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Stability of Matter Through an Electrostatic
Inequality

By Gian Michele Graf

Theoretische Physik, ETH Hönggerberg
CH-8093 Zürich, Switzerland

(17.VIII.1995)

Abstract Stability of matter is proved using an electrostatic inequality which is a manifestation of
screening.

Dedicated to Klaus Hepp and Walter Hunziker

1. Introduction

Nonrelativistic matter is described by the Hamiltonian

N N+M
h -Ya^+ yti lèil*«-**!

X]

accounting for N fermionic electrons i 1, N and M nuclei i N+l,...N+M
with positions i, G R3 and charges e, —1, resp. 1 < e, < const. Stability of matter is

the statement:

Theorem 1. There is a constant C such that

H > -C(N + M) (1)
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This result has first been proved by Dyson and Lenard [3] and subsequently by Lenard [10],
Federbush [5], Eckmann [4], Lieb and Thirring [14] and Fefferman [6]. We refer to [11] for
the implications of this result. More recently, stability of matter in magnetic field has been

proved [7] (but see [13] for another proof), thereby extending previous results [8, 12]. Here
we propose a fairly direct proof of (1) based on an electrostatic inequality: Essentially,
Coulomb energies are lowered as R3 is decomposed into simplices and the interaction is

restricted to pairs belonging to the same simplex. This procedure is then repeated until
only a few nuclei are left in each simplex.

2. Inequalities

Let £ be a lattice in R3 with unit cell of unit volume: |R3/£| 1. An open simplex, i.e.,
a tetrahedron, is a bounded set

A {x e U3 \ atx < c,, i 1, 4} (2)

with ai e R3, Ci e R. A periodic tiling of R3 is a collection T0 {An} of disjoint simplices,
finitely many up to congruences, such that

[J Aa R3

aeT0

T0 + u:= {Aa + u} T0 (u G C)

An example is the tiling given by the Z3-translations of the simplices obtained by cutting
the unit cube W [0, l]3 with all planes passing through the centre and an edge or a face

diagonal of W. This tiling contains just one simplex up to congruences.

We now regard C, T0 as fixed and define a tiling T of scale I > 0 to be one congruent
to IT0. Its simplices are also said to be of scale /. Given a tiling T (of any scale) let

1 if ari,ar2 belong to the same simplex of T
6T(x1,x2)

0 otherwise

The average of a function f(T) of the tilings T of scale / is defined as

{/)= j dp(R)dyf(lR(T0 + y)),
SO(3)xR3/C

where dp(R) is the Haar measure on R G SO(3). This definition is Euclidean invariant
in the sense that it is not affected if C, Tq are replaced by RC, R(Tq + y) for some R e
SO(3), ye R3.

Theorem 2. There is C > 0 such that for any N G N, any x, G R3, e, G R, (i
1,... N) and any I > 0

i,j=l ' * Jl i,j=l ' * n i=l
i<3 i<j
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where the average is over tilings T of scale I.

This result, although not explicitely stated, is contained in [9]. Previously, similar
inequalities were derived in [1] and in [2]: There the tiling is made of cubes, the average is

over translations and the interaction on the r.h.s. is of Yukawa type but, as here, the two
sides of the inequality differ by an interaction of positive type.

The proof of (3) is based on the following two lemmas, whose proof is given in the
Appendix. The spherical average of a function / : R3 —» R is the function / : [0, -fee) —> R
given by

/(III) / dp(R)f(R~1x) (4)
JSO(3)

Lemma 3. Let A be a simplex with characteristic function x- Set X-(x) x(~x)
and let h(r) be the spherical average of x * X- ¦ Then h G C2[0, +00), h(0) \A\ and
h"(r) is non-increasing in r.

Lemma 4. Let h e C2[0, +00) with lim,—,+oo h(r) 0 and let h"(r) be non-increasing.
Then

h(0)-h(\x\) „3lw(x) i," (x e R3)
|ar|

has positive Fourier transform: w(p) > 0.

Proof of Theorem 2. By scaling it suffices to prove (3) for I 1. In this case it follows
from the fact that the function w(x) given by

wj(ar! - ar2) 1 r(l - (6t(x\,x2)))
Fi - ar2|

is of positive type, and that C w(0)/2 < +00. The proof of these properties is as

follows: T0 consists of finitely many simplices A*-1', (i 1,... rt) up to /^-translations.
Let x (resp. Xa) be the characteristic function of ây>, (resp. Aa). Using Ôt0{xi,x2)
E„€T0Xa(a:i)Xa(ar2) and óR{To+y)(xi,x2) =6To(R~lxi -y,R~ix2-y) we get

(6T(xi,x2)) / dp(R)dy ^ Xa(Ä_1ari - y)Xa(-R_1x2 - y)

SO(3)xR3/£ aeT°

J2 J du(R)dyx{')(R-1xi-y)x{,)(R-1x2-y)
1=1SO(3)xR3

Ê / dp(R)x{l)*X^(R-1(x1-x2)).
t=1SO(3)

The claim now follows from the above lemmas, together with (St(x,x)) 1. ¦
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For the sake of simplicity we shall from now on assume that all Aa, a G T are
congruent to a single one A IAq, as in the example previously mentioned. We fix an
open cube Qo D An and let Q (resp. Qa) be a cube in a fixed relative position to A (resp.
Aa), i.e., if Aa IR(A0 A y) then Qa IR(Q0 + y).

Lemma 5. Let Ab be the Neumann-Laplacian for an open set BcE3. Then

-A.>(|^E(-Aa„„.)), M

where the average is over tilings T of scale I.

Proof. This follows from integrating |Vt/>|2 against

\Qo
XQ«{X)/XB(X)(J2xQ"nB^) (J2xQ"(xï)xb(x) i^i^f1) •

Let A be the simplex of scale I. We shall consider Hamiltonians of the form

HAiS ril2KQ + IVS

where n > 0 will be fixed later, S C A and

Kq E *(-aq) Vs E AwWxsW
i %<j ' J'

with the * indicating that the sum is over electrons only. Scaling yields the unitary
equivalence Hi^0>is — H^0ts- We also set Ha H/\,A- Moreover, let Mb, resp. Nb be
the number of nuclei, resp. electrons in 5 C I3.

From (3, 5) we obtain a decoupling inequality for tilings T of scale I,

H>r1((^2HAn)-C(N + M)y (6)

provided k.1 < |Z\o|/|Qo|-

3. Stability of Matter

We shall prove that the 'energy in finite volume' is bounded below:

Proposition 6. There are k, C > 0 such that

HAo > -C (7)
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Proof of Theorem 1. By scaling, the bound (7) holds for A of any scale and can be

replaced by Ha > —CMa, since Ha > 0 if Ma 0. Together with (6) this proves
stability of matter (1). ¦
i) One electron, one nucleus: The uncertainty principle. For the simplex An we have

for some C > 0, uniformly in y G R3, e < const and S C A0. To show this [6], let
V(x) \x- y\~lxs(x) and ip, Vif G L2(Q0). Set ip \Qo\~1 JQg ip. Then, for any e > 0,

(Vip,ip) < 2e-\V^,î,) + 2e(V(ip - ï>),ip-î>) < 2e"11|V\\,\î>\2 + 2e||^||3/2IIV> - Hl
3/2< 2e-1 IQol-1 II Vh Ml + 2C'£||V||3/2||V1M|2

by Holder and Sobolev inequalites, where the p-norms are those of Lp(Qo). This proves
(8).

ii) Many electrons, no nuclei: The Pauli principle. For the cube Qo we have

Kq0 > c(NQo - l)5/3 (9)

for some c > 0. This follows from the Pauli principle by filling one-particle levels.

iii) Many electrons, many nuclei: Screening.

Lemma 7. Given C0,K > 0 there are C\,k > 0 depending respectively on Co and K
only, such that

HAo,s > Co(Ns A Ms) - d (10)

for any S C A0, provided
Ms <K (11)

Proof. Let yd, j 1,... Ms be the positions of the nuclei in S. By dropping the
repulsion between electrons we have for n > 2K

Ms
e,ek^^W+EE'^^s-A^+i:]

2MS y° lari-y.-r "' f^iVj-ykl
> Y{NQ° - 1)5+3 - CM*NQo + constMs(Ms - 1)

CK,

C l'i
by using (8, 9) and diam(zA0) < +°o. Due to MsNq0 < Ms + K(Nq0 - 1)+' we see that
if ck/2 > CK + 1 in addition then

Ha,s - C0(NQo + Ms) > (NQo - l)5/3 - C0NQo + const MS(MS - 1) - (C + C0)MS -
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The r.h.s. has a lower bound —C\ depending on C0 only. Clearly, Ns < Nq0. ¦
Lemma 8. There is k > 0 such that (10) holds for some Cq, Cj > 0 without the
restriction (11).

Remark. This implies Proposition 6.

Proof. We choose 0 < / < min(|Zio|/|Qo|, 1/2) such that if A is any simplex of scale I

intersecting Ao then Q C Qo- Let w be the maximal number of such A's occurring in any
tiling of scale I. Using (3, 5) once more we have

#4o,s>l_1(( E HAn,sa) - C(Ns A Ms)) (12)
aeT

QcCQo

where Sa S D Aa and the average is over tilings T {Aa} of scale I. Here we dropped
any aeT with Qa <fz Qo since their contribution is purely kinetic.

We shall prove prove the lemma by induction in n 0, 1,.. •, the induction assumption

being: (10) holds provided MSnA(") < K for any simplex Ay1' of scale ln, where K
will be fixed below. Clearly any given configuration of non-coinciding nuclei satisfies this
condition for some n G N. The case n 0 corresponds to Lemma 7. We may thus assume
Ms > K. If n > 1 the induction assumption applies to the simplices Aa D Sa of scale I,
after scaling them to scale 1. The r.h.s. of (12) is thus the average of

r1 E (HAn,sn-C(NsnAMsa))>rl^(Co-C)(NsAMs)-CioJ)

2Co(Ns + Ms)-~,

aeT
QoCQo

where we set Co C(l —21) l. Now C\ is fixed by the previous lemma, but not K. By
taking it large enough (independent of n) we have

°*L < ^ < Co
IMS - IK - °

and hence HAo,s > C0(NS A Ms)

Appendix

For the convenience of the reader we include the proofs [9] of Lemma 3 and 4. We remark
that a, e R3, Ci G R in (2) can be normalized as

4

E^ 0, (13)

i=i

|det(oi,o,-,afc)| - (14)
o



78 Graf

Here i, j, k is some (and, by (13), any) triple of distinct integers in {1, 4}. Elementary
considerations show that the volume of A is

\A\ (J2ci)3+, (15)
1 1

where ar+ max(ar,0). The spherical average (4) of a function / : R3 —> R is also given
by f(r) /S2 dwf(rw), where dw is the normalized surface measure on the unit sphere
S2 {w e R3 | M 1}.

Proof of Lemma 3. We begin with

X * X-(x) / dyx(x - y)x(-y) / dyx(y)x(v + x) \A n (A - x)\

Note that y € A D (A — x) iff aty < ct and a,y < c, - atx for i 1, 4, i.e., iff

axy < min(ct,c, - a,ar) c, - (a,x)+ (i — 1, 4)

Hence zi n (zl — ar) is again a simplex. According to (15) its volume is

\An(A- x)\ (Eci - (a,x)+)3+ \A\(1 - k(w)r) 3
+ '

where we set x rui (r > 0, ui G S2) and k(uj) |zi|-1/3 X!î=i(a!u')+- This last function
is continuous on S2 and has a positive minimum there. Indeed, if k(uj) 0 for some u> e S2

then axui 0 for i 1, 4 because of (13). Together with (14), this would imply that
the four vectors ai, a2, a3, u> G R3 are linearly independent, which is impossible. As a

result,

h(r) \A\ j du(l - k(w)r)

has compact support. Its second derivative h"(r) 6|zi| f„2 dwk(uj)2(l — k(w)r)+ is
continuous and non-increasing in r. ¦
Proof of Lemma 4. We note that h, —h',h" > 0. Passing to spherical coordinates we
find for p ^ 0/a r-oc

dxe-"'xe~e^w(x) — lim / dr sin(|p|r)e-£r(/i(0) - h(r))
\P\ £1° Jo

4-it f00 e _
47T fx~ U^ 2,i 12 / dr(cos(\p\r) +-— sin(|p|r))e evh'(r) -—- drcos(\p\r)h'(r)

£10 £ + \p\ Jo \p\ \p\ Jo

^f *^(Wr)^)-^D-l)fcjfA-in*/i"(*^*)>0.
The third and fifth equalities are obtained by partial integration. The series above is

alternating because h" > 0 is non-increasing. Hence the final inequality. ¦
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