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Global and Eisenbud-Wigner time delay in
scattering theory

By W. O. Amrein and M. B. Cibils1)

Department of Theoretical Physics, University of Geneva, CH - 1211 Genève 4

(2. VII. 1986)

Abstract. We present a new method for proving the existence of the global time delay (defined
in terms of sojourn times) as well as its identity with the Eisenbud-Wigner time delay in
non-relativistic quantum scattering theory. We show that this method is applicable to scattering by
local potentials V(x), xe U3, that decay faster than |x| 4 but need not be rotation invariant.

1. Introduction

This paper is concerned with the relation between two definitions of time
delay in non-relativistic quantum scattering theory. For motivations and
references regarding these definitions we refer to the review article [1].

Let ô(A) denote the phase shift, at the kinetic energy A, for scattering by a

spherically symmetric potential V in a given partial wave subspace. A simple
heuristic argument shows that the number r(X) 2dô(X)/dX may be interpreted
as the delay of the outgoing radial wave packet with respect to the corresponding
free wave packet. If S (A) exp (2iô(X)) denotes the associated S-matrix, then
r(X) —iS(/\)* dS(X)/dX. The corresponding expression for a general (not
necessarily spherically symmetric) interaction is the operator

r(X) -iS(X)*j-xS(X) (1)

acting on functions of the angular variables co (0, cp). 5(A) is the S-matrix at

energy A (acting on functions of the angles 6 and cp), and r(A) is called the

Eisenbud-Wigner time delay operator at energy A.

A physically somewhat more transparent definition of time delay uses the

concept of sojourn times. If ip, denotes the (square-integrable) wave function at
time t of a scattering state, then the real number

;(V)«f dt\ \ipt(x)\2d3x (r>0)

') Research partially supported by the Swiss National Science Foundation.
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may be interpreted as the total time spent by this state during its evolution inside
the ball Br of radius r centered at the origin (if ip0 is normalized to 1). The
function xp, is a solution of the Schrödinger equation idxp,/dt (P2+ V)tp, (we
use units with h 2m 1). If cp, denotes a freely evolving wave packet, i.e. a

solution of idcp,/dt F2tp„ which is asymptotic to ip, at t —<*>, i.e. such that
lim (tp, - cp,) 0 in the Hilbert space norm as f—» — °o, then the difference

Tr(0)«f dt\ \xp,(x)\2 d3x - \ dt\ \cp,(x)\2d3x (2)
•>--. J|x|sr J-oo J\x\sr

corresponds to the time delay for the ball Br for scattering initiated in the state cp.

(In terms of the M0ller wave operator &_ lim exp [is(\?2 + V)] exp (-is\?2) as

s—> -oo, xpt is given as ip, Q-cp„ hence the quantity rr(<p) is entirely determined

by cp cp,=0)- The global time delay for the initial state cp is defined as the limit of
rr(cp) as r—»oo, if this limit exists, and will be denoted by r^cp).

The following mathematical problems then arise naturally: (i) Prove the
existence of the limit of rr(cp) as r—»°° for a suitable class of initial states cp, (ii)
study under what conditions this limit is equal to the expectation value in the
state cp of the family of operators {t(X)} defined by (1) (see Remark 2(b) further
on for a precise mathematical definition of this expectation value).

For spherically symmetric potentials, these problems have been solved by
restricting them to partial wave subspaces [2]-[4]. For non-spherically symmetric
potentials there are interesting results for cases where the sojourn time Tr(cp) is

replaced by some other quantity which may be interpreted as some approximate
kind of sojourn time [5] [6]; the expression (2) for rr(cp) was treated in [7] by a

stationary method parts of which seem somewhat formal to us, and also in the
earlier papers [8] [9] in which the problem of the limit of rr(cp) was studied at
fixed energy and required a suitable interpretation of the limiting procedure due
to the appearance of oscillating terms. We refer to the review [1] and to [2]-[9]
for additional references on time delay.

Our own approach is as follows. We use the observation made in [2] and [5]
that in many circumstances the quantity t„(0) may be expressed as follows in
terms of the scattering operator S: one defines

or(cp) f dt(cp„ (S*FrS - Fr)cp,), (3)
Jo

where Fr denotes the projection operator onto the set of states localized in the
ball Br, and (• •) is the scalar product in the Hilbert space L2(IR3), and has

T-o(cp) lim rr(<P) lim or(cp) (4)
,—»oo r—»oo

in the following sense: if one of the two limits exists, then so does the other one,
and the two limits are equal. By writing cp, U°,cp, with U°t exp (-iF2t), and by
using the unitarity of 5 (i.e. S*S I) and the fact that S and if/ commute, the



Vol. 60, 1987 Time delay in scattering theory 483

expression (3) for or(cp) may be rewritten as

or(<p) L,S*\l U?*Frlf/dt,S n (5)

The (bounded) first operator in the commutator will be shown to have the
following asymptotic representation:

f lf,*Frlf,dt r-HX-idldX + oß\ (6)

where d/dX is the operator of differentiation with respect to the kinetic energy X

and H0 P2.

The first term on the r.h.s. of (6) commutes with 5, the commutator of the
second term with 5 leads to the Eisenbud-Wigner time delay upon insertion into
(5), and the commutator of the last term with 5 converges to zero as r—»oo. Some

regularity conditions have to be imposed on the 5-matrix or the scattering
amplitude in order to control this last commutator. The 5-matrix is not required
to be derived from a local potential; the interaction may be of a more general
type, and it need not be invariant under the rotation group.

In Section 2 we establish the asymptotic representation (6) and in Section 3

we apply this result to the time delay problem in two-body scattering theory by
local short range interactions. More precisely we give sufficient conditions on the
potential V for the validity of (4) and of the above-mentioned regularity
conditions on the 5-matrix. We think that these conditions are not optimal.
Further applications will be presented elsewhere. We give the proofs in n
dimensions, n>2, since they are essentially independent of n. The physically
interesting case is of course n 3.

2. An asymptotic representation

We consider a non-relativistic (one-body) scattering system in n dimensions,
where «-2:2. We denote by (• •) and ||-|| the scalar product and the norm
respectively, by Q (Qlt Qn) and P (Plt Pn) the (self-adjoint) n-
component position and momentum operator respectively in the (complex)
Hilbert space W=L2(Un), and we set |Q| (Q2)1/2 (E^i Q2)1'2 and |P|
(P2)1'2 (S;=1 P2)1'2. The vectors in W (i.e. the wave functions) will be denoted
from now on by / or g. The domain of definition of a linear operator T in dK will
be denoted by D(T) and its norm by ||r||.

If w and 6 are complex-valued functions defined on U" and [0, oo)

respectively, we denote by w(Q) and 0(|Q|) the operators of multiplication in
L2(W) by w(\) and 0(|x|) respectively, and by 0(|P|) the operator of multiplication

by 0(|k|) in the momentum representation of the wave functions:

[0(|Q|)/](x) 0(|x|)/(x), [^ö(|P|)/](k) 0(|k|)/(k), (7)
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where g ^g denotes the Fourier transform oi g e L2(U"). In particular, if
6 X[o,i] is the characteristic function of the interval [0,1], defined by X\oa](u) ~ 1

if 0=£u<l and X[o.i](M) 0 if u>\, then %[0.i](|Q|/'") is nothing but the

orthogonal projection Fr onto the subspace of states localized in the ball
Br {xeU"\\x\<r}:

[WIQI/rlflto (*/)(*) ßW I ]*] I \ (8)

We also define d^ : [0, oo)^ C by 6±(u) 1 - d(u).
We denote by H0 F2 the free Hamiltonian and by {L^},eR the associated

evolution group, i.e. if/ exp (-iH0t). For t e IR we set W, exp (iQ2t) and let C,

be the following unitary operator (the classical approximation of if/):

(C,f)(x) (2itX2 exp (^)/(|). (9)

By expressing if, as an integral operator in configuration space, it is easy to show
that (see e.g. [10] or [11], Lemma 3.16):

U°, C,Wvm. (10)

Since for any f g e %£:

(Qf, 0(|Q|)C,g) ^p jd»x8(\x\)f(£)g

jd"kd(\2tk\)J(Üg(k),

we have the identity

Cf0(|Q|)C. 0(2M|P|). (11)

To obtain the asymptotic expansion (6), it suffices to use the expression (10) for
if/ and to develop the factor W1/(4t) into a power series, i.e. to write

For k > 0, we denote by 3)K the set of all wave functions / e L2(Un) such that
(i) /eD(|Q|K), (ii) / has compact support in (R"\{0} (i.e. there are numbers
0<a<_j<oo, depending on /, such that /(k) 0 for all keR" such that
|k| $ [a, b]). We define A0 to be the symmetric operator

i{wF-Q+Q-vw\^o ^ ü^P-Q + Q-Püüs (12)

with domain D(A0) %, where P • Q S"=i P,Q,.

Theorem. Let 8 : [0, oo) —> [0, oo) be a bounded continuously differentiable
function such that d(u) 1 in a neighbourhood of u 0 and 6(u) 0 in a
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neighbourhood of u <*>, or let 6 X[a,i\- Then one has for all f, g e 3)2:

f(f, ißi*e(^)if/g)dt-r^e(u)du(f,HXg)

-!(/, AQg). (13)

// 6 is C1, it suffices to assume that f, g e3>x+e for some e > 0.

Remark 1. The term involving A0 in (13) corresponds to the term denoted
-id/dX in (6). To see this, it suffices to express (f, A0g) in the spectral
representation of H0 and to observe that A{) 2/ d/dX in that representation (see
[12], pp. 168-170). More precisely, we identify L2(U") with L2([0, oo),

L2(5"_1); dX) in such a way that H0 becomes multiplication by X, and we write f
for the component of / at energy A (fk is a function of the angles on the unit
sphere 5""1, obtained by expressing / in spherical polar coordinates in momentum

space, see [12], p. 170). We then have for/e *X and g e3)x:

-W.^)X\?XX),; <l4)

where (• -)o denotes the scalar product in L2(S"~i) (the integral with respect to
the angles; we shall also write ||||0 for the norm in L2(5"-1)). In (14), dgk/dX
denotes the distributional derivative of the vector-valued function A>-»gA. If g
satisfies the stronger condition g e 3)2, then it belongs to D(A2X), hence to the
domain of the (maximal) differential operator d2/dX2, so that the function A>-»gA
is strongly continuously differentiable.

Remark 2. (a) In order to insert the asymptotic representation (13) into (5),
one has to require that / and Sf belong to 3)2. In other words there should be a
dense subset of 3>2 which is mapped into 3)2 by 5. This is the regularity condition
on 5 mentioned in the Introduction. In rough terms it means that the scattering
amplitude should be twice differentiable with respect to all variables (energy and
angles). See also Section 3.

(b) Since the scattering operator commutes with H0, it is decomposable in
the spectral representation of H0, i.e. given by a family {5(A)}A>0 of unitary
operators acting in L2(5"_1) in such a way that (5/)A S(X)fk. From (5) and (13),
the unitarity of 5 and the fact that S*Höv2S Höm we obtain that, for each /
satisfying fe3>2 and 5/ e 2>2:

(Tootf) - lim or(f) -\(f, S*[Aa, S]f). (15)
r—»oo

Formally, writing A0 2i d/dX, this implies that

o~(f) -ifdx(fk, 5(A)*{J^5(A)}/A) - fdX(fk, t(A)/a)0. (15')

Without having recourse to distributional derivatives, one can justify the

passage from (15) to (15') for example in the following situations, (i) If 5(A) is
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strongly continuously differentiable with respect to A, so that dS(X)/dX is a
bounded operator in L2(5"_1). (ii) If 5(A) is strongly continuous in A; in fact one
may then write:

5(A + e) - 5(A) 1
+ _ _ + J1 _

I
e e Le J

and since X>-^fk and A>-»5(A)/A are continuously differentiable (see Remark 1)
and 5(A) is continuous, each term on the r.h.s. is strongly convergent as e—»0, so
that dS(X)/dX is well defined on /A. (iii) If the set {g e X \ g e % and Sg e 3)2)
contains all vectors of the form gx rj(X)h with rj e Cô((0, oo)) and h belonging to
some dense subset M of L2(S"~1). In this case, by choosing r] such that -rj(X) 1

on some interval [a, b] c (0, oo), one obtains that X*-+S(X)h is strongly
continuously differentiable on (a, b), for each h e M. Hence dS(X)/dX defines a

(possibly unbounded) operator in L2(5"_1) with dense domain independent of A.

Equation (15') gives a precise meaning to the statement that the global time
delay and the Eisenbud-Wigner time delay are identical (provided that the
equality (4) holds).

Remark 3. (a) Below we shall give a simple proof of the theorem for the
physically interesting case where 0 X[o,\y We shall indicate the proof for the
case where 0 is C1 in an appendix. We shall only show that the remainder term,
denoted by 0(l/r) in (6), tends to zero as r—»oo, i.e. that this term is o(l);
somewhat stronger conditions on / and 5/ have to be imposed in order to estimate
this term as 0(\/r).

(b) It suffices to prove (13) for g =/. The case g ¥=f can then be obtained by
using the polarization identity for (f, Tg), where T is a linear operator in X ([13],
Problem 1.6.13).

Proof of the theorem (for 6 ^io.i] and n > 3). (i) We use (10) and (11), then
make the change of variables t >->s r(2t)~l and set v (2r)~[ to find that

J~(/, u?*e(^)t/?/) * J[ (/. wr/mcTd^f)c,wx/wf)dt

wr/we(j\r\)wxlwf)dt

W*J,[^)wvsf)^. (16)
s J / s

Furthermore we have

~ f du\d"k±-d(u)\f(\i)\2 r- \ 8(u)du(f,HXf), (17)
4v J0 J |k| 2 J„
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where we have made the change of variables s>-^u \k\/s (for fixed k), and the
interchange of the order of integration is justified since /(k) 0 in a neighbourhood

of the origin.
The preceding two identities show that the l.h.s. of (13) (for g -f) is equal to

^-^m-^xxm (18)

(ii) To prove the theorem, we shall show that one may interchange the limit
and the integral in (18), by invoking the Lebesgue dominated convergence
theorem. This will be done in (iii) below. We assume this result for the moment,
take fe3}2czD(Q2) and 6 #[0>1] and write x f°r X[o,i] for the sake of shortness.
We then have

irds-(fw*xdv\J' vsX Wvsf
i rta__(0-ij[

-JfTtM^M-M1?»
-- \ - \ d"k[f(k)(3FQ2f)(k) - (^Q2/)(k)/(k)].
4 Jo s J|k|S:s

(19)

The integral over d"k is zero for small s (since /(k) 0 near the origin) as well as

for large 5 (since /(k) 0 near infinity and Q2 is symmetric, i.e. (f, Q2/)
(Q2/, /)). Hence an integration by parts gives (using spherical polar coordinates
k |k| to km with co k/|k| e 5"_1 and dnk k"'1 dk dco):

K~(f) - 7 f ds log s — \ dkk"-' f dco[- ¦ •]
4 Jo ds Jo Js*-*

- j f s"-1 ds log s f dœ[}\M)(&Q2f)(sti>) - (m2f)(s<o)f(s<»)]
4 J0 Js"-1

- - [(log |P| /, Q2/) - (Q2/, log |P| /)].

Since Q iV in momentum space, we have

[ta^(log|P|Q2/-Q2log|P|/)](k)
-log|k|(A/)(k) + A[log|k|/(k)]
2(Vlog|k|)-V/(k) + (Alog|k|)/(k)

2|^-V/(k) + ^/(k),
in other terms we have on 22:

(20)

(log |P|)Q2 - Q2 log |P| r^-2 (-2/P • Q + n - 2) -2iA0
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(see eq. (5.79) of [12] for the last identity). This shows that the limit on the l.h.s.
of (13) (with g =/) exists and is equal to (-2)(f, A0f), as claimed.

(iii) It remains to prove the applicability of the Lebesgue dominated convergence

theorem to (18). For this we rewrite (18) (with 0 /) as

^X^i^f.^XXB- wv.

vs
-f (21)

and we shall repeatedly use the

Since t 1(Wr-I)f converges strongly to iQ2f as t—»0, we may choose a

where / denotes the identity operator in
Schwarz inequality \(g, h)\ -£ ||g||

number ô > 0 such that
have

|r-1(Wr-/)/||ta£2||Q2/|| for all re [-0,0]. We then

1

vs
(Wvs - I)f

'2||Q2/|| ifw-ta-o

L-11/11 ifv_.>ô.
(22)

Since

/|k|\ /|k|\
*[o.i](y) ^Xio,i][—j ^ 1 for all ke R", (23)

one has the following estimates:

X\^iWvsf
/|P|\ 1

Wvsf

(i+Q2riwvs(i+Q2)f

(I + Q2),2\-l ll(/ + Q2)/ll- (24)

It is well known that the norm of the operator |P|_1(/ + Q2)"1 in L2(W) is finite if
n ---3 (this is nothing but the fact, written after exchanging the role of P and Q,
that the Coulomb potential is bounded relative to H0 P2, see e.g. [11], Example
8.9). Hence (22) and (24) imply that the integrand in (21) is bounded by a
constant independent of v and s, which is sufficient for applying the Lebesgue
dominated convergence theorem on any finite interval [0, s0].

For s-* oo one needs a different estimate. For this we observe that, except for
a change of its sign, the integrand in (18) (and hence also that in (21)) remains
the same if 0 is replaced by 0X 1 - 0 (and hence x by x± — 1 - X in (21)). Thus
it suffices to show for example that

êv.,tf)
w,.

vs
-f,xJ WJ

M
'¦

T2 (25)
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for some constant M (depending on /), all v > 0, all s > 0 and t 0, vs.
To prove (25), we observe that, similarly to (23):

|tu,\ s / *|(U1 si. (26)

Hence, as in (24):

^a„w II IPI «VII

n s 1/2 n

EllWll2 * 2IIwil7=1 / /=1
(27)

(see Lemma 5 in the Appendix for an explanation of the equality used in (27)).
Since Pj -i d/dXj, we have [/,-, W,] 2tWtQJt so that the last term in (27) is

majorized by the expression

2 \\W,(Pjf + 2tQjf)\\ < E (Iß/H + 2 kl ||ß/||)
; i y=i

;n(|||P|/||+2v5|||Q|/||), (28)

since \t\ =£ vs. Together with (22), this leads to the following upper bound for the
l.h.s. of (25): (a) if vs < Ô:

1

Çv,s(f)^-22\\Q2f\\[n + 2/iô|||Q|/||],

(ß) if vs>ó:

^,s(f)^2\\(Wvs-I)f\\[n^p- + 2n\\\Q\f\\

2n.
~1A~

I
¦ + 2IIIQI/II

This implies (25) and thus completes the proof.

3. Time delay

The result of our theorem, combined with the remarks already made, has the

following implication for the time delay:

Proposition 1. Consider a (one-body) scattering system in the Hilbert space
X L2(U"), n>2, with free Hamiltonian H() V2 and total Hamiltonian H.
Assume the existence of the wave operators Q± =._> - lim exp (iHt) exp (—iH0t) as
t —* ±°° respectively, let 5 Q*Q_ be the associated scattering operator and
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assume that 5*5 /. For geffl and r > 0, define

Tr(g) \ ^[||Fre-'"'Q_g||2 - ||Fre-''"o'g||2]. (29)

Letfe L2(U") be such that (i) / e 2>2, (ii) 5/ e 2>2, (iii)

\im[rr(f)-or(f)] 0, (30)
r—»oc

where or(f) is defined by (S).2) Then tr(f) converges to a finite limit as r—»oo, and
this limit is given in terms of the Eisenbud-Wigner time delay in the sense specified
in Remark 2(b).

As an application of Proposition 1 we verify the existence of the time delay
in potential scattering, i.e. for H H0 + V, where V is the operator of
multiplication by a real-valued function v(x) which, for n 3, is essentially
required to decay faster than |x|"4. We denote by o+(H) the set of all positive
eigenvalues of the Hamiltonian H and by A5 the spherical Laplacian, i.e. the
restriction of the Laplace operator A to the unit sphere 5""1 in IR". We denote
also by As the self-adjoint realization of the spherical Laplacian in L2(5"_1); it is
well known that this operator has purely discrete spectrum (its eigenvalues are
{1(1 + n -2)\l 0, 1,2, .}, the degeneracy of each eigenvalue is finite, and the
eigenfunctions are the surface spherical harmonics [14]).

Proposition 2. In X L2(Rn), n > 2, let H0 P2 and H - P2 + v(Q), where

u:R"->IR has the form

v(x) (l + \x\X[v4x) + vq(x)], (31)

where a > max {4, (n + 5)/2}, v„ e U°(U") and vq e L"(W) for some q satisfying
q^-2 and q>n/2. Let % be the set of all functions g e L2(W) that have the
following form in the spectral representation of H0 (see Remark 1):

gx p(W, (32)

where p : (0, °°) —» [0, oo) is three times continuously differentiable and has compact
support in (0, °°)Wp (H), and h is a (X-independent) vector in L2(Sn~l) belonging
to the domain of definition of the spherical Laplacian As. Denote by 3> the set of
all finite linear combinations of functions in %. Then, for each /e§, the

generalized sequence {Tr(f)}r>0 converges to a finite limit as r—> oo, and this limit is

given by the expression (15') (A»-»5(A) is continuously differentiable).

Remarks, (i) The condition (32) on g means that the Fourier transform g(k)
of g factorizes into a function p(k2) of the square of the wave vector k times a

function h(wi) of the angular variables co k/|k|, with h e D(AS). The function p

2) Notice that \or(f)\ < =° for each / e "X and each r < °°, since the operator Fr is //„-smooth (see

e.g. [1]).
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is required to be zero in a neighbourhood of each positive eigenvalue of H
(Op(H) is formed of at most a discrete set of points [15]). (ii) By using the result
(J2) given in the proof below, one can see that the dense set S> is a domain of
essential self-adjointness for the Eisenbud-Wigner time delay operator.

Proof, (i) The existence of the wave operators Q±, their strong asymptotic
completeness and hence the unitarity of 5 are well known for the class of
potentials considered here (see e.g. [12]). To deduce Proposition 2 from
Proposition 1, it suffices to show that

(A) if / e %, then fe3)2 and 5/ e %,
(B) the equation (30) is valid for each / ei
The validity of (B) and of part of (A) follows from results proved by Jensen

in [5]. We shall use two results from [5] which we cite as (Jl) and (J2) and which
are special cases of Lemma 4.6 and Theorem 3.5 of [5] respectively, applied to
the class of potentials considered here (it suffices to assume a>A for this). We
denote by A the infinitesimal generator of the dilation group in L2(Un), i.e.

A è(P Q + Q P), (33)

and we set U, exp (-iHt) and if, exp (-iH0t).
(Jl) If geL2(W) satisfies geD(A3) and cp(H0)g g for some cpe

Co((0, oo)), then

f \\(U,Q+-lf/)g\\dt<™ (34)
Jo

and

f \\(U,Q--U°)g\\dt«». (35)
J — 00

(J2) The 5-matrix 5(A) is three times continuously differentiable in A on
(0, <x>)\cjp(H), where the derivatives are with respect to the operator norm.

(ii) To prove (B), we follow [1]. We notice that, in the spectral
representation of H0, the operator (33) has the form

(Af)x 2iXdfJdX + if. (36)

Consequently, since the function p in the definition (32) of % is assumed to be
three times differentiable, f e 3) implies/ e D(A3). By using also (J2), we see that

fe 2 also implies SfeD(A3). Since p has compact support in (0, oo), it follows
that, if / € 3), the inequalities (34) and (35) are true for g =/ and g Sf.

Now, since Q_/ Q_5*5/ Q+Sf, we have

*r(f)-or(f)= f ^[||Frt/.Q_/||2-||Frt/?/||2]

+ fdf[||Fr[/,Q+5/||2-||F£/?5/||2].
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Both integrands converge to zero for each t as r—»oo, and their absolute values
can be majorized uniformly in r by

(\\FrU,Q-f\\ + \\FrU?f\\) I \\FrU,QJ\\ - \\Frlf/f\\ \

<2 U/H ||Fr£/,Q_/-Frf/?/|| <2 ||/|| ||(l/,0. - t7?)/||

(||Frt7,Q+5/|| + \\Frlf/Sf\\) | \\F,U,Q+Sf\\ - \\F,U°Sf\\ |

<2||/||||(t/.Q+-£/?)5/||

respectively. We saw above that for/e 2) these bounds belong to L\(-°°, 0); dt)
and L1((0, oo); dt) respectively. Hence Tr(f) - (7r(/)—»0 as r-»°° by the Lebesgue
dominated convergence theorem.

(iii) To prove (A), it suffices to verify that fe % implies feD(Q2) and
RfeD(Q2), where R S-I. Now in momentum space the operator Q2 is just
the negative Laplacian:

(«tow - -mi=(-^f -V4. - w)m' (37)

at least if g is a smooth function. When rewritten in the spectral representation of
H0, (37) becomes

«ft)- _4Ail_44.-('-2)2
'
dX2 dX AX tK <38>

If g has the form (32), with p and h satisfying the assumptions specified below
(32), then clearly each term on the r.h.s of (38) belongs to L2((0, oo),

L2(5"_1); dX), hence their sum defines a vector g in "M. Since Q2 is given by (38)
on smooth functions, one then has (use partial integration for the terms involving
d/dX and the self-adjointness of As):

(Q2f,g) (f,g) V/eS^R"),
where _/(IR") denotes the Schwartz space of infinitely differentiable functions of
rapid decrease. Thus, if g e <?, then g belongs to the domain of the adjoint of
Q2|.y(iR")- Since Q2 is essentially self-adjoint on 5^(R"), this means that g e %

implies g e D(Q2). This proves the first part of (A).
For the second part, assume again that g e %. Since 5(A) is three times

differentiable on (0, &>)\Op(H) and p has compact support in (0, o°)Wp(H), we
see that Sg (and hence also Rg) is in the domain of the first three operators in the

square bracket in (38) (viewed as operators in L2((0, oo), L2(5"_1); dX).) To show
that Rg e D(Q2), it thus remains to prove that {-A-1 As(Rg)x)k>0 determines a
vector in L2((0, oo), L2(Sn~l);dX). This will be done in Lemmas 1-3 below by
applying a method based on Hilbert-Schmidt estimates introduced in [16]. ¦

For the remaining estimate, we set Z(A) —As/X and define Z to be the
associated operator in $f L2([R"). In the spectral representation of H0, Z is
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given as (Z/)A -A-1 As/A. From (38) and the relation A0 2id/dX, we see that,
formally:

Q2 A0H0A0 + y„Hòl + Z, y„ l(n - 2)2. (39)

We denote by 3ö(3äf) the set of all bounded, everywhere defined operators in the
Hilbert space X, by %2(%) the set of all Hilbert-Schmidt operators in "X and by
||ß||2 the Hilbert-Schmidt norm of the operator B.

To each pair {i\x, r\2) of functions from (0, oo) to C satisfying
\\tlk\\2+'= Jo |f?*(A)|2dA<°° (A: 1,2), we associate an operator P(rjx, t)-,) in
3ft(L2(Un)) defined as follows in the spectral representation of H0:

A)«, dp, (40)
o

where the integral is a vector-valued integral in L2(S"~1) and z denotes the
complex conjugate number to z in C. We set P(i]) P(rj, rj) and observe that
||rj || +2P(rj) is the orthogonal projection onto the subspace

%(ri) {feL2(Un) \fk r)(X)h for some h e L2(Sn'1)} (Al)

(see Proposition 6.9 of [12]).

Lemma 1. Let V and H be as in Proposition 2. Let r) : (0, oo) —» C be three
times continuously differentiable and of compact support in (0, °°), and let
cp e Cq((0, oo)) be such that cp(X) l for all X in the support of rj. Then, for each

teU, the closure of the densely defined operator cp(H)Vlf/ZP(rj) belongs to

^fX), and

\ U(H)Vlf,ZP(y))\\2dt<«>. (42)
J — oo

Proof, (i) It follows from Lemma 2.31 of [12] that V(I + ÔQ2)cp(H0) and the
closure of cp(H)[vx(Q) + vq(Q)] belong to ®(W) for each ô>0. Since cp(H„)
commutes with if/ and Z, we have

cP(H)VU°ZP(r1) cpWVcpmif/ZP^),
which is well defined on the dense set

M(rì)^{feL2(W)\f, rì(X)h+g)i with

h e D(AS) cz L^S"-1) and geX(t]X. (43)

Next we notice that

(A0H0A0 + YnHöl)l^P(ri) E t'lf.P^,, rj), (AA)
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with

rÌ0(X)^rì(X)-Aiì'(X)-AXrì"(X),

ih(A) 4iij(Â) + 8iAi7'(A), ij2(A) AXr,(X).

It follows in particular that the operator

tP(H)V(A0H0A0 + y„//0-1)^P(7?) - cp(H)Vcp(H0)(A0HcA0 + ynHöl)l//P(rj)
is defined everywhere in W and bounded, for each teR. Since lf,Z Zlf/, we
then obtain from (39) that, for/ e M(rj):

cp(H)VU°tZP(ri)f cp(H)VtflftP(r))f

- cp(H)V(A0H0A0 + YnHül)lf,P(ri)f
0(tf)VQ20(_tfo)WiJÌf
- <H//)V<KHo)04o#oA + YnH»X)lfÌP(rì)f. (45)

Now the operator (44) is in m(W), (§ + ôQ2)(/ + \Q\)~acp(H0) is a Hilbert-
Schmidt operator if a>(n + A)/2 and |, ô>0 (see e.g. [12], Proposition 3.6),
and the closure of <H#)[MQ) + U9(Q)] is in $($?). Hence (45) implies that
cp(H)Vlf,ZP(r)) has an extension belonging to ®2(X).

(ii) We now prove (42). By using the results of (i) above, one sees that it
suffices to show that, for a > (n + 5)/2:

/,«[ r'||(/ + ô,92)(/ + |Q|)-ty?P(p/,fï)||2dr<oo, (46)
¦/ — oc

where / 0, 1, 2, ô(X 1, ô, ô2 0 and p/ : (0, »)->C has compact support in
(0, oo) and is (/ + 1) times continuously differentiable, i.e. p, e C,')+1((0, oc)).

To prove (46), we notice that, if w(Q) is a function of the position operator
Q, one can exactly calculate integrals of the form

Gk j J2k \\(1 + \Q\ykw(Q)lf/P(ip, r,)\\2 dt. (47)

More precisely, these integrals can be expressed in terms of norms of the type
|||xr(l + |x|)-*w(x)llì2(Rta) (Osv-s*), ||rj||2+ and \\X^m\X)\\2+ with yeU (see
Lemma 6.11 of [12] for k 0 and k 1; the cases k 2 and k 3 which are also
needed below are similar to the case k 1 but involve additional partial
integrations in (6.50) of [12]). For our purposes here, it is not necessary to know
exact expressions for the integrals (47), it suffices to observe that one obtains the

following bounds for these quantities:

Gk^ck |M||2(RB) ||n||2+ t ||A^v(m)ll2+, (48)

where ck and ykm are finite constants (depending on n) and t//m)(A) d"'ip(X)l
dXm. In particular, let us take ip p/ and k 0, 1,...,/ +1 and use the

assumption that p, e CÓ+1((0, oo)). it follows that there are finite constants ClK
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(/ 0, 1, 2; k 0,1, ,1 + 1), depending on n, pt and rj, such that for each

f t2K\\(I + \Q\)^w(Q)ir/P(pl, ri)\\ldt^ClK w 7.2,L2(R")- (49)

To deduce (46) from (49), we choose e > 0 such that e < min {\, a - (n + 5)/2}
and define Na(x, y) to be the integral kernel in L2(U") of the Hilbert-Schmidt
operator Btl + |Q|)/+(1/2)+<?(/ + Ô,Q2)(/ + |Q|)"arf/?F(p/, rj). We set

Kle=r s2'(l + s2)-'-e-l,2ds
J — cc

and use the Schwarz inequality in L2(IR ; dt) to obtain that

JXk1e \ dt(l + t2)l+e+y2 \\(I + |Q|)-'-£-1/2B,,/
J — oo

1 + t2 N'+£ + l/2

|2
•./lb

r ce i i + r \i+e+i/2-
XX\d"xd"AäTm) i«*-*

k,A dtiidnxd"y

(1 + W):

1 + t2 ^"
(l + |x|):

|A.,.(x,y)l2]E

l + t

(l + |x|):
ü5)K/(x,y)l2

By applying the Holder inequality with p (\ + e) \ q (\- e) l and p
1 +

q~l 1 in L'((R x IR" x Un;dtdnxdny), one finds that
- (-3C -j 1

Jj< jcfe[J <fc(l + t2)'+l \\(I + |Q|)-(,+1)B,,||i

|^(l + r2)'||(/ + |Q|)-,ßf,/||22]1
ll/2-E

(50)

Each of the square brackets on the r.h.s. of (50) is a sum of terms having the
form of the l.h.s. of (49), with w(x) (1 +ô,x2)(l + \x\)-a+'HV2)+l!, and the
finiteness of the r.h.s. of (50) follows from (49). ¦

Lemma 2. Let V, H and r/ be as in Lemma 1. Then the closure of R*ZP(rj)
belongs to ®2(W).

Proof. Let cp be as in Lemma 1 and f e M(t]) (see (43)). Then fe
D(R*ZP(r])), and

R*ZP(r))f Q*(Q+ - Qtatata)ZP(rj)/ Qtcp(H)(Q+ - Q.)cp(H0)ZP(r])f

Qtcp(H) J dt- U:Ui/cp(HQ)ZP(r1)f

J dWrcp(H)Vlf/ZP(n)\f..Q*
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By Lemma 1, the integral in the square bracket defines a Hilbert-Schmidt
operator (use for instance Proposition 1.22 (b) of [12] in the Hilbert space

^X)). Hence the densely defined operator R*ZP(r)) is closable, and its closure
is in tal2(L2(Hr)). ¦

Lemma 3. Let V, H and % be as in Proposition 2, and let ge%. Then

RgeD(Z).

Proof, (i) Let {ek} be an orthonormal basis of L2(5"_1) formed of eigenvectors

of As, and let/* be defined by (fk)k ri(X)ek, where i] is a function satisfying
the hypotheses of Lemmas 1 and 2. Then, since {/aVIMI+} is an orthonormal
basis of the range %C(y]) of P(r\), the Hilbert-Schmidt norm of the closure of
R*ZP(r]) is given by

||A*zp^)||i=ïï^ÎTi||/?*zp(»î)/A||2
11*711+/-=1

\\r,\\l f dX |r,(A)|2 f ||P(A)*Z(AK||2<oc. (51)
JO A l

Hence E*=i \\R(X)*Z(X)ek\\20<<x> for almost all A e r(rj) {fi >0 | fj(p)#0}. By
varying t] one finds that the preceding inequality holds for a.a. A > 0. This implies
that the operator R(X)*Z(X), defined on the dense set Af of all finite linear
combinations of ex, e2, has an extension X(X) belonging to S82(L2(5"-1)) (set
ßjk — (Cj, R(X)*Z(X)ek)0 and notice that S/t \ßjk\2<co. hence the operator whose
matrix elements in the basis {ek} are ßjk is in ^(L2^"-1)), see e.g. Proposition
3.4 of [12]). (51) implies that

||P*ZP(r?)|||=||r?||2+f^|r/(A)|2||Z(A)||2

|M|2+[ dA|r?(A)|2||Z(A)*||22<». (52)
Jo

(ii) Next let h e L2(5"_1). Then, for each eeJf:

(R(X)h, Z(X)e)0 (h, X(X)e)0 (X(X)*h, e)0.

This shows that ^(A)^ is in the domain of the adjoint of Z(A)|^. But
[Z(A)|X]* Z(A), because A5 is essentially self-adjoint on Af (since Af contains a
basis of L2(5"_1) formed of eigenvectors of As). Hence R(X)h e D(Z(X)) and
Z(X)R(X)h =X(X)*h for almost all A > 0.

(iii) Now let ge%, i.e. gx p(X)h as in (32). Observe that, by the result of
(ii):

(ZRg)k p(X)Z(X)R(X)h p(X)X(X)*h a.e. (53)
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Thus

f dX\\(ZRg)x\\2= f dX\p(X)\2\\X(X)*h\\2
Jo Jo

<f </A|p(A)|2||*(A)
Jo

111«
The last expression is finite by (52), hence (53) defines a vector in L2((0, oo),

L2(SnXdX). M

Appendix

We indicate here a proof of the Theorem of Section 2 for the case where 0 is

a C^-function. We shall use the following simple facts.

Lemma 4 ([11], equations (3.34) and (3.63)). Let r, z e U and y e [0, 1].
Then

|e''2-l|<2,-y|z|y, (54)

1

(e,zz - 1) - iz ;2\z\. (55)

Lemma 5. One has D(\Q\) p|"=i 0(0,), and for f, g e D(\Q\):

(\Q\f,\Q\g) È(Qjf.Qj8). (56)
>=i

lim - (f, (Wt+r - W,)g) i J (Qjf, QfW,g). (57)

Proof. For h e£)(|Q|), set hr Frh, where Fr is defined by (8), and notice
that hr e D(Q2) and that |Q| hr—> |Q| h and Qjhr^- Qjh in the Hilbert space norm
as r—»oo. The first two assertions now follow from the following set of identities:

(IQI/, IQ|g) Hm(|Q|/, |Q|g,) lim(/;,Q2gf)

hm t (fr, Q2gr) É lim (Qjf, Qjgr)
r-rx j=X j=x r-r=c

Ê (Qjf, Qjg).

Equation (57) can be checked by writing the scalar products as integrals in L2(IR")
and by applying Lemma 4 and the Lebesgue dominated convergence
theorem. ¦
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Assume now that the function 0 in the theorem is C1 and let / e %+e c 2>x

for some e e (0, 1). The proof of (13) in this situation is similar to the proof given
in Section 2; a few steps will be done only formally, a rigorous justification is not
difficult. Part (i) of the proof remains unchanged. For part (ii), we use (18) and
(57) to obtain that

-24r. lf> mel^wj
s dv

Ö,/,Ö,0(y)/ Q,0(y)/,Ô,/

where 0_/(|P|/s) denotes the multiplication operator in momentum space by the
function dd(\k\/s)/dkr Now

30(|k|/5)_ kj fl,/Jk|\_ y-Melk!/.,;)
dL ks

0'
ds

(58)

By using (58) and the assumption that 0(0) 1, 0(oo) 0, one finds that

1 r. d
*"ff)=-j( ds

o ds XofXYXCs1p2 i/.^'-Qf)]
i

/>Q-ppi/) + (/.^P-Q/i
p5 -i(f, A0f).

The preceding identity completes part (ii) of the proof. For part (iii), we set

t vs and rewrite the integrand in (18) as follows:

l(W-/)/,0(^)/)+l(0(^)/,W-/)/)

+ 1((UW)/, 0i ym -w)- (59)

The first and the second term are zero for s e (0, s0], for some so>0 depending
on the support of /, and the absolute value of each of them is majorized, for
0 < t < t0, by

illßy/ll Qfl(r)f
y=l \ S /

2-A
s

:;illß//llfll»lli.-llß//ll+;ll«'IU- A/
P

(60)

Hence the Lebesgue dominated convergence theorem applies to these two terms
on (0, sx] for any sx < oo. For the third term in (59) one has the following bound:

1

l-e &"[€)}
1/2 2 1

:(/ + IQI)"
Wr-I (/+iQir/
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The first norm is bounded by c || 0||i/2 for some finite constant c depending on e and
the support of 0; the second norm is finite since the operator |P|_e/2(/+ |Q|)~e is

in ^(dX) (apply Lemma 3.13 of [12]), and the third norm is majorized by
2 || |Q| (/ + |Q|)e/|| (use (54) with y \). Consequently the Lebesgue dominated

convergence theorem applies also to the third term in (59) on (0, sx], for any
Sx<oo.

For large s, we use instead of (59) the same expression with 0 replaced by 0X

(which, except for an overall sign, is equal to the expression (59)). The first two
terms are then zero for s > s2, for some s2 < oo depending on the support of/, and
admit a bound similar to (60) for s < s2.

For the third term we obtain the following bounds, by using the argument
that led from (27) to (28):
(or) if T-S-l:

1_

TS
[\wT-i)f,ef\ .S

i
«=_—
~s3 \|P|/ V 5

1

xl- II" WL*

¦ n

L/-1

WT-I

W.

T

1/2 "if

1/2 /

+ 2||ß,/||

(/5)ifT>l

Ti
(WT-I)f,d^-f)(Wz-I)f)

\\(WT-I)f\\
1 ±xm

IPI V s 7 1

wr -'IT

*?cm ¦2 S2||/}/||+2||ß/||l.
Ly l -I

It now suffices to observe that, by (54) with y \:
1 r n -tin.

^||(WT-/)P//||<2|||Q|/}/||=2 Xllß^/Il2 -

which is finite because / e % implies / e D(QkP,) (SFQkf has the same support
as/). ¦
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