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Bounds on Ising partition functions I

by Andres Sütö1)

Université de Lausanne, Section de Physique, CH-1015 Dorigny

(16. II. 1981)

Abstract. The partition function Z of an Ising model can be considered as a polynomial of certain
variables. The localization of the zeroes of this polynomial allows to determine the domain of
analyticity of the free energy. We describe a new method which provides with domains where Z is not
zero and permits to give bounds on Z and the correlation functions in these domains. Our method is

expected to work particularly well in determining the high temperature domain of analyticity for Ising
frustration models.

1. Introduction

Many of the rigorous methods to discuss the analytical properties of the free
energy of statistical ensembles originate in the celebrated paper of Lee and Yang
[1]. In their treatment, Lee and Yang considered the partition function of a
ferromagnetic Ising model as a polynomial of z exp (-Ißh) where ß is the
inverse temperature and h is the external magnetic field. Basing on a theorem for
polynomials of several complex variables (named 'circle theorem') they proved
that all the zeroes of the partition function lie on the unit circle, |z| l. This
implied the analyticity of the free energy for real non-zero values of h. Perhaps
the most successful extension of this method was due to Asano [2] and Ruelle [3].
Here again, the starting point was a so called 'Contraction theorem' on polynomials

by which the zeroes of the partition functions of models with non-
ferromagnetic interactions could be localized and bounds on the domain of
analyticity of the free energy were obtained (see, e.g., Sarbach and Rys [4] and
Gruber et al. [5]).

This work, presented in two papers, is intended to provide with a powerful
Lee-Yang type method for discussing the analytical behaviour of the free energy
and the correlations in the so called frustation models. In these models, the
different interactions compete with each other as to their effect on the orientation
of the spins. The consequences of this competition are, perhaps, the most
interesting in the case of Ising spins: these may become 'frustrated', not being
able to 'decide' which orientation to take up. As a result, one may find a multiple
degeneracy of the minimum energy level: the number of ground states may go to
infinity with the increasing volume. This is in contrast with the ferromagnetic and

l) On leave from the Central Research Institute for Physics, Budapest.
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other non-frustrated Ising models, where the ground state degeneracy follows
from the symmetry of the Hamiltonian and is, therefore, finite.

The necessity for the elaboration of a new method is explained by this
difference. The technique of Asano contraction applies also to Ising frustration
models. However, the best estimate for the domain of analyticity, attainable by
the Asano contraction, is obtained for ferromagnets in external field; namely, one
can reproduce Lee and Yang's result. The physical reason for the absence of
second order phase transitions in this latter case is the uniqueness of the ground
state. (This might allow first order transitions, which do not occur, either.) At
any finite temperature the system is magnetized and therefore one may say that
the critical temperature is Tc +00. Now in frustration models, at zero temperature

there are still infinitely many available spin configurations, which is a typical
high temperature (H.T.) situation: the frustration 'heats up' the system. If in such
a model there is no phase transition, the system is certainly above its critical point
at any positive temperature; the critical temperature may then be considered as
Tc 0.

In technical terms, the Asano contraction gives the best results in estimating
the low temperature (L.T.) domain (below Tc) of analyticity of the free energy.
For treating the problem of frustration, we need another method which is the best
if one applies it to estimate the H.T. domain (above Tc) of analyticity.

Similarly to the authors mentioned earlier, we consider the partition function
of an Ising model as a polynomial of the variables tanh ßjb (H.T. situation) or
exp i~lßjb) (L.T. situation), where Jb is the strength of the bond b. In both cases,
this polynomial is linear in each of the variables and any of its additive terms can
be assigned to a set of bonds. These sets form a group, which is called the H.T.
and L.T. Group, respectively (see [5]). Both groups are embedded in a larger
group which is formed by all subsets of the total family of bonds. In Section 2, we
therefore study polynomials, the structure of which corresponds to the above
description. In a certain domain of the variables we give upper and lower bounds
on the absolute value of these polynomials. The lower bound being positive, the
zeroes of the polynomial are outside this domain: that is the property needed to
prove the analyticity of the free energy. In Section 3 we establish the formal
connection between the polynomials of Section 2 and the Ising partition functions
and correlations. Our method, though aimed to discuss frustration models, is
applicable to reproduce different results on high and low temperature analyticity
in general Ising models. This possibility is briefly considered in Section 4. Finally,
in Section 5 we sumarize the results from the point of view of future applications.

2. Bounds on polynomials

We are going to consider polynomials of K complex variables, zx, ¦ ¦ ¦, zK.
Let O {1,2,..., K} and PiQ) denote the set of all subsets of Q. We make use
of two properties of PiQ).

(i) PiQ) is partially ordered w.r.t. the inclusion: if ax and a2 are subsets of Q,
then üi is smaller than a2 it ax <= a2. For any A {ax, ¦ ¦ ¦, an}, where at c Q, let
inf A denote the minimal elements of A-{0}; i.e., c^emf A means that no
element of A is included in ah except a; itself and, possibly, the empty set. If A
has elements different from the empty set, then inf A is not empty.
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(ii) PiQ) is a group w.r.t. the symmetric difference of its elements: if gx and
g2 are parts of Q then

gig2 (giUg2)-(g1ng2)
is their symmetric difference.

Now let G be a subgroup of PiQ) such that it is uniquely generated by inf G
in the following sense: for any ge G there is a unique set

{gi, ....gjcinf G

such that

ana 0 if i+j
and

g gx U • • • U gk.

For any i e Q let Nn(i) be the number of those elements of inf G which contain
and exactly n-l other points of Q. For any n > 0 we choose a number
Nn^Nn(i). Now the following statement is true.

Lemma 1. Consider the polynomial

Rw=zn^iz8 (d
geGieg geG

and suppose that

X NnX-Kl-er-^e (1)
n>0

is satisfied by some x>0 and e<l. Then

(l-e)K<|R(z)|<(l + e)K

if 12Tj|<x for all ie Q.

Proof. For any a^zQ let

Ga={geG:gc«}
R«= I z8 (3)

d= I z8/Ra
iegeG„UB(

and

M {1,.....}. (4)

We have the following product representation of R.

R R[K-1](1 + r[K-l])
R[k-2](1 + ryfr2])(l + r^:..!])

=---=n (1+^.-1]) (5)
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The proof can be performed by showing that |r^|<e for any ieQ and a<^Q,
provided that |zj|<x for any /e Q. We do this by induction according to |a|, the
number of points in a. For a 0 we have

r Jz, if {i}eG
n otherwise.

Therefore,

141 < x Nxx < £ Nnx7(l - e)n_1 < e.

Suppose now that |r^|<e is proved for any /' and a with |a|<i. It is sufficient to
show that Irrise; for other sets we get the result by permutation. Now

»fà1" I 28-Rm-g/H[«] (6)
i +1g geinf Gp-n]

where we used that g has a unique decomposition into the disjoint union of the
elements of inf G. On the other hand, if

g={. + l,J2,...,Jn}c[i + l]
and

g'k {j2,...,/(.}
then |g|

*m Am-« flU+ »&-...*)
k=2

where |g| card g n. Putting (7) into (6) one obtains
1st

i z«/n (1+^,-j (8)
finffi,,.,, / t=2

_t + l_
i + legeinf Gf,,.!] ' k=2

For each r'a in the denominator a has at most i — 1 points and therefore rj. is

bounded by e. Then equations (8) and (2) clearly imply that rf,^1 is bounded
by e. D

In the following, we discuss a possibility to obtain bounds on the polynomial
R of equation (1), even if G is not uniquely generated by inf G.

Let {Q'}r_i,...,N be a disjoint cover of O:

0=0 0' and Q* n Q<' 0 if i^j.
i l

Let G° be a subgroup of G, defined by

G° {geG:gnQieGforanyi} (9)

Consider the quotient group, G/G°. We show that under certain conditions it may
substitute G in Lemma 1. Let

Gi={geG:gcQ-}
then, clearly, G' is a subgroup of G° and also it is the projection of G° into Q". In
general, if A is a coset of G according to G° then

ProJiA={gnQ,:geA} (10)
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is a coset of P(Qi)~ the power set of Q'- according to G\ Any A e GIG0 is

uniquely represented by the set of those projections (10) which differ from the
corresponding G': if

k
(Ha)

(lib)

am Projm 4t Gm

Gm

for m ix, ¦. ¦

otherwise

then this set is

sA {a\.. ¦, a1*}

Now let

Q
N
1) Ö1
i=i

where

Qfr (P(Q1)/Gi)--Gl
and let

S {s^Q: s sA for some A e G/G0} (12)

Clearly, if s e S then card (s n Q') < 1 for any i. The elements of S form a group:
if s,s'eS then s sA, s' sB for some A, ß e GIG0; let now

ProjiA a' and ProjiB fei

then

ss' {aibiW=i-{GT=xeS

defines the group operation. Here

a'b'= {gg'czQ';gea\g'e b1}

is a coset of P(Ql). The group S is isomorphic with GIG0. S is ordered w.r.t. the
inclusion and inf S is the set of the minimal elements of S-{0}; inf GIG0 is that
part of GfG° which is isomorphic with inf S.

The cover of Q can always be chosen so that inf S uniquely generates S, in
the sense we used it earlier (indeed, for instance, covers with at most three subsets
all have this property). This can be told as inf G/G° uniquely generates GIG0. To
G°, one can assign a polynomial analogous to (1):

R°(z)= I z8 n I z8 (13)
gsG° i=lgeG-

Now one obtains the following result.

Lemma 2. Let Q {1,..., K}, G be the subgroup of P(Q) and a cover
{Qi}.=i,...,N be given so that, with G° defined by (9), inf G/G° uniquely generates
GIG0. Let, moreover

Nn(i) card {A e inf G/G° : Projk A ^ Gk for fc i and for exactly
n — 1 other values of k} (14)



196 Andras Sütö H.P.A.

and Nn be chosen so that

Nn>Nnii) for i l,...,N (15)

Suppose that il) holds with these Nn and with some x > 0 and e < 1. Let R and R°
be the polynomials defined in (1) and (13), respectively. Then

(1 - ef"1 < |R(z)/R°(z)| < (1 + e)N-x (16)

provided that

I zg / X z?
Igea' ' geG'

/or any 1 < i < AT and a' e Q'.

Proo/. Let S be the group (12) and for any aeQ, let £, be a complex
variable assigned to a. Consider the polynomial

T(£)=in&-Ir (17a)
seS a£s seS

It is easy to show that

T(<T) R(z)/R°(z) (17b)

if, for any i 1,..., N and a' e Q\ one makes the substitution

ta>= I Z8/l ZR (17C)

Hence, one has to prove only that the bounds (16) are valid for T(£) if |£j^x for
any aeQ. We introduce the following notations: let a <={1,..., N}, then

S« {seS:scU Q']
v tea J

s {.e{l,...,iV}:snQV0}
Ta I r (is)

seS.

c= I r/Ta

The equations (18) are analogous to equations (3), just as

T=n1(i+^1) (i9)
i l

and

«ra- I r/fld + 'cW-c) (20)
seinfS[i+i];i + les ' k=2

are analogues of equations (5) and (8), respectively. In (20), jk is the fcth point
of

s {i + i,h, ...,/„}
and

S fc U2> • • • > hi.
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the cardinals of s and s are the same: \s\ |s|. Noticing that

Nn(i) card {s e inf S : \s\ n and s n Ql i- 0}
one can conclude the proof by showing, in the same way as in Lemma 1, that

|tL(f)l=se (21)

for any l<i<JV, a<={l, ...,N}, D

So far, we considered only the subgroup G of P(Q); now for any De
P(Q)IG, one can define

RD(z)= I z8
gsD

In view of applications, it is interesting to obtain bounds also on RDIR. To this
end, let us continue the earlier discussion. In fact, G° of equation (9) factorizes
not only G but also the whole P(Q). Meanwhile, it factorizes the elements of
P(Q)IG distinctly. For DeP(Q)/G, let

DIG0 {Ae PiQ)/G° :AczD}.
Now we extend the definition of sA, as given in equations (10), (11), to any
A 6 PiQ)/G° and consider the set

SD={sczQ:s sA for some AeD/G0}
A polynomial

TDio= I rssSD

can be assigned to SD; it is easy to show that

TDiO RDiz)/R°iz) ill)
if £ is given by equation (17c). Equation (22) is a generalization of (17b); for
D G the two equations coincide. Dividing (22) by (17b) one obtains

RD(z)/R(z)=TD(£)/T(<r) (23)

For D e iPiQ)/G)-G, let inf SD denote the set of minimal elements of SD. Any
seSD can be written as

s s1Us2

Sxf\s2=0 (24)

Sx e inf SD, s2eS
though, in general, this decomposition is not unique. The cover of Q can always
be chosen so that inf GIG0 uniquely generates G/G° and also, the decomposition
(24) is unique for any D e iPiQ)/G) — G and seD. (This is true, for example, for
the trivial cover {Q} and the cover with two disjoint sets {Q1, Q2}.) Assume that
the cover, we have chosen to Lemma 2, satisfies these conditions. Then we can
write

TDic)im)= I rVs/TtN] ¦

seinfSD
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where we applied the notations (4) and (18) (notice that T[N] T). The analogue
of equation (7) gives then

i»l

TDiOITiO= I r/FI (l + tfen-,.fc) (25)
seinfSD ' fc l

Let now

N? card {s e inf SD : \s | n} (26)

From equations (21), (23), (25) and (26) we find

|RD(z)/R(z)|-<ItaV°x7(l-e)n (27)
n

provided that |£a,|<x for any £a., given by (17c).

3. Bounds on Ising partition functions and correlations

The results of the former section can be applied to study Ising models. Let Z
be a lattice and cr:Z—»±1 be a spin configuration. The potential of a finite
subsystem of spins is defined as

HB (a) - I /„ û o-(x)- - £ h<rb (28)
beB xeb beB

where B is a finite family of finite subsets of Z. Now HB defines the probability
distribution of the spins on

A=U b
6eB

and the corresponding partition function can be written as

ZB I exp i-ßHBitr)) 2|A'(]1 cosh ßJ^R

Here R is defined by the H.T. expansion as

R I û tanh ßjb (29)
geG beg

and G is the 'High Temperature Group' [5]:

ibx,...,bk)eG
if and only if bt e B and bxb2- • • bk 0 (be (b U c) - (b n c)). Now R can play
the role of the polynomial (1) if one identifies the set of bonds B with the set Q
and the complex variables zt, i e Q, with

zb tanh ßjb, beB. (30)

Furthermore, if DePiQ)/G, then there is a ci c A such that

\[b=d
beg
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for any geD: the cosets can be indexed with the subsets of the lattice. Now if
Rd I FI tanh ßJb

geD beg

then

RdIR=(trd)B

where (-)B denotes the mean value according to the probability distribution
defined by the potential (28). The bound (27) then refers to (trd)B. The variables,
introduced in (17c), also correspond to correlations: let BlczB and G*
GnP(B'). The cosets of P(Bl), according to G', can also be indexed with the
subsets of

A'= U b.
beB1

Let fecA' correspond to aeP(Bi)/Gi; then

£tata=<o-bV (3D

where the mean value is taken according to the probability distribution

~exp(-ßHB.(o-)) exp(ß £ Jbtrb)
V beB' /

If {Bl}^Lx is a partition of B and G° and {G'}]^ are the subgroups of G
corresponding to this partition, then by using equations (13), (17) and (30) we
obtain

ZB 2|A|(fl Il cosh ßJb) X II tanh ßjb)W) (32)
•-. 1 VeB' ' VeG1 beg 'J

The prefactor of T in this equation is the partition function of the union of
independent small subsystems. If, while taking the thermodynamic limit, the sets
B' are kept to be small (i.e., the number of bonds in Bl is bounded while i goes to
infinity) then the possible singularities of the free energy come from the zeroes of
T(£). In fact, the sum (17a) which defines T(£) can be considered as a high
temperature expansion where the 'small variables' are the £a's of equation (31),
instead of tanh ßjb, the 'small variables' of the usual H.T. expansion.

4. A remark on the high and low temperature analyticity

Another variation of Lemma 1, if applied to the high and low temperature
groups (see [5]), can be used to show high and low temperature analyticity
properties of Ising models with any kind of finite range interactions. To obtain
these results, let us consider the set of lattice sites A and that of the bonds, B. We
choose a cover {B'}jeA for B so that B' includes all the bonds containing the site i.

Now con G denotes the set of the connected elements of G, where G is either the
high or the low temperature group. That is, if g e con G then the bonds of g cover
a connected set of sites in A. Clearly, there is a unique way to write any g € G as
the disjoint union of connected elements. By substituting inf G with con G in the
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definition of Nnii) and by modifying r'a in an obvious way, one obtains exponential
upper and lower bounds on the absolute value of the partition function

provided that |tanh ß/b| or |exp (-/3 |Jb|)| are small enough. Then the analyticity of
the free energy can be proved by Vitali's convergence theorem [6]. We remark
that the low temperature analyticity can be shown only for non-frustrated models.
In this way, we can merely reproduce earlier results (e.g., some of Gruber et al.,
[5]); therefore, we do not discuss this possibility in detail.

5. Summary

In this paper we developed a new method for the localization of the zeroes of
Ising partition functions. We emphasize two particular features of our method,
which affect the future applications. First, beside determining domains where the
partition function, Z, is not zero, we obtain estimates on \Z\ and also on the
correlation functions in the same domain (cf. equation (27)). Second, our results
strongly depend on the lattice structure and the range of interaction through the
quantities Nnii), of equation (14). This is in contrast with Lee and Yang's finding
for ferromagnetic models. This structure dependence may somewhat be exaggerated,

because our method does not take into account a possible compensation
among terms of different signs in the polynomial (1); nevertheless, it may reflect
an existing feature of the distribution of the zeroes. Regarding the applications, a

consequence of this structure dependence is that one needs estimates of the
lattice-combinatorial quantities Nnii), as good as possible.
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