
Time-delay operator for a class of singular
potentials

Autor(en): Wang, Xue-Ping

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 60 (1987)

Heft 4

Persistenter Link: https://doi.org/10.5169/seals-115860

PDF erstellt am: 26.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-115860


Helvetica Physica Acta, Vol. 60 (1987) 501-509 0018-0238/87/040501-09$1.50 + 0.20/0
© 1987 Birkhäuser Verlag, Basel

Time-delay operator for a class of singular
potentials

By Xue-Ping Wang*

Institut de Mathématiques, Université de Nantes, 44072 Nantes Cedex, France

(1. IX. 1986)

Abstract. We prove the existence of the time-delay operator denned by taking the large space
limit of the approximate sojourn times for a class of singular potentials: V V, + V2, where V, is a
smooth short range potential and V2 and x ¦ VV2 are both bounded from H2 to L2-2+e« for some f.0 > 0.

1. Introduction

In [8], we proved the finiteness of time-delay defined by taking the space
limit of sojourn times and established its equivalence with Eisenbud-Wigner's
time-delay in scattering theory for smooth short range potentials. In this work we
will show that our method developed there can be also applied to a class of
singular potentials.

Let H0 -A and H H0+ V in L2(Rn). We suppose that the short range
potential V can be decomposed as: V(x) Vx(x) + V2(x) where Vx is C* on K"
and for some _.0 > 0

I^Oc)!^*)-1-^ (1.1)

and the multiplication by V2 is bounded as operator from H2 to L2,2+E° and so is

the distributional derivative xVx • V2. Here (jc)=(l + |;c|) and Hs is the usual
Sobolev space of order s; L2s is the weighted L2 space with the norm:
H/Hj ||(*)7ÌI- This assumption will be made throughout this work. Under this
condition on V, it is well known that the wave operators W± defined by:

W± .s- lim ei,He-"H« in L2
,—r±X

exist and are complete. Let PR denote the multiplication by the characteristic
function for the ball {|jt|</?}. Then the local time-delay of / in {|x|<P} is

defined as the difference of the sojourn times:

(/> TRf) \ (\\PRe-'"WJ\\2 - ||_V-''"o/H2) dt (1.2)
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Notice that (1.2) is well defined for f e L2 such that the Fourier transform / has
suitable compact support in [R"|{0}. Finally the time-delay operator T is defined
by:

(/, Tf) lim {f, TRf) (1.3)
R-r+CO

whenever the limit exists. Surely the existence of time-delay operator depends on
how much such/'s we can find. As in [8], we consider here a similar question. Let
PR be the multiplication by P(x/R), where P(. is a smooth, spherically
symmetrical function such that P(x) 1 for |jc| « 1 and P(x) 0 for |jc| s= 2. It is

clear that PR can be regarded as an approximation of PR. In the following we
denote still TR the operator defined by (1.2) with PR replaced by PR.

Then for smooth short range potentials we proved in [8] that the limit (1.3)
exists for a dense subset in L2 and in the spectral representation of H0, the
time-delay operator T is given by a family of operators T(X), X > 0, where

T(X) -iS(X)* jx 5(A) (1.4)

5(A) being the scattering matrix. (1.4) is the Eisenbud-Wigner's formula for
time-delay. It reveals that the method and techniques used in [8] are powerful
enough. It can be applied to treat time-delay in other scattering theories (see [6])
and to include a class of singular potentials.

Let A -i(x • Vx + V^)/2 be the generator of dilation group. We define the
set 2> by:

2 {/ e L2;/ e D((x)) n D(A2) and 3X e C»(n+\op(H)), X(H„)f =/}
(1.5)

In this work we want to prove the following result.

Theorem 1. Under the above assumption on V, the limit (1.3) exists for TR

defined by (1.2) with PR replaced by PR and for f e 2. We have:

(f, Tf) {f,-S*[A, S]fx)

where f is determined by 2H0fx f and S WI W_ is scattering operator. The

time-delay operator T is essentially selfadjoint with core 3) and the Eisenbud-
Wigner formula (1.4) is true for X e U+/op(H).

The proof of this result consists in regarding V2 as a perturbation of the
Hamiltonian Hx HQ + Vx. In §2, we give some technical preparations, which
were mostly proved in [8]. In §3, we achieve the main step of the proof, reducing
the existence of the limit (1.3) to that of lim^.^ J"Ô({/<>(.»)/, S*PRS - PR)f) dt.
We finish the proof of Theorem 1 in §4 by the method of [8]. Very recently
Nakamura ([12]) considered the similar problem by a different method. His proof
is in the spirit of Lavine [4], while ours is in that of Martin [5].
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2. Some preparations

Let U(t) (resp. U0(t), Ux(t)) denote the unitary group associated to H (resp.
H0, Hx). Let Eac(Hx) denote the spectral projector onto the absolute continuous
space of Hx. The wave operators W±, W2± are defined by:

Wl± s-hmUx(t)*U()(t)
,->±-c

W2± s-hmU(t)*Ux(t)Eac(Hx)
t—>± 3C

in L2(IR"). By chain rule, W± W2±WX± (see [1]). Put: U+ =]0, +oo[.

Lemma 2.1. Let f e CÔ(U+/op(H)). Then for every 0 « n =s 1, one has:

\[{A)-^f(H)U(t)W±{AX\\^C(l + \t\X (2-1)

for t eU. For every li>1, there exists p > 1 such that

\\{A)->'f(H)U(t)W±{A)->1Xc(l + \t\)-'J forteU (2.2)

Note that this result is proved in [8] for V VX(V2 0). But the proof can be

carried over, because we used only the short range properties of V and x ¦ VV.
Recall that if V Vx + V2 with Vx satisfying (1.1) and V2 bounded from H2 to

L2-2+E" it is proved in [3] that 5(A) is continuously differentiable in %(L2(Sn-{))
for A e U+/op(H). Since under the assumptions of Theorem 1, x ¦ VV satisfies still
the above conditions, it should be clear that by exterior scaling method, we can
easily prove that 5(A) is two times differentiable for A e U+/op(H). For reader's
convenience we give the details of the proof.

Let XeU+/op(H). Then we have the following representation for the
scattering matrix 5(A) 5(A, V)) ([11]):

5(A, V) 1 - ijt&(X)(V - VR(X + /0, V)V)t¥(X)*

where R(X±iO, V) is the boundary values of the resolvent (HQ+ V — z)_1 and

_F(. ):L2(U")^L2(U + L2(5"-1)) is a spectral representation for the free Hamiltonian

//(,. Take a>0 to be sufficiently small. Put: I=]-a, a[. We can prove
that:

5(e2öA, V) S(X, V(8)) for 0 e I (S)

where V(d) e~2eU(G)*VU(d) and U(8) is the unitary group generated by A.
Now we check the derivability of V(d) and R(X + iO, V(8)) for del. Let Hsm
denote the weighted Sobolev space with the norm ||(x)m(l - A)i/2/||. Put:
p 1 + £()> 1. Then the assumptions on V say that i[A, V2] defines a bounded
operator from Hsr to Hs~2-r+p+x for O^i «2 and reU. From this we derive that
A[A, V2] and [A, V2]A are both bounded from Hsr to Hs-4-r+p for 0=s.c «3 and
r eU. Since Vx satisfies (1.1), we conclude easily from the above remarks that the
operator valued function 0^ V(6) is in the class

C'(/; %(Hsr; Hs~2-r+p+1)) n C2(I; £(HS + Ur; Hs~Xr+p))
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Since R(X±iO, V(6)) is in %(H0r; H2~r) if r>\ ([10]), we can also prove that
the map 0>->/.(A + iO, V(8)) belongs to the class:

C\T, %(H°r; H2~r)) n C2(I; <£(H°-r; H°~r))

for r > 3. This means that the map

/ 3d^{HX2V(6)(l - R(X + iO, V(d))V(6))(HX2

is in C2(T,£(L2*-S;L2'S)) for se]i, p/2[. Making use of the relation:
^(X){H0)~i \X)~X&(X), we derive from (5) that 5(A, V) is twice continuously
differentiable in ££(L2(S"~1)) for A e U+/op(H). This proves our assertion.

Since in the spectral representation of H0, A is given by a family of operators
A(X) i(Xd/dX + d/dX ¦ A), we conclude that the domain of A2 is invariant
by Sf(H0) for fe Cq(M+/op(H)). Now we can easily prove the following lemma
which is important in this work.

Lemma 2.2. Let 3) be defined by (1.5). Then 3) is invariant by S. In
particular iff belongs to 9), {x)Sf and A2Sf are both in L2(IR").

Proof. It remains to show that (x)Sf is in L2. We can use the same
commutator method as in the proof of Prop. 4.2 in [8]. The details are omitted
here.

In order to regard V2 as a perturbation to Hx, we need some continuity of
wave operators Wl±.

Lemma 2.3. Let feCo(R+). Under the condition (1.1) on Vx, the four
operators A2Wif(H0)(A)-2 and A2W"±*f(Hx){A)~2 are all bounded on L2.

Proof. We prove only the result for A2W\*f(Hx)(A)~2. The other cases can
be treated in the same way. Put W(t)= U0(t)*Ux(t). We can write, as forms on
D(A) x D(A),

AW(t)f(Hx) W(t)f(Hx)A + U0(t)*[A,f(Hx)]Ux(t)

+ 2tU0(t)Vx Ux(t)f(Hx) + W(t) fUx(syf(Hx)VUx(s) ds (2.3)
Jo

where V i[A, Vx] - 2VX. Notice that i[A, f(Hx)] 2f'(Hx) + Q with ß bounded
from L2 to L2,1+E° (see [8]). Now we need the following result due to Jensen et
al.:

\\{A)-y(Hx)Ux(t){A)-r\\^c(l + \t\)-r+* teR (2.4)

for every r>0 and 0<e«r. Take geC^IR.,-) such that g 1 on supp/.
Multiplying (2.3) by g(Hx){A)~2 and taking the limit t—* +00. applying (2.4), we
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get:

AWl*f(Hx)(A)-2 Wl*f(Hx)Ag(Hx)(A)-2 + W1*h(Hx){A)-2

+ W\* f f(Hx)U(-s)VU(s)g(H,)(A)-2dt (2.5)
Jo

where h 2if'g. Since AWl*f(Hx){A)~l is bounded on L2, in order to prove the
desired result by (2.5), it is sufficient to show that

rJo
Af(HAUx(-s)VU,(s)g(Hx)(A)-2ds (2.6)

is bounded on L2. To simplify notations, we denote /, g the operators f(Hx),
g(Hx) respectively. We have the following relation:

[A, Ux(s)gVgU,(s)} -2sUx(-s)g[H0, V]gUx(s)

+ Ux(-s)[A, gVg]Ux(s)

-\SUx(t-s)VgUx(-t)VUx(s)gdt

+ f Ux(-s)gVUx(s - t)gVUx(t) dt (2.7)
Jo

Since g[H0, V] is continuous from L2,r to L2'r+2+e°) we can prove as in [8] (Prop.
4.2) that tt0C2sfUx(-s)[H0,V]U1(s)g(A)-1ds is bounded on L2(Rn). Since

[A, gVg] is bounded as operator from L2,r to /,2,r+1+£°, it follows from (2.4) that:

\\[A, gVg]Ux(s)gx{A)-2\\ ^ C(l + \s\X~^2
for s eR. Here g\ g\(Hx) is chosen so that gxg-g- Therefore the integral
$ofUx(—s)[A, gVg]Ux(s)gx{A)~2ds defines a bounded operator on L2. To treat
the last two terms in (2.7), we use the local Hx-smoothness of {x)~ll2~e, which
implies that the operator $s0fUi(t)VUx(-t)g dt is uniformly bounded with respect
to s e R. Applying (2.4), we get the estimate over the third term in (2.7):

fJ<>

fU1(t-s)VgU1(-t)VU1(s)g1(A)-2dt ; C(l + Hr1"^2

The last term in (2.7) can be estimated in the same way. Since the commutator
[A,f] is bounded, we derive from (2.7) that (2.6) is a bounded operator on L2.
This proves that A2Wl*f(Hx){A)~2 is bounded. The lemma is proved.

3. Reduction of the problem

In the proof of the finiteness of time-delay, an important step is to show that

lim ((/, TRf) - f+ U0(t)f (S*PRS - PR)U0(t)f) dt) 0 (3.1)
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(3.1) makes also clear the close relationship between time-delay operator T and

scattering operator 5. In this section we will prove the following result which
implies (3.1).

Theorem 3.1. Let f e 3). Put g 5/. Then we have:

lim f ((UQ(t)f,(W*_PRW_-PR)Uo(t)f))dt 0 (3.2)

lim f ({U0(t)g, (W*+PRW+-PR)Uo(t)g))dt 0 (3.3)

Proof. Since the set 3 is invariant by 5, it suffices to prove (3.2). Put
h WLf, which is in D(A2) by Lemma 2.3. The integrand in (3.2) can be written
as: (Ux(t)h, (W2_*PRW2_-PÄ)(/1(f)A> + ((/0(0/, (Wl*PRWl-PR)U0(t)f). It is

proved in [8] by method of pseudo-differential operators that for/e 3), we have:

lim f (Uo(t)f(Wl*PRW__-PR)U0(t)f)dt 0

Therefore we have to prove

f°
lim Ux(t)h, (W2*PRWl - PR)Ux(t)h)dt 0 (3.4)

R—. + X J_ce

The integrand in (3.4) can be written as:

(PRU(t)W.f, (U(t)Wl - Ux(t))h)

+ {(U(t)Wl - Ux(t))h, PRUx(t)h) (3.5)

Take x e C%(RJop(H)) such that x(H0)f=f We get:

(U(t)Wl - Ux(t))h - f x(H)U(t-s)V2Ux(s)x(Hx)h ds
J — oc

+ (x(H)-x(H,))Ux(t)h
By the assumption, V2x(Hx) is continuous from L2-~e" to L2,2. We can easily

prove that x(H) — X(H.) is continuous from l2'~1-e° to L2. Thus the first term in
(3.5) can be estimated as:

\{PRU(t)WJ, (U(t)Wl - Ux(t))h)\

^cf (l + \s\)-2+*\\(xX°x(H)U(s-t)PRU(t)x(H)WJ\\ ||<-4>2/||<fc
J — oc

+ c(l + |f|)-1-Eo||(>l)2/||2) for any e>0 (3.6)

Here we have used (2.4) and Lemma 2.3. Before going on with the proof of
Theorem 3.1, we need still a lemma.
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Lemma 3.2. For every 0 =£ ß =£ 1, we have:

\\{xXx(H)U(s-t)PRU(t)WX\^C(l + \s\X\\(A)WJ\\ (3.7)

uniformly in t eR and P 3= 1.

Proof. Observe first that \d?PR(x)\ «c(x)"M uniformly in /.-3=1. By the

arguments used in the proof of Lemma 2.3, we can show that:

\\Ax(H)U(-t)PRU(t)x(H)(A)-l\\ ^ C

uniformly in teR and P 3= 1. (3.7) follows from (2.1) and the fact that
(A)x(H)(x)~l is bounded on L2.

Now return to the proof of Theorem 3.1. By (3.6) and (3.7) we obtain, for
e > 0 sufficiently small and for t < 0,

\{PRU(t)WJ, (U(t)Wl - Ux(t))h)\^c(l + \t\)-1-^2 \\(A)2f\\2

uniformly in R 3= 1. The same estimate is also true for the second term in (3.5).
Since the integrand in (3.4) tends to 0 as P tends to +o°, by the dominated

convergence theorem, (3.4) is proved. This finishes the proof of Theorem 3.1.
We remark that the various constants c appeared in the proof of Theorem

3.1 depend on the function x, but not / e 3 such that x(Ht,)f fi

4. Existence of time-delay operator

In this section we prove Theorem 1. Let x e Cq(R+/op(H)). We put:

3x {fe3;x(H0)f f)

Lemma 4.1. Letfe3x. Then,

f \{U0(t)f, (S*PRS - PR)U„(t)f)\dt^CR-l/2 \\{A)f\\2

Proof It follows easily from the estimate:

\\P1RaU0(t)f\\^CxR(l + \t\X\\{A)f\\
for teR, P3=l and/e%.

Lemma 4.2. For f e 3X, we have the asymptotic expansion:

< U0(t)f PR U0(t)f) dt R (/, a(D)f)
Jo

-{fbw(x,D;x)f) + 0(R-y2) (4.1)

where a(Ç) c0 ^"'xO^2) with c0 \ J"ö P(s) ds, bw(x, D;x) is a Weyl pseudo-
differential operator with symbol \x% |§|~2x(lé|2)- The remainder 0(R~m) can be
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estimated by

\0(R-l,2)\^CxR-"2(\\{x)f\\ + \\{A)2f\\)2 P--*!

Proof. We use the fact that U0(—t)PRU0(t) is a Weyl pseudo-differential
operator with symbol P((x + 2f§)/P) and develop the symbol around 2tÇ/R.
Since this result is proved in [8] (Proposition 4.3) for fe D((x)) fl D((A)3), we
indicate only the difference and omit the details. Checking the proof of
Proposition 4.3([8]), we see that the condition/e D({A)3) is only used to get the
estimate (see (4.14)[8]):

^5 \\Q»(vx/R, D)U0(t/T)f\\ ^ CR-1/2t-312 \\(Ayf\\

for t^l,re]0,l] and P3=l, where Q(x, §) Px(x)x(\%\2), PC*) is some
derivative of P(x). Hence it is supported in {1 =s |;c| =£2}. But this term can be

equally estimated as follows: Since all the derivatives of t2R~2Q(tx/R, £) are
bounded by a constant times {x)~2 uniformly with respect to P 3= 1 and re]0, 1],

we have, by continuity result of pseudo-differential operators ([2]),

^-3\\Qw(Tx/R,D)U0(t/r)f\\

^cR-X2t\\(x)-2U0(t/T)fXcxR-X\\(A)2f\\ (A.2)

for 13= 1, P ^ 1 and re]0, 1]. Integrating (4.2) over [1, R5'2], we get:
rRil2

tR-3\\Qw(Tx/R,D)Ul,(t/T)f\\dt^CxR-l,2\\(A)2f\\

This gives the desired result. The lemma is proved.
Now we are able to give the proof of Theorem 1.

Proof of Theorem 1. Let / be in 2. Then 5/ is also in 3). Take
X e Co(R+/op(H)) such that x(Ho)f-f Since 5 commutes with a(D), we derive
from Lemmas 4.1 and 4.2 that

fJo
(U0(t)f, S*[PR, S]U0(t)f) dt + {f, S*[b"(x, D;x), 5]/)

« CfR~m (4.3)

By a simple calculus of Weyl pseudo-differential operators ([2]), we get:

</, S*[b"(x, D-x), S]f) {f, S*[A, 5]/> (4.4)

where /, (2H0)~1x(H))f Theorem 1 is a consequence of (4.3) and (4.4). See
also [8].
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