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Abstract: The dynamics of a huge variety of complex systems can be estimated from a

low dimensional system of ordinary differential equations, although the number of degrees

of freedom is large. Nearly all variables are slaved by a few order parameters. If the complex

system is perturbed by an external force, slaved variables can be stimulated and a

prediction of the response from the low dimensional system of differential equations is

impossible. We show that it is generally possible to predict the response of the complex

system and to control the complex system if the external forces are resonant perturbations.

1. Introduction

Sinusoidally driven nonlinear oscillators have a complex, in many cases chaotic

dynamics. The response to externally applied forces is relatively small and does not match

any well defined resonance condition. E.g. when a nonlinear mechanical pendulum is

perturbed by a sinusoidal force, the response is comparatively small in amplitude/1/, is

in many cases chaotic/2/ and does not satisfy any well defined resonance condition, even

when the frequency of the driving force coincides with a peak (resonance) in the power

spectrum of the dynamics of the unperturbed system/3/. In order to obtain a large

response, the frequency of the driving force has to be shifted in such a way, that it coincides

at all amplitudes with the characteristic frequency of the oscillator/1/. But even when

the frequency of the driving force coincides at all amplitudes with the basic resonance of

the unperturbed system, the resonace condition is not exactly satisfied, since all the other

peaks/3/ of the power spectrum of the unperturbed system have to be taken into account

as well. Recently a method has been presented to calculate driving forces which satisfy

the resonance condition exactly/1/. A generalisation of this method/4/ provides us with
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the possibility to calculate perturbations which satisfy a certain condition or goal, but

are of small amplitude. Perturbations of small amplitude are mostly important for the

stimulation of complex systems. Its has been shown/5/ that due to the slaving principle

a large variety of complex systems can be modeled by low dimensional systems of

differential equations. If one uses this system of differential equations in order to calculate

driving forces which force the experimental system to perform a special dynamics (goal

dynamics dynamics) and applies these forces to the real system, generally some slaved

varibales which are not included in the model will be excited too. However if the driving
force is small, the stimulation of the slaved varibles generally will remain small. Therefore

perturbations of very small amplitude have beside of their small amplitude a second

advantage: one can predict the response using a low dimensional system of differential

equations since excitations destinating away from the inertial manifold generally remain

small. The aim of this paper is to show that it is possible to control complex systems by

perturbations which force the experimental system to perform a goal dynamics but are

of very small amplitude. These perturbation are defined by a variation principle and are

called resonant perturbations. Usually these resonant perturbations are aperiodic.

In the second chapter of the paper we show that the response of a nonlinear oscillator

is generally small for sinusoidal perturbations. In the third chapter we introduce

a new definition of resonant perturbations using a variation principle. In the chapter 4

we present two experimental applications. First we show that a nonlinear mechanical

pendulum can be stimulated resonantly by appropriate driving forces. Then we present

experimental results which indicate that hydrodynamic systems can be stimulated

resonantly too. Finally chapter 5 gives the conclusion.

2. Stimulation of nonlinear oscillators at resonance

A general feature of nonlinear oscillators is the amplitude frequency coupling/6/. The

stimulation of a nonlinear oscillator is at resonance if the perturbation is sinusoidal and

if the frequency of the perturbation coincides with the basic frequency of the oscillator.

In order to illustrate that the response at resonance is small compared to the response to

special nonsinusoidal perturbations which will be presented in chapter 3 we investigate

Hamiltionians of the form

H Vi (xt) + -mY\ + V2 (x2) + -m2x22 + -k (xj - x2) (1)

where x\, and x2 are amplitudes, mi and m2 are inertial constants, v\ is an anharmonic
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and V2 an harmonic potential and k is a small coupling constant which quantifies the

magnitude of the coupling between the harmonic driving system and the nonlinear
oscillator. In order to keep the feed back from the nonlinear oscillator to the dynamics of the

driving system small we assume that the energy of the driving system is essentially larger

than the energy of the nonlinear oscillator. In order to quantify the magnitude of the

response the maximal energy transfer to the nonlinear oscillator is used. Fig. 1 illustrates

a typical resonance curve. jg
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Fig.l Resonance curve of a nonlinear oscillator, where \\ xf, m\ m2 l,k 0.1,

and the energy of the harmonic oscillator E2 « 100 is essentially larger than the energy

of the nonlinear oscillator E\ « 10. Plotted is the maximal energy transfer versus the

frequency of the perturbation where the initial energy of the nonlinear oscillator was kept

fixed. The continuous line represents the results of secular perturbation theory /8/ and

(+) represents numerical results.

The area of the resonance peak estimated by A AuiAEmax is independent of the

magnitude of the amplitude frequency coupling if Aa; and AEmax are estimated by a

first order secular perturbation theory. Using the same approximation one can show/8/
that there is a simple relation between the quality factor of the resonance estimated by

Q A™* and the magnitude of the amplitude frequency coupling
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Q i; (2)
dEi

where u>i is the basic frequency of the nonlinear oscillator for k 0 and which depends

on the energy E\ of this oscillator. Since the area of the resonance peak is independent

of the amplitude frequency coupling, we conclude from Eq. (2) that the resonanace curve

becomes broad and small if the driven oscillator is essentially nonlinear, i.e. has a large

amplitude frequency coupling.

3. Resonant stimulation of complex systems

In order to calculate driving forces F (t) with a large response for nonlinear oscillators

of type

y + my+d-^l F(t) (3)

where r/i is a friction coefficient and where F is a driving force, we use a goal equation/9/
of type

• dVYx) nX + T12X+ —^ 0. 4
dy

The driving force is calculated by F (t) (rji —rj2)x. Eq.(4) can be deduced by a

variation of F. The variation is done by looking for a small driving force, i.g. f0 F2dt

small for a fixed energy transfer i.g. /0T F (t) ydt AE and fixed boudary conditions

x (0) y (0) x0, x (T) y (T) xT, i.e. the integral

1 Jo (F* ~ XFilï dt (5)

becomes minimal, where A is a Lagrange parameter. If one considers the following set of

goal equations

x + n2i + K (x) 0 (6)

where K is an unspecified driving force, and 7/2 is an unspecified parameter, then Eq.(4)

is a special solution of Euler's equations resulting from the variation of /. Since the

amplitude of the driving force resulting from Eq.(4) is as small as possible in order to get

a certain energy tranfer, we call those driving forces resonant. As indicated in chapter 1,

driving forces of small amplitude have a certain relevance for the stimulation of complex
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systems. Therefore we generalise this definition of resonance to systems which are not just

simple oscillators. We assume that the dynamics of the order parameters of a complex

system can be modeled by a differential equation of type

y(t,n,r2,...) f (j/i,y2,...,t,ri,r2,...,—,—,... J + F (t,rx,r2,...) (7)

where y is an n-dimensional vector of order parameters, and fis an n-dimensional flow vector

field, which depends on the order parameters y\,y2,..., spatial coordinates r^,r2,...,
time t, and spatial derivatives. F is a driving force. This driving force is called

resonant perturbation if it forces the experimental system to reach a certain goal and is

extraordinary small. The corresponding dynamics is called goal dynamics x (t, r1; r2,...).
If the goal dynamics can be modeled by a differential equation, this equation is called

goal equation. In general the goal equation is equivalent to the equation of motion resulting

from the variation which is used to define resonant perturbations, as indicated above.

4. Experimental applications

As a real physical oscillator we used a damped wheel with an excentric mass

distribution/10/. The dynamics of the pendulum can be modeled by

&y + mi + ciV + c^sin (y) F (t) (8)

where y is the angular displacement, 0 1.65 • IO-3 kg m2, c-i 1.62 ¦ IO-2 kg m2s~2,

c2 0.03563 kg m2s~2 and 771 is a friction constant which can be varied in the range

5 • 10~& kg m2s~1 < r]i < 6 • 10-4 % ra2.sA The time dependent driving force F (t) is

transmitted by a digital to force converter from a computer to the experimental pendulum.

Fig.2a shows a resonant stimulation of the pendulum, where the driving force was

calculated by a Poincaré map based on the dynamics of Eq.(4)/ll/. Due to the strong

amplitude frequency coupling there is a sensitive dependence of the basic frequency of the

oscillator from the amplitude of the oscillation. Fig.2b illustrates that the phase relation

between the driving force and y remains 90 degree, despite of the large shift of the

frequency. The phase shift of 90 degree indicates that the reaction power is zero and that

the driving force is resonant/1/. If the driving force is sinusoidal there is no 90 degree

phase difference between y and F. This experiment illustrates that a resonant stimulation

of a low dimensional nonlinear mechanical oscillator is possible. Even this mechanical

pendulum has in principle a large number of different vibrational states because it is a
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macroscopic object. But in general these mechanical pendula are constructed in such a

way that the basic frequencies of all those vibrational modes are essentially higher than

the basic frequency of the oscillation. The stimulation of vibrational modes can be kept

small by an appropriate construction of the pendulum. Completely different is the situation

if one tries to control the dynamics of a hydrodynamic system.
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Fig.2 The extrema of the amplitude of the experimental pendulum (a) and the phase

difference between amplitude and driving force (b) versus time for a resonant perturbation

where 771 6 • IO-4 kgm2s~l, r/2 —0.17t/!. If the driving force is sinusoidal, i.e.

F 4sin(u>ot), where u>0 is the basic frequency at the minimum ofthe potential, the phase

difference does not keep close to 90 degree (c).

In hydrodynamic systems the basic frequency of slaved variables cannot be shifted. If the

dynamics of some order parameters of the system is reconstructed from an experiment/12-

14/, the dynamics of the slaved varibles is not known. However a general feature of the

response of huge variety of oscillators is, that the excitation is small, if the perturbation
is small. Therefore resonant driving forces seem to be mostly appropriate in order to control

hydrodynamic systems if just an order parameter equation is known. Recently it has

been shown, that the periodic dynamics of a velocity signal in the vortex street behind an

circular cylinder can be modeled by a special low dimensional differential equation/15/. If
the goal of a perturbation is to shift the basic frequency of the vortex street, stimulations
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with square waves are resonant perturbations of these special differential equations/16/.

Fig.3 illustrates that the region of entrainment of the vortex street can really be enlarged

by using square waves. This indicates that the low dimensional model can be used to predict

the response of the high dimensional complex system, if the driving force is resonant.
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50 60HHzl

Fig.3 The boundaries of the region of entrainment for sinusoidal (•) and for square

wave perturbations (U). The position of the hot wire probe is 6 mm behind the cylinder

(0 2mm) in the center of the vortex street (Reynold number 70). The amplitude

(distance between the extrema) ofthe acoustic perturbation is normalised to the amplitude

of the variation of the velocity of the unperturbed system at this position.

5. Conclusion

The state space of hydrodynamic systems and other complex systems has an large

number of degrees of freedom. The dynamics of the order parameters is in a subspace,

which is called inertial manifold. Generally nonlinear control theory provides us to calculate

perturbations which satisfy a certain condition or goal, but are of small amplitude.

Usually these resonant perturbations are aperiodic but the amplitude of excitations

destinating away from the subspace of the model remains small. Therefore it seems to be

possible to estimate the response of the complex system from the differential equation of

the order parameters. Maybe resonant perturbations can be used to control chaotic flows.



Vol. 62, 1989 Lüscher and Hübler 551

/1/ G.Reiser and A.HÜbler, E.Lüscher, Z.Naturforsch 42a, 803(1987)

/2/ B.A.Huberman and J.P.Crutchfield, Phys.Rev.Lett. 43, 1743(1979); D.D. Humieres,

M.R. Beasley, B.A. Huberman, and A. Libchaber, Phys.Rev.A26, 2483(1982)

/3/ D.Ruelle, Phys.Rev.Lett.56, 405(1986); U.Parlitz and W. Lauterborn, Phys.Lett.

107A, 351(1986)

/4/ A.HÜbler, Ph.D. thesis at Technische Universität München (1988)

/5/ H.Haken, Synergetics, An Introduction (Springer, Berlin 1988) chapt. 7

/6/ A.H.Nayfeh and D.T.Mook, Nonlinear oscillations (John Wiley & Sons, New York

1976), chapt.4.1

/7/ A.J.Lichtenberg and M.A. Lieberman, Regular and stochastic motion (Springer,

New York 1982), chapt.3/4

/8/ T.Eisenhammer, Diploma thesis, Technische Universität München 1988

/9/ G.Reiser, A.HÜbler, E.Lüscher, Z.Naturforsch.42a, 803(1987)

/10/ G.Mayer-Kress, Zur Persistenz von Chaos und Ordnung, Ph.D. thesis, Institut für

Theoretische Physik und Synergetik, Universität Stuttgart 1984, S.Beckert, U.schock,

C.D.Schultz, T.Weidlich, F.Kaiser, Phys.Lett. 107A, 304(1985)

/11/ R.Georgii, W.Eberl, E.Lüscher, A. Hübler, to appear in Helv.Phys.Acta 61

/12/ J. Cremers, A. Hübler, Z. Naturforsch. 42a, 797(1987)

/13/ J. P. Crutchfield, B.S. McNamara, Complex Systems 1, 417(1987)

/14/ J.D. Farmer, J.J. Sidorowich, Phys.Rev.Lett. 59, 845(1987)

/15/ E.Roesch, Rekonstruktion von Differentialgleichungen aus experimentellen Daten

de Karmanschen Wirbelstrasse, MPI für Strömungsforschung, Göttingen (1988)

/16/ M.Rose, T.Kautzky, P.Deisz, A.HÜbler, E.Lüscher, to appear in Helv.Phys.Acta 61


	Resonant stimulation of complex systems

