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Abstract. Recent applications of one-dimensional models with ô -function potentials to the theory
of quasicrystals and certain mesoscopic phenomena is a suggestion for other applications of such models.
In the present paper effective masses of carriers in diatomic crystals in [111] and [100] crystallographic
directions are calculated on the basis of rigorously solvable one-dimensional models of zincblende
structures and by using an appropriate transfer-matrix approach. The numerical analysis performed by
using the analytically derived expressions leads to particular details rich enough to confirm a new
semiempirical rule for the effective masses of both electrons and holes in given families of zincblende
semiconductors.

1. Introduction

Effective masses belong the most peculiar characteristics of semiconducting
materials; and the anisotropy of the effective masses of heavy holes in A'"BV
crystals remains still a hot spot in modern experimental research [1,2], compare
also [3]. The corresponding theoretical treatments approach the problem in the
framework of more or less sophisticated approximations like e.g. eight-band £ • p
calculations (see [1,4] and references therein) and are in good agreement with the
experimental findings, especially as regards (Ga, Al)As structures.

At the same time it is commonly recognised that rigorously solvable one-
dimensional models are the basis for understanding the common physics behind
various particular results valid for concrete structures [5]. Nowadays, "There are a
few happy cases in which one can find solvable models rich enough to contain
essential features and to serve as starting point for gaining control of general
situations by suitable approximations" [5].

As regards the one-dimensional models in the effective mass theory, the most
general results considering diatomic models of crystals with point interactions were
obtained recently in our papers [6, 7] by using the transfer-matrix approach. As a

matter of fact, these models correspond to the situation in the [100] crystallographic
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direction in the so-called zincblende structure. It is of certain interest (and this is

our aim in the present paper) to perform analogous calculations for the effective
masses in [111] direction, which could enable us to evaluate from a most general
point of view the anisotropy in the effective masses in the most important directions
in such crystals, i.e. the [100] and [111] directions. The starting point for the model
under consideration can be traced back to the classical works by Séraphin [8] and
Phariseau [9].

2. General considerations

Consider the model of a diatomic crystal with attractive ô -function potentials
and lattice constant 2a. The potential energy of an electron in such a crystal field
is given by

OC OC

Ep(x) —t]x Yj ò(x— 2nd) — r\2 £ ô(x—2na — b) (1)

where
n= — co n= — oc

ah2 .„ m apt
Ui(2a,pt), ui(2a,pi)= ——

m han^ — u^a.p,), Ui(2a,Pi)=-2—>0, / 1,2 (2)

Here rç, is a measure for the strength of the corresponding ò -function potential and,
in fact

1t qPi, i l,2. (2')

The quantity ux + u2 is proportional to the mean electron potential energy averaged
over one unit cell, and/?, is measured by the "ö -potential well area" of the /-th atom
in a unit cell.

The representative character of one-dimensional models is best seen when
working in the framework of the transfer-matrix approach we are using here. The
conceptional basis of this is the fact that the leading idea of a transfer matrix is a

simple one, namely: "the system is divided into subunits, individual atoms for a ID
system, planes of atoms for a 3D system" [10]. Hence, the one-dimensional "lattice
constant" 2a is in fact the distance between the two planes of the same kind of
atoms in given direction, and b is the distance between two planes, respectively
occupied by atoms of different kind (taken into the sense rix->t]2). Thus, the [100]
direction in zincblende structure corresponds to the case when b a (i.e. equidistant

diatomic lattice), and the [111] direction is obtained when b a/2 (compare
[9]). Of course the one-dimensional lattice constant corresponding to models of
different crystallographic orientation will have different value. This is a point we
shall turn back in the next section.

As we have shown in [6], the general expression for the effective masses in
terms of the corresponding transfer matrix M(E) is given by

mt
h2 d

k °y- "•" Ar,24a2 dE \ TrM(E) (3)
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Taking into account the general dispersion relation, derived by Phariseau [9],
it is easy to obtain for the [111] crystallographic direction we are here interested in

1

TrM(E) cos 2X - Ax+A2 AXA2 X 3X
sin 2X + —^ sin - sin —2""'K ' " 2X

where we have introduced the dimensionless variable

X
>2mE

(4)

(5)

and the dimensionless parameters

YYl

A, a2Uj(a) — ar\„ i 1, 2.

Here we have taken into account eqs. (2) and (2') together with (see [6])

(6)

U;(2a) =-Ui(a), / 1,2.

It is not out of place to outline the physical meaning of the above introduced
parameters At. Obviously, it is desirable to characterise the material by two types
of physical quantities: one for the chemical nature of the constituent atoms and
another one for the empty lattice of the crystal. For our simplest model the different
atoms are represented by different strengths rç, of the b -function potentials. Thus, At
count for both the different constituent atoms comprising the crystal and the lattice
constant. As it is seen from eq. (4) the energy band structure depends on both
parameters Ax and A2 in the same manner. Now, from (3) and (4) follows

in*
m

jsin 2X
±{ 2X

1 +
Ax +A2

4X
2 cotg 2X +

AXA2 X 3X
H r sm — sin —Ì6X3 2 2

'4

X cotg -
X

3 cotg:
3X~

For the [100] direction we have (compare [6])

1

TrM(E)
2

2n
<•=i

cos X -

2X
sin X

(7)

(8)

and, consequently

ny
m

+
sin 2X

2X
Ax + A2 + AXA2

4X2 +

Ax+A2
2X cotg 2X +

AXA2

4X3 tgZ (9)

Now we are in a position to evaluate the anisotropy of effective masses

comparing the corresponding values in the most important crystallographic directions,

namely [100] and [111]. Since the above derived expressions (7) and (9) are
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Table 1. Experimental data for the electrons in some
zincblende compounds

Compound
AE
[eV] (m*lm)llm]

after [11]
InSb
In As
InP

after [4]
GaAs
(Oa(l75M02.5)As

0.265
0.46
1 48

1.430
1.823

0.013
0.022
0.0812

0.0670
0.0942

too cumbersome for an immediate physical interpretation, the next section is

devoted to relevant numerical calculations.
It is easy also to observe some interesting empirical relations between the

widths of the energy gaps and the effective masses. Consider e.g. a family of
zincblende compounds, in which the one element is fixed (say GaAs, (GaAl)As,
AlAs). It is easy to observe that the ratio of the energy gaps and the ratio of the
effective masses of the heavy holes are relatively close, despite some differences in
the different experimental data (compare e.g. [1-4] and references therein). This is

a suggestion for the existence of an empirical rule and in the next section we present
our numerical calculations which strongly support the validity of such a rule.

Another empirical rule considers the relation between the energy gaps and the
effective masses of the electrons in analogous families of zincblende compounds. As
it is seen from Table 1, the ratio of the energy gaps approximately equals the ratio
of the electron effective masses for certain pairs of zincblende compounds. Our
numerical calculations, which confirm this empirical rule and are based on eqs. (8)
and (9), are also presented in the next section.

3. Numerical analysis and discussion

The experimental data confirm the presence of anisotropy in the effective
masses of (heavy) holes in [100] and [111] directions [1-4], thus in what follows we
shall concentrate our attention on the anisotropy in this case.

Of course, one could expect different values of the effective masses in the two
directions as an immediate result of the fact that in the [100] direction we have

equal spacing between any two adjacent atomic planes, and in the [111] direction
this equidistant model has to be replaced with another one, in which the ratio of the
two spacings is 1/3. Strictly speaking, there is an additional essential argument
which has also to be taken into account, namely: if 2a is the lattice constant in the

equidistant model, then the lattice constant in the one-dimensional model
corresponding to the [111] crystallographic direction is 2a y/3. What is more, on account
of eqs. (6) and (2), it is evident that the A, (i 1, 2) has to be also replaced by
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Table 2. Anisotropy in the effective masses of holes for models
with first energy gap

A A2 (™*A")[100] ('"*/'")[mi
(m*)[iin
(m/i)[100]

0.2 0.1 0.01056 0.04169 3.95
0.4 0.2 0.02205 0.08887 4.03
0.6 0.1 0.05765 0.13298 2.31
0.6 0.3 0.03459 0.14263 4.12
0.6 0.5 0.01153 0.16612 5.73
0.8 0.1 0.08457 0.19270 2.28
0.8 0.3 0.06040 0.19760 3.27
0.8 0.5 0.03624 0.21401 5.90
1.0 0.1 0.11414 0.26421 2.31
1.0 0.3 0.08877 0.26500 2.98

At ^/3. Hence, the replacement 2a -+2a y/3 implies the replacement At -» At yj3, a

fact we have taken into account by the numerical calculations for the [111]
direction.

In Table 2 we present the anisotropy of the effective masses of holes in [100]
and [111] crystallographic directions making use of our above derived formulae [9]
and (7), respectively. By the calculations we have chosen 2a 5 Â.

From Table 2 it is clearly seen that the so calculated effective masses in [111]
direction are always greater than those in [100] direction, the ratio being in the
interval 2.28 -=- 5.90. Some experimental values for the effective masses of heavy
holes in certain zincblende compounds give for this ratio values in the interval
2.05-^2.60 (see e.g. [1-4] and references therein). Hence, there is a surprisingly
good qualitiative agreement, especially taking into account the highly simplified
models used in our calculations.

It is worth noting that the so calculated effective masses have reasonable values
and the best agreement with the experimental data for the anisotropic effect may be

obtained when Ax/A2 > 5 => r\\\r\2 > 5, i.e. when there exists a strong difference
between the two constituent atoms.

Table 3. Effective masses of holes in [ 111] direction for models with first
energy gap

Axlyfi W5 AE{\ì\]
W/Hm]
(theory)

(m*lm\xxx]
(empirical rule)

0.6 0.1 0.23524 0.13298
0.6 0.3 0.25071 0.14263 0.14172
0.6 0.5 0.28658 0.16612 0.16200

1.0 0.1 0.41916 0.26421
1.0 0.3 0.42142 0.26500 0.26563

0.8 0.1 0.32378 0.19270
0.8 0.3 0.33154 0.19760 0.19732
0.8 0.5 0.35504 0.21401 0.21130
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Table 4. Effective masses of holes in [111] direction for models with
second energy gap

AE.[in] (theory) (empirical rule)

0.6 0.1 0.18014 0.02318
0.6 0.3 0.11042 0.01410 0.01421
0.6 0.5 0.04843 0.00616 0.00623

0.8 0.1 0.25277 0.03308
0.8 0.3 0.18354 0.02384 0.02402
0.8 0.5 0.11783 0.01523 0.01542

1.0 0.1 0.32497 0.04341
1.0 0.3 0.25649 0.03400 0.03426
1.0 0.5 0.19076 0.02514 0.02548
1.0 0.9 0.10782 0.01423 0.01440

1.7 0.5 0.44027 0.06400
1.7 1.0 0.32163 0.04645 0.04675
1.7 1.5 0.31916 0.04730 0.04639

The very fact that the ratio of the energy gaps of two zincblende compounds
(from one family) approximately equals the ratio of their (heavy) hole effective
masses in one and the same crystallographic direction enables us to compute the
effective mass in the one compound when the effective mass in the other is known,
provided the ratio of the energy gaps is also known.

In Table 3 we present the above mentioned effective masses for a set of model
diatomic compounds with first energy gap, calculated both explicitly after our
above derived formulae and on the basis of the here introduced empirical rule. The

analogous results for models with second energy gap are given in Table 4.

Holes and electrons are treated on the same footing in the simplest one-dimensional

models. Thus, it is natural to complete our above considerations with
analogical calculations for the effective masses of electrons. Of course, as it is well
known, there is no anisotropy in the effective masses of electrons, hence we shall
restrict our attention to the effective masses of electrons in [100] direction. As it is

evident from Tables 5 and 6, there is a surprisingly good agreement between the
exact theoretical values of these effective masses and their relevant counterparts,
calculated from the corresponding empirical rule.

Of course, the more sophisticated version of the k -^-theory developed in [4]
is more powerful by the description of peculiarities characterising a particular
material. But as we have shown, the basic facts may be obtained even by using an

appropriate Kronig-Penney model. As regards the above empirical rule, it is in
good agreement with the simplest ic ¦ /5-estimate [12] for the electron effective
masses

m

m*
1+2

(h2/md2)

AE '

(d is the lattice constant).
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Table 5. Effective masses of electrons calculated in [100] direction for
models with first energy gap

Ax A2 "£[100]
(m?A")[ioo]
(theory) (empirical rule)

0.6 0.1 0.32737 0.05171
0.6 0.3 0.20040 0.03236 0.03165
0.6 0.5 0.06817 0.01127 0.01076

1.0 0.3 0.48737 0.07551
1.0 0.5 0.35513 0.05636 0.05502
1.0 0.8 0.14123 0.02165 0.02188
1.0 0.9 0.07395 0.01237 0.01145

1.7 0.5 0.91702 0.13526
1.7 1.0 0.56189 0.08877 0.08287
1.7 1.5 0.16875 0.02888 0.02489

1.9 0.1 1.35193 0.18615
1.9 1.0 0.73858 0.11414 0.10155
1.9 1.8 0.08873 0.01571 0.01222

A more detailed comparison with the particular experimental data seems to be

out of place first of all due to the discrepancies between the results obtained by
different experimental methods, and secondly because it is rather over the top to
expect detailed predictions from a simplest model approach. Nevertheless, a
semiquantitative discussion is possible, e.g. comparing the experimental data from Table
1 with the relevant computed values shown in Table 5. Thus, we arrive at the
conclusion that our approach is instructive enough to describe the data for the
electron effective masses in InP.
In-atom, the values of A2 for
respectively.

InAs and InSb when we attach Ax 1.0 to the

P-, As- and Sb-atoms being 0.3, 0.8 and 0.9,

Table 6. Effective masses of electrons calculated in [100] direction for
models with second energy gap

A£„
(m*/m)[100]
(theory)

(m* /m)[100]
(empirical rule)

0.6 0.1 0.43360 0.01773
0.6 0.3 0.56095 0.02280 0.02293
0.6 0.5 0.68951 0.02786 0.02819

1.0 0.3 0.81614 0.03293
1.0 0.5 0.94815 0.03780 0.03825
1.0 0.9 1.21573 0.04813 0.04905

1.7 0.5 1.40181 0.05573
1.7 1.0 1.75621 0.06839 0.06982
1.7 1.5 2.11722 0.08106 0.08417

1.9 0.1 1.25010 0.05066
1.9 1.0 1.89034 0.07346 0.07660
1.9 1.8 2.48096 0.09372 0.10054
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At the end let us point to the fact that it seems really exciting that such details
can be discussed at least from a conceptional point of view on the basis of
one-dimensional models.
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