i.e., we suppose that Ve G £, there exists a set of
classical observables, paramertized by a set A of states of the measurement context.

Definition 5 Let E,£ G MS. If Me E £ : E, e G HMS0 we call E,£ a h.m.s.7. If Me E

£ : E, e G HMS0(A) we call S,£ a A-h.m.s. IfMc E £ : E, e G HMS0(^1 we call E,£ a

p\-h.m.s.

The set of all h.m.s. is denoted as HMS. For a fixed set A, we denote the set of all A-
h.m.s. as HMS(A). For a fixed probability measure p\. we denote the set of all pA-h.m.s.
as HMS(/iA) (when the specification of A is not relevant, we will also use the simplified
notation HMS(/t)). Clearly we have HMS(pA) C HMS(A) C HMS C MS. For a fixed
set of states E and a fixed set of outcomes O we denote the set of all h.m.s. in MS(S, 0) as

HMS(E,0). Again for fixed sets E and O we denote the set of all A-h.m.s. in MS(E,0)
as HMS(E,0, A) and the set of all ^A-h.m.s. in MS(E,0) as HMS(E,0,//A). For every
E, £ G HMS we can define a map A A : E x £ x Be —* V\, such that Ve G £, the restriction of
this new map to E x {e} x Be corresponds with the map introduced in Definition 3 and, such

that MB E Be : AABe AABff°l (we denote the restriction of this new map to {p} x {< } x Bias

AAp,e). The results of this section remain valid for this new map if Ve G £, we replace
AA by the map AAe : E x Be —* V\ (which is obtained by restriction of the domain of
AA : E x £ x Be —? V\), if we replace AAP by AAp,e : Be —> V\ and if we replace <fip by
V?p,e : A -» 0£.

'We remark that the symbol £ which appears in Definition 4 (i.e., a A-set of strictly classical measurements)

is from a conceptual point of view completely different from the one which appears in Definition 5

(any set of measurements on an entity with S as set of states such that all e 6 £ are defined in the same way
as we defined e^ in Definition 4), i.e., for every e 6 £ of Definition 5 there exists a set of strictly classical

measurements £e.
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3.3 Compatibility of the definition of a h.m.s. with the geometric
structure of quantum mechanics

If there exists an additional structure on the set of all possible outcomes of a measurement
system8, one could demand that this additional structure induces a structure on A. In this
section we show how the additional structure in the description of a physical entity can be

implemented in a straightforward way within this framework. We consider the case of a

quantum entity submitted to measurements with a finite number of outcomes. We will show

that it suffices to have a h.m.s.-representations for only one of the measurements to obtain
a representation for all measurements. If £ consists of all measurements with n outcomes,
we can represent such a measurement by 77 eigenvectors pcA,. ,pe,n and n corresponding
eigenvalues oe,i, • • • ,oe,„. Consider one given measurement en (with p0,i,. ,Po.n as eigenvectors

and ou,i,..., 0o,n as respective eigenvalues) for which we have a h.m.s.-representation,
i.e., there exist:

<t>.\.o Wo.x ¦¦ E -> {po., po,,}|A G A} (3.6)

and

//AiO:Ba-[0,1] (3.7)

that characterize this h.m.s.-representation. Then, we can define a representation for every
e G £ in the following way:

$a., {<fic\ ¦ E -> {po.i,...,Po.n} :?>-> Ueocp0iJ,oU-1(p)\X G A} (3.8)

/'A.e Pa.o (3.9)

where Ue is the unitary transformation defined by Mi : pe,, UApo.,)- In this way, the
h.m.s.-representation clearly 'respects' the structure that characterizes this quantum entity.
For an example of the application of eq.3.8 and eq.3.9 we refer to Aerts' model system which
can be found in [1], [2], [¦!]. [6], [8] and [10], and which is also discussed within the formalism
of this approach in [11].

4 On the existence of h.m.s.-representations

Betöre we proceed we need to introduce some measure theoretical notations and lemma's.
Nonetheless, to avoid a notational overkill in the main section of this paper, we have collected
all lemma's and proofs in an appendix at the end of this paper.

*For example, a partial ordering of the subsets of all outcomes and/or the implementation of spatial
symmetries.
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4.1 Some mathematical preliminaries and notations

First we will introduce and study a collection of mathematical objects that'll play a crucial
role in the characterization of the h.m.s. in HMS, and thus, also in the criterion for the
existence of h.m.s.-representations which will be presented at the end of this section.

Definition 6 Let B be a Borei algebra, and let p : B —> [0,1] be a probability measure.
Define B/u as the set of equivalence classes for the relation ~ 077 B. which is defined by:
B ~ B' <=> fi(BAB') 0. We call (B,u) a measure space if B B/p, i.e.:

{B\BeB,p(B) O} {0} (4.1)

Two measure spaces (B,p) and (B',u') are isomorphic (denoted as (B,p) (B',p')), if there
exists a o-isomorphism H : B —? B' which is such that MB E S : p(B) p'(H(B)).

One can verify that B/p is again a Borei algebra, and that p induces a probability measure
on Bj p. For a proof we refer to [7]. The Borei sets of [0,1] will be denoted by B[o,i] and the
Lebesgue measure by /i[o,i]- The quotient B[o.i]/V[o.i] is denoted by B» and the probability
measure introduced on B\\ by /i[o,i] as p\\. If we consider the measure space (JB\\,p.\\), we
omit the index R in pw (in Lemma 1 we will see that that this cannot lead to any confusion).
To characterize 'not to big' Borei algebras we have the following definition:

Definition 7 We call a Borei algebra B separable if there exists a countable dense subset,

i.e., if there exists a set V {B,\i E N} which is such that the smallest Borei subalgebra of
B containing TZ) is B itself. We call a measure space (B,p) separable if B is separable.

Let M be the collection of all classes consisting of isomorphic separable measure spaces, i.e.,

every A4 in M is a class of isomorphic separable measure spaces. In the appendix at the
end of this paper, we characterize M in an explicit way. On M we introduce the following
relation9.

Definition 8 Define a binary relation < on M by: M < M' ifM(B,p) E M andM(B',p') E

M1, there exists a o-morphism F : B —> B' such that MB E B : p'(F(B)) p(B).

Clearly, it suffices to have one rr-morphism F such that MB G B : p'(F(B)) p(B).

Proposition 3 The o-morphism F in Definition 8 is one to one.

The proof of this proposition is straightforward and omitted. Denote the set of all integers,
smaller or equal then a given r? G N as Xn. Let Bn be the Borei algebra of all subsets

9In [11] we prove that M. < is a poset, i.e., < is a partial order relation.
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of X„ and let B^ be the Borei algebra of all subsets of N. Denote the class of all sets

isomorphic with X„ as Xn, the class of all sets isomorphic vvitli N as Xn, and the class of
all sets isomorphic with R as Xjj. Let X U,1(=nX„ U Xn U Xi. For a given set X E X,
denote the set of all subsets of A' as Vx- There exists a one-to-one map hx '¦ A —> [0,1],
and thus, we can consider B.\',a {{x\h\(x) E B} \ B fc B[o.i]} Ç Vx- Clearly, hx is a

measurable function, i.e., we can consider the er-morphism Hx '¦ ß[o,i] —? B.y.b induced by
this measurable function. Let MX be the collection of all triples (X,Bx,px), where A' fc X,
Bx B.\',i and fix '¦ B.x -> [0,1] is a probability measure. In the following proposition we

prove a connection between the relation < on M and the existence of measurable functions
for objects in MX.

Proposition 4 Let (X, B\. p\ and (Y, By, py (7? MX. and suppose that the measure space
related to By and px belongs to M\. and the one related to By and py belongs to My. If
Mx < My, there exists a measurable function f : Y —? X such that the related a-morphism
F : Bx -» By fulfills MB fc Bx : px(B) pY(F(B)).

For the proof of this proposition we refer to the appendix at the end of this paper.

4.2 A criterion on the existence of h.m.s.-representations

In this section we identify an explicit criterion that enables us to verify whether a given
h.m.s. is a representation of a given m.s. This criterion will be the main key in the proof on
the existence for a h.m.s.-representation for every m.s. Moreover, as it has been shown in
[10] and [11], this criterion also enables us to build a complete classification of all possible
h.m.s.-representations for a given quantum-like m.s. Nonetheless, in this paper we only want
to show that our definition for context dependence can be imposed on every m.s.

If no confusion is possible, we write p g MX (or ft/, E MX) in stead of (A. Bß, ft/, G MX.
Consider S,£ G MS with an event probability Pz,e ¦ E x £ x B£ -> [0,1]. Vp fc E.Ve fc £
we denote Be/Ppe as Bp,e, and the induced probability measure on Bp,f as ppt.. VE.£ 6
MS. (BpP,ppe) is a separable measure space for all p fc E and for all e E £, and thus,
(Oe,Be,Pp,e) G MX.

• Let -Mp,e be the unique class in M such that (Bpc.ppc) E MPtC.

• VS.£ G MS we introduce: AM(E.£) {Mp,e\p fc E.< fc £}

For every E, e fc HMSy there exists p\ such that E, e E HMS0(//.a)- Denote BA///A as B,„
and the induced probability measure on Bß as p. Analogously, if E,£ fc HMS, we can define

Bß,p for all e G £. For E,£ G HMS(/t,a), there exists one unique measure space (Bß,p).
which is called 'the measure space related to the ^A-h.m.s. E,£'. For E,£ G HMS(A), we
have to consider a measure space (Bß,p) for all e G £.



452 Coecke

• Let Mß be the unique class in M such that (Bß.p) E Mß.

For a h.m.s. in E,£ fc HMS(A) we have to consider one measure space Bß,p for all e fc £.
For every A fc X we introduce the following subset of M:

MA {Mß\pA fc MX}

We also introduce the following relation on subsets of M.

Definition 9 VN,N' Ç M:

N < N' <=> MM E N, 3M' G N' : M < M'

We'll denote N < {A4} as N < A4 and {A4} < N as A4 < N. In the following definition we
introduce a subcollection of HMS that contains these h.m.s. in which appear only separable
measure spaces.

Definition 10 Let HMS0 be the collection of all E.e G HMS0 such that (Bß,p) is a

separable measure space and let HMS be the collection of all E,£ G HMS such that
Me E £: E, e G HMS05.

In the following section, we will prove that it suffices to consider measure spaces contained
in classes in M, and this automatically allows us to limit ourselves to h.m.s. in HMS

Now we identify the necessary and sufficient condition for the existence of a pA-h.m.s.-
representation in HMS(E, Oe,p\), for a given m.s. in MS.

Theorem 1 Let S,£ G MS and pA E MX:

E,££HMS(E,Of,MA)<s> AM(E,£) < Mß (4.2)

Proof: => Let e G £• According to Definition 5, there exists E, £', pA such that E, e ~ E, eß.

Thus, there exists a cr-morphism v : Be —> B£i which is such that Vß G Be : Pp,eß(f(B))
Pp.c(B) (C : E —* E is the identity, n : {e} —> {eß} is trivial). Moreover, there exists AAp>e :

Be -> Ba (see Proposition 1) which is such that MB E Be : pA(AAp.e(B)) Pp.?ß(B n 0e)
(see Proposition 2). Since B£' Ç Be, we can consider the map [AAp,eoi/] : Be —> Ba- Clearly,
[AAp.e o u] is also a a-morphism and fulfills MB G Bt : /zA([AAp>e o u](B)) PP^(B). Define

Fp : Be —> Bp,e and Fß : BA —» B,, by the following scheme:

B, > Be* —> Ba

U Pp.N rP.H /« lF'
ßp.e [0,1] B»
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Thus, MB E Be ¦¦ p([Fß o AAPiC o u](B)) Pp,e(B). For ail B G Bp,e, there exists at least

one B, E Be such that FP(B,) B. Let B[ [Fß o AAp,e o v)(Bx) G Bß. If B2 ± B, and

FP(B2) B, then Pp,e(B,AB2) 0, and thus

p([Fß o AAp,e o v](Bi)A[F„ o AAp,e o u](B2))

p([FßoAAp,co„](B,AB2))
Pp,e(BiAB2) 0

By definition of Fß there exists only one B[ \Fß o AAp,e o v\(B2) [Fß o AAp,e o i/](Bi).
Thus, we can define F„ : Bpe -> Bß such that MB E Bpe : FU(B) [Fß o AApe o v](B') «•
B FP(B>).

" AAp,e

Be —» S£, —? BA

Fp \ Fp /Fp
Bp,e —? Bp

Let B' E Be be such that F„(B) [F„ o FP](B'). We have, fi(Fu(B)) p([F, o FP](F'))
/i([Fp o AAp,e o u](B')) pA([AAp,e o u](B')) Fp,e>(F')) PvÂB') pP,e(B), and thus,
Definition 8 is fulfilled. As a consequence, Mp,e < Mß, and thus, AM(E,£) < Mß.

<$= Let p G E and e G £. Since A4P](, < A'!,,, and, since both (Oe, Be, FPi6) and (A, BA, pA) are
in MX, we can apply Proposition 4. Thus, there exists a measurable function /p : A —> Oc

such that the related cr-morphism Fp : Be —y BA fulfills Viî G ße : Pp,e(B) pA(Fp(B)).
Define AAe : E x B£ -» BA such that MB E B£ : AA|e Fp(OcnF). Define <^A : E -» A' such

that Vp G E: <px(p) /P(A). We have Vp G E: AA« {A|A G A,/P(A)} {A|A G A,<fix(p)}.
Thus, there exists a set of strictly classical observables £e. Thus, AAe defines a A-m.s. Still
following Proposition 4, VF G Be : Pp,e(B) pA(F(B)), and thus, MB E Be : PPAB)
pA(F(Oe fl B)) pA(AAB) (see eq.3.1). If we identify e with eß, the measurement related
to £,£e, pA, we obtain E, e £,HMS0(£, Oe, pA), and thus, £, £ ^HMS(E, Oe, pA). •

An alternative version of this theorem expresses the sufficient and necessary condition for
the existence of at least one representation in HMS (E, Oe, A):

Theorem 2 Let E,£ G MS and A E X;

E,£4HMS5(E,0f,A)o AM(E,£) < MA (4.3)

Proof: S,£&HMSs(£,0£,A) « Ve G £ : E, e &HMS£(£, Oe, A) O Ve G £, 3pA

E,eJLHMS0(E,Of,/iA) O Ve É £, 3pA : AM(£,e) < A4,, «- Ve G £,3A4M G MA
AM(E,e) < A4p«. Ve G £: AM(E,e) < MA O AM(S,£) < MA. •
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4.3 A proof for the existence of h.m.s.-representations for all m.s.

In the following theorem we prove that the axiomatics for the dependence on the measurement

context imposed by the definition of a h.m.s. implies no restriction for a general m.s.,
i.e., every m.s. can be represented as a h.m.s., with [0,1] as set of states of the measurement
context.

Theorem 3 VE,£g MS: S. £ £ HMS'S'(E, Oe, [0,1]).

Proof: According to Lemma 6 we know that M < A4k. For all E.£ G MS we have

AM(E,£) < M. Thus, AM(E,£) < A4K. and thus, E,££,HMS(E,0£ ,/i[ul]) ç HMS5(£,0
•

5 Conclusion.

Every m.s. in MS has a representation as a h.m.s. in HMS, and thus, also quantum mechanics

can be represented in this way. As a consequence, the h.m.s.-formalism that is presented
in this paper can be seen as an axiomatics for general physical entities for context dependence

that leads to a classical representation of non-classical systems. We also identified
the general condition for the existence of a h.m.s.-representation with A as set of 'states
of the measurement context', or with pA as relative frequency of occurence of these states
of the measurement context. If no further restrictions or assumptions are made on A, we

only obtain restrictions on the ordinality of A, and on the specific probability measure pA
that we consider. A lot of problems are still to be solved, for example, how precisely should
this h.m.s.-formalism be fitted in the more general operational formalisms for quantum
mechanics like Piron's approach (see [21] and [22]) or the Foulis-Randall approach (see [14]

and [15])10. Still, we think that the approach presented in this paper certainly leads to a

successful extension of the contemporary quantum framework as well from a philosophical
as from a mathematical point of view.

6 Appendix: some measure theoretical lemma's

Let B and B' be two Borei Algebras. Denote their direct union11 by BQB', i.e., BQB'
{(B,B')\B E B,B' E B'} equipped with three relations:

Bi ,B[) U(F2.<B'2) (Di UF2 ,B[ UB2

Bi ,B[) n(F2.,B'2) (Bi nF2 ,B[ r\B'2

c(Bv,B[) (CB i,cB',

10More recently, Aerts introduced an operational approach, namely the closure structure approach (see

[3], [6] and [25]), which is intrinsic compatible with the general idea of hidden measurements.
UA more general construction, and also more details, can be found in [24].
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In the following definition we introduce an extension of this notion of direct union of Borei
algebras to the collection of measure spaces, i.e., we introduce a way to 'compose' measure
spaces.

Definition 11 Let (B, p) and (B1 ,p') be measure spaces, a G]0,1[ and pQ)p' : B<QB' —» [0,1]

such that M(B.B') G BQB' : pQ)p'(B,B') (1 - a)p(B) + ap'(B'). Define the weighted

direct union (B, p)<Q(B', p') of(B,p) and (B',p') as the measure space12 (B(QB', pQ)p').
a ' a

As in section 4.1, we denote the set of all integers, smaller or equal then a given n E N as X„.
Let Bn be the Borei algebra of all subsets of Xn and let Bn be the Borei algebra of all subsets

of N. We introduce the following sets of monotonous decreasing strictly positive functions:

i — n

Mn {m:Xn^{OA}\'£m(i) l,i<j=>m(j)<m(i)}
i=i

MN {m:N-> [0,1]|$~Jm(i) l,t < j => m(j) < m(i)}
ieN

For all m G Mn U Mn we define a probability measure pm : Bjv —? [0,1] by Vz : pm({i})
m(i). We also introduce the following notations for some classes of measure spaces:

A4K {(B,p)\(B,p) (Bm,p)}

MN E NU{N},Vm G MN :

M% {(B,u)\(B,ii)=-(BN,fim)}

ViVGNU{N},Vr77 G MN,Ma G]0,1[:

A4£,a {(B,p)\(B,p) S (Bm,p)Q(BN,pm)}

and also the following notations for sets of such classes:

MA. {MX | m E MN}
ME,a {M^A | N E N U {N},777 fc MN}
M UyvENuiNjM^ Ua6]0ii( Mi,a U {Mm.}

The use of this symbol M (which we used in section 4.1 as a notation for the collection of
all classes consisting of isomorphic separable measure spaces) is justified by the following
lemma.

2One easily verifies that this weighted direct union is indeed a measure space.
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Lemma 1 The collection of all separable measure spaces is:

A4i U/vgNu{N} Um6MNAi$ Ua€]04[ M^^ (ti.l)

Moreover, for every separable measure space (B,p), 3\M E M such that (B.p) fc A4.

The proof is a rather long construction that uses Lemma 2, Lemma 3, Lemma 4 (see
further) and the Loomis-Sikorki theorem (see [20] and [23]). Since the content if the theorem
agrees with our intuition, and the proof of it doesn't contribute in an essential way to the
understanding of the subject of this paper, this proof is omitted. An explicit proof with the
notations of this paper can be found in [10].

Lemma 2 If B is a separable Borei algebra with {B E B\B' C B => B' 0} {0}, then
B Bu. Moreover, for every probability measure ft : B —? [0,1], there exists a o-isomorphism
Fß : B -> Bk such that VßEß: p(B) pm(F„(B)).

Proof: This lemma is proved by Marczewski. For an outline of it we refer to [7] or [18]. •

Lemma 3 Let (B,p) be a measure space, B0 E B, a /((Fo), B\ {B E B\B n B0 0}
and Br {F G B|F n F0 F}. Define two maps, p, : B( -> [0,1] and p,- : Br -+ [0, 1] such

that MB E Bi : /(7(F) ^ andMB E BT : pT(B) ^. Then, both (B,.p,) and (BT,pT)
are measure spaces. Moreover we have (B,p) (B/. /i|)©(Br. pr).

Proof: One easily sees that Br (resp. B/) are Borei algebras, with F0 (resp. Bq) as greatest
element. By definition, pi and pT are cr-additive. Since p(B<f) a and p(Bg) 1 — a, both

pi and pT are normalized. Thus, pi and pT are probability measures, and thus, (Bi,pi) and

(Br,pr) are measure spaces. We have to show that there exists a rj-isomorphism II : B —>

B,QBr such that MB G B,M(B,. BA E B,QBr : (B,,BA H(B) => p(B) p,®pr(B,, Fr).
a

Since MB G B we have: pi@pr(B n F5, F n F0) (1 - a)pi(B n F^) + apr(B n F0)

p((B n Fu) U (F n Fo)) /((F), we can define H by VF G B : H(B) (B n Bc0. B n B0). •

Lemma 4 A measure space cannot have an uncountable subset of disjoint elements with a

nonzero probability.

Proof: Suppose that there exists such a set V. Let V, {B\B 6 V,p(B) > \}. Clearly,
V UjgNT'i- Since V is uncountable, there exists 7? 6 N such that Vn contains an infinite
set of elements. Let TZ>'n {B,\i fc N} be a countable subset of T>n. We have p^Bev,,) >
u^BevA E,eNtt(B,) > £,€n j 00. •

Lemma 5 Let pi : B[o,i] —? [0,1] and p2 : B[o,i] —> [0,1] be two probability measures such

that B[o,i]/pi B[o,i]/p2 — Bu. There exists a measurable function f : [0, 1] —> [0. 1], which
is such that the related o-morphism F : B[o,i] -> ^[o,i] fulfills MB E B[0>ij : pi(B) p2(F'(B)).
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Proof: Let b G [0,1]. We prove that there exists x E [0,1] such that /ii([0,x]) 6. Suppose
that x doesn't exist. Let 6_ be the supremum of all b' G [0, 6[ such that there exists x' G [0,1]
fulfilling pi([0,i']) 6'. Then, there exists an increasing sequence (6;), with for all i E N:

6, G [b- — 1/z, 6_] and 3x, E [0,1] such that /i1([0,x,-]) 6,. Clearly, 6_ is the supremum of

{b,\i E N} and (xx), is also an increasing sequence. Denote the supremum of {x,\i G N} as

x_. There are two possibilities x_ G {x,\i G N} and x_ ^ {x,\i G N}. If x_ G {x,\i E N}
then U.gNpO,!:,] [0,x_], and thus /Xi(U;€n[0, xx}) pi([0, £_]). If x_ g {x,\i G N} then
UiGn[0,x,] [0,x_[, and again we find p,([Q,x_]) pi([0,X-[) /j,(Ui6n[0,Xì]), since

pi({x-}) 0. We also have for all i G N: pi(]x,,xx+1}) pi([0,x,+i}) — pi([0,x,}). Thus:

Pl({0,X_}) /71(U,eN[0,X1]) /71([0,X1]U(U,€N]x1,X,+1]))

MiO^iD-r-XlMlznZ.+i])

pi([0, xx}) + J2 A*i([0, x,+i]) - E A*i([0, x,})

b,+Y,(k+i-bl) b_

i€N

Define b+ as the infimum of all 6' G]6,1] such that 3x' G [0,1] : /ii([0,x']) 6' (there exists
at least one such 6' since p-i([0,1]) 1). Then, there exists an decreasing sequence (6,),
with for all i G N: 6; G [b+,b+ + \/i] and 3x, G [0,1] such that pi([0,x,]) 6,. Denote the
infimum of {x,\i E N} as x+. Clearly, nieN[0,x,] [0, x+] and (x,), is also an decreasing

sequence. Thus:

Pi([0,x+}) /u1(n,eN[0,x,]) p1((U,£N[0,x,]c)c)
1 -/j1(U,-€N]z,-,l]) 1 - p-iQxiA] U(U,€n]x1+i,x,]))
1 - (ßiQxiAi) Aj2^(\x,+ux,]))

• €N

l-(l-/il([0,X1]) + ^(/71([0,.T,])-p1([0,X,+ 1])))
.eN

l-(l-61+£(&,-6l+1)) &+

For all x' G]x_,x+[ we have pi([0,x']) > p,([0,X-]) 6_, p,([0,x'}) < /i!([0,x+]) è+,

but, as a consequence of the definition of 6_ and b+, there exist no x' G]x_,x+[ such that
/7i([0,x']) G [6_,6+]. Thus we obtain a contradiction. As a consequence, x exists. For
all x G [0,1], define / such that pi([0, f(x)}) p2([0,x]). We can define a cr-morphism
F : Bt0ii] —> B[o,i] related to this measurable function. Thus, F([0,x]) {y\f(y) E [0,x]}
{y\f(y) < x} {y\p2([0,y}) < pi([0,x])} for all x G [0,1]. For all Xj,x2 G [0,1] such that
X'i < x2:

F(]x,,x2}) F([0.x2]\[0.x1]) F([0,x2])\F([0,x1])
{7/]/72([0,2/])</,1([0,X2])}\{2/|/72([0,7/])</i1([0,X1])}
]y(xi),y(x2)}
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where y(x{) is the smallest real in [0,1] such that p2([0, y(xi)}) pi([0,x}) and y(x2) is the
largest real in [0,1] such that p2([0,y(x2)]) pi([0,x]). All this leads us to /i2(F(]xi,x2]))
p2(}y(x,),y(x2)}) p2([0.y(x2)}) - p2({0,y(x,)}) Pi([0, x2]) - /i,([0, x,]) p,(]xux2}).
By definition, B[o,i] is the smallest Borei subalgebra of T^o.i] containing {]a, 6]|0 < a < 6 <
l;a,6 G [0,1]}. This completes the proof as a consequence of the u-additivity of p\ and p2.

Lemma 6 M, < has a greatest ellement, namely Mr, i.e., M < M\\

Proof: First we prove that VM^.a 6 MniQ : M$a < Mr. Consider the Borei algebra13

©i6nBi, and a probability measure p' : ©,eNBi —? [0,1] which is defined by the
relations VF G Be (p is defined as in (Br, p)): p'(B,<b....) (1 - a).p(B); p'(H>, B, 0,...)
a.m(l)./i(F);//(0,0,F,0,.,.) a.m(2).pÇB);. One verifies that {B E ©,eNBffi|/7(F)
0} {0} and that ©.gN^l is separable, i.e., ©,gpjBi, p' is a separable measure space.
Clearly, there exists no F G ©,6nBs with p'(B) / 0, and such that F' G ©,6nBb and
F' C F implies F' 0, and thus, (©,gNBi,//) (Br, p) (see Lemma 2), i.e., there exists
a tr-isomorphism H : ©,6nBi -> Bm such that MB E ©î€nBi : p'(B) p(H(B)). For
all F G Bn, define a map XB '¦ N —* {0,/} which is such that Mi E B : Xb(i) I and
Vi g B : XB(i) 0. We define a map F : Be©Bn -» ©,eN<Ba by the relations MB E Br :

F(F,0) (F,0,0....) and VF G BN :F(0,F) (0, XB(1), XB(2), XB(3), -..). One verifies
that the cr-morphism FoF : Be©Bj< —» Bn fulfills the requirements of Definition 8 and thus
we have M^a < A^a. Along the same lines one proves that MM™a E Mi,0 : M™a < Mr
and that Mn Uji£j^ M„ < Mr. As a consequence M < Mr. •

We end this appendix with the proof of proposition 4.

Proof: Consider two a-epimorphisms Fx '¦ Bx —> Bxjpx and Fy : By —> By jpy, which
induce a probability measure p : Bx Ipx —+ [0,1], respectively p' : By /py —» [0, 1]. Clearly.
(BxIpx-fA and (By/py.p') are measure spaces. There also exists F' : B\/px -> ßy/l'r
which fulfills Definition 8. Let Vx {F G Bx\px(B) / 0, F D B' E Bx => B' 0}. Since
T>x is at most countable (see Lemma 4), there exists a smallest set X G U{X, \i fc N} of indices
such that Vx {B,\i E X}. Mi 6 N: let B[ E By be such that FY(B[) \F' o FX](B,), and

B" B^U^B'j). Clearly, U,eXjVF," U,eX,vF,' and Mi,j G X : i j => B'< n B'j 0.

Since Mi, j G X : ; / j => F, n Fj 0, we have Mi E X : B, n (U]!]'1 Bj) 0, and

thus, Fy(F,9 n (U^'1 Fy(B'j)) =0. As a consequence. Vi fc X : py(B', n (Lrjï^BJ))
M'(Fy(F,0 O (UJîi-1Fy(F<))) 0, and thus, Mi £ X : Fy(B[') Fy(B[\(Vj]l\-xB]))
Fy(B[) [F'oFx}(Bx), what leads to uY(B'J) fi'(FY(B'f)) p'[F'o Fx](B'f)) px(Bx).
Define X, Ux€%Bt. X2 X\XX, Y, UieXFt" and V2 Y\Y,. Suppose that px(X2)
py(Y2) ± 0. Consider B'x {X2nB\B E Bx}a.ndB'Y {Y2nB\B E By}. Following Lemma
2 and Lemma 3, we know that B'x/p'x B'y/p'y Br (p'x and p'Y are the restrictions of px
to B'x, respectively py to B'Y, multiplied by l//7y(y2), and thus, they correspond with pT in

13One can easily prove that it poses no problem to extend the notion of direct union to countable sets of
Borei algebras. For more details we refer to [24].
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Lemma 3). This observation, together with the definition of MX, leads to B'x B'Y B[0,i].
Let / : Y —» A' be such that Vi G X,My E B" : f(y) E F,. There are two possibilities:
py(Y2) 0 or /7y-(V2) / 0. If py(Y2) 0, My E Y2: we can choose f(y) in X2. If py(Y2) / 0,

we define f(y) for all y E Y2 by applying Lemma 5 (i.e., we identify B'x and B'Y with B[o,i],
p'x with p, and p'Y with /i2). We can define the related cr-morphism F : Bx —> By- We
find that V?: G X : F(Bf) B[', what leads to pY(F(B,)) pY(B[') px(Bx). MB fc B'Y :

/iy(F(F)) p\(B), as a consequence of Lemma 5. •
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