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Abstract We describe results on mapping-class groups of oriented 3-manifolds with one regular
end. These groups naturally act on the state spaces of classical and quantum gravity.

1 Introduction

In its canonical formulation, General Relativity is considered as constrained Hamiltonian
system on T™(Riem(X)), the (trivial) cotangent bundle over the space of Riemannian .
metrics on a 3-manifold ¥. For the description of approximately isolated systems we
are interested in orientable ¥ with a single regular end. The last condition means that
there exists a compact set K C ¥ diffeomorphic to R®* — B, where B? is a closed 3-
ball. This is equivalent to saying that the one-point-compactification ¥ := X U co is a
closed manifold. The action of the diffeomorphism group of ¥ on T*(Riem(X)) is just
obtained by canonically lifting its obvious action on Riem(X). However, the so-called
diffeomorphism constraints generate only the action of a normal subgroup thereof, namely
the identity-component of asymptotically trivial diffecomorphisms. Orbits of this group
in T*(Riem(X)) assemble physically identical states. However, the reduced phase space
still carries an action of a residual symmetry group which contains the discrete group of
mapping classes of ¥. In terms of the fiducial compactified manifold X the mapping class
group is isomorphic to the quotient S(X) := Dp(X)/D%(L), where Dp(E) is the group of
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diffeomorphisms of & that fix the frames at co, and D%(Z) is its identity-component. This
group is generically infinite and non-abelian. It acts on the classical as well as quantum
state spaces after they have been reduced by the action of the constraints. Its interpretation
is either that of a residual gauge group (redundancy) or a physically meaningful symmetry,
depending on whether its associated action (by automorphisms) on the algebra of physical
observables is trivial or not. Besides issues of interpretation, these infinite discrete groups
also pose several technical problems concerning their implementation in classical as well as
quantum gravity. See e.g. [1] for an explicit model in 2+1-dimensional quantum gravity.
Also, §(X) is isomorphic to the fundamental group of the reduced configuration space [2].

All this motivates to explore the general structure of S(X) and its dependence on X.

2 General 3-Manifolds

Any 3-manifold can be decomposed into smaller pieces by cutting it along embedded 2-
spheres. This procedure comes to an end if the pieces themselves cannot be decomposed
further except by cutting out 3-disks or cylinders [0,1] x S2. This happens after a finite
number of steps for compact manifolds. If the manifold is orientable the elementary pieces
are uniquely determined up to permutation. In this way one can write £ as a finite
connected sum of uniquely determined so-called prime-manifolds (primes). A prime is
either S' x S? (called ‘the handle’) or has trivial second homotopy group. The latter
ones are called irreducible primes and we denote them by P;. (A list of primes and their
properties may be found in [3].) Hence we write

n l
5= (@ Pi) ” (@ 52 x Sl) : (2.1)
=1 1=1

where the connected-sum operation, W, consists of removing n + 2! 3-disks from a 3-
sphere (called the base) and removing a 3-disk from each P; whose n 2-sphere-boundaries
are identified with the first n 2-sphere-boundaries of the base. The [ handles are then
attached by taking ! cylinders, [0,1] x S?, and identifying the 2! 2-sphere-boundaries with
the remaining boundaries of the base (see e.g. [4][3]). We stress at this point that the prime
S' x §?% is distinguished in that it is attached by two rather than just one 2-sphere. In the
way just sketched we intend to think of & as a configuration of n + [ elementary objects on
a common base. The objects may fall into classes of identical ones (diffeomorphic primes).
Finally we mention that the fundamental group of ¥ is the free product of the fundamental

groups of the primes:
n l
m1(Z, 00) = (* ﬂ](Pi)) * (>|< Z) . (2.2)
1i=1 1
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3 Mapping Class Groups in General

One studies S(¥) by considering the group homomorphism

he: S(E) - Aut(mi(8,00)), ke8] = (407, (1.1)

where 7 is a loop based at oo, [y] its homotopy class, ¢ € Dr(Z) and [4] its class in S(X).
The strategy is to obtain S(T) from 1.) Ker(hr) = kernel of hp, 2.) Im(hp) = image of hp,
3.) a prescription to extend Im(hp) by Ker(hp). Given the connected sum decomposition
of £, it is indeed possible to explicitly present S() for a large class of 3-manifolds. The
generators of this presentation can be represented by some elementary diffeomorphisms
adapted to the decomposition (2.1). This is possible because: 1.) for connected sums in
which for each prime homotopic diffeomorphisms are also isotopic (presently no counterex-
amples are known) Ker(hr) is generated by rotations of so-called spinorial primes [3] and
twists of handles [5][6], 2.) explicit and adapted presentations for the automorphism groups
of free products are known [7] which can be used to present Im(kp), 3.) S(Z) is a fairly
obvious semi-direct product of Ker(hr) and Im(hr). The crucial step is 2.), i.e. to present
Im(hy). Its generators fall into 3 classes: a.) internal diffeomorphisms, whose support is
inside the primes (up to isotopy), b.) exchange diffeomorphisms exchanging diffeomorphic
primes, c.) so-called slide-diffeomorphisms which mix points interior and exterior to the
primes. Roughly speaking, each prime can be slid a full turn within a closed tube whose
axis-loop generates an element of the fundamental group of another prime. See e.g. [3] for
details. Together with Ker(hp), a.) and b.) generate a subgroup which is just the usual
semi-direct product of internal and external symmetries of a set of n + [ ‘particles’. In [6]
we therefore called it the ‘particle group’ G¥. On the other hand, the slides generate a
normal subgroup G° and one may show that G¥ N G® = {1} iff | = 0 (i.e. no handles)
[6]. In this case S(T)/G° = GF and S(X) is a semi-direct product G x4 G¥ with some
homomorphism 6 : G — Aut(G*) that can be written down explicitly. However, if han-
dles are present G¥ N G® is non-trivial and G¥ is not a quotient of S(T). For more than
two handles G° is a perfect group [6]. A presentation and discussion of S(X) for the case
where T is the connected sum of handles was given in the appendix of [3].

An Example

Let us briefly look at the case where T is the connected sum of n real projective spaces
RP?. In passing we mention that time-symmetric asymptotically flat initial data can be
constructed by the method of images. The data correspond to n black holes of arbitrary
individual (Penrose-) masses momentarily at rest. For a single prime, the evolution may
be obtained by an appropriate identification of the Kruskal spacetime via a free Z, action.
So the manifold ¥ is in fact quite relevant to construct initial data for n holes without
internal infinities.

For the case at hand Ker(hp) = {1}. Also, a distinguishing feature of the RP? prime
is that it has no internal symmetries [2], i.e., S(RP?®) = {1}, so that GF = P,, where
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P, is the permutation group for n objects. m(X) is the n-fold free product of Z,’s. The
n(n — 1) generators for the slide subgroup G are {u;;} for 1 <i # j < n, where p;; is
a slide of prime j through prime : [7]. Here and in the following distinct indices always
represent distinct values. The relations among the y;; are of three types: 1.) ui; =1, 2.)
Pijhkt = fripi; and fgife; = Hejlki, 3.) MrillkjMij = Mijlkipk; and the same with 1,
exchanged [7]. Their geometric interpretation is fairly obvious. Finally, S(¥) is the semi-
direct product §(E) = G5 x4 P, with 6 : P, — Aut(GS), 8(w)(pij) = fw(iw(j) = WHijw
where we used w in the obvious double meaning. This establishes the remaining relations
between the generators of G and G° and therefore the presentation for S(T).

Let us apply this to the case n = 2, which was already discussed in [8]. For n = 2
we have three involutive generators: two slides yj and 21, and one exchange w. Since
relations of the form 2.) 3.) are now absent we have G® = Z, * Z,. The only other
relation is wpaw™! = py;. We may drop it and at the same time eliminate py; from
the presentation (a so-called Tietze transformation). This leaves us with two involutive
generators (called w and p) and no relation between them, so that also S(X) & Zj * Z,.
In quantum gravity one would be interested in all irreducible representations of S(Z).
Here they are given by the obvious 1-dimensional ones: w — +1, u — +1 and the one-
parameter (0 < ¢ < ) family of two-dimensional ones: w + 7 sint + 73 cos t, where 7; are
the standard Pauli matrices.

For n > 2 one can use similar Tietze-transformations to obtain a presentation with
only 3 generators, two exchanges (generating P, ), and one slide. Its explicit form is given

and discussed in [6]. A major difference to n = 2 are the non-trivial relations given under
2.) and 3.) above.
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