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A remark about weakly coupled one-dimensional
Schrödinger operators

by M. Hans*
Department of Physics, Jadwin Hall

Princeton University, Princeton, New Jersey 08540

(26. I. 1979)

Abstract. We discuss the asymptotic behavior of the ground state of weakly coupled one-
dimensional Schrödinger operators for various potential classes, in particular long range potentials.

Our recent work [1] about spectral properties of the infinite harmonic crystal
led us to this reconsideration of the weak coupling limit of one-dimensional
Schrödinger operators. We show how the method of [1] can be used as an
alternative, in momentum spaces to the position space methods used in [2] and
[3]. As regards the fall-off of the potential at infinity the method allows for a
unified treatment of all important cases. In particular, for applications to
Schrödinger operators with magnetic fields, potentials that behave as |x|_1 for
large |x| are of interest [4]. Moreover, we will disprove a conjecture in [2]
concerning potentials that fall off as \x\~~", 0<a<l. We hope that this paper
completes the overall picture of this subject. We recall that we study the bound
states of

^+ AV (1)
dx

as À | 0. The peculiarity of one dimension compared to three dimensions is that
the ground state in one dimension is asymtotically separated from the other
bound states whüe in three dimensions all bound states behave in the same way.
However, even in one dimension this is only true if the potential falls off fast
enough. The borderline is given by the |x|-1-tail. Notice that E<0 is a bound
state of (1) if and only if 1 is an eigenvalue of -kQE where kQE is in momentum
space given by

k (2tt)-1/2(p2 -Ep1'2V(p -p')(p'2-Ep1'2 (2)

where

V(p) (2tt)-1/2 f eipxV(x) dx (2)
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In [2] and [3] the operator KE=+k\V\1,2(p2-E)-1V1/2 where V1/2
|V|1/2(sgnV) was studied. We remark that KE and QE are iso-spectral, since
QE=AB and KE =BA where A (p2-E)~1/2V1/2 and B A(sgn V)A+. Thus
a-(KE)\{0} o-(QE)\{0} [6]. We introduce the following potential classes:

(A): J(l + |x|)|V(x)|dx<°°

(B): J|V(x)|dx<œ (3)

(C): V=-r-?—+W, a>0, b>0
\x\ + b

(D): V=-~+W, a>0, 0<a<l
\x\

Conditions on W wiïl be given later. Cases (A) and (B) will only be considered
briefly for they have been studied extensively in [2] and [3]. Case (C) and (D)
show some features that one could perhaps not expect at first sight. We will see
that one must not interchange the limits k j 0 and a | 0 in the asymptotic series.
Most of our work wiïl be devoted to case (D).

The main idea in this paper is a perturbation argument which we briefly recall
here. We decompose QB as

QE PE + RE (4)

Where, in cases (A)-(C), PE -«fe(«fe, •) with llifell^00 as EfO. ||RE|| will stay
bounded or blow up at a smaller rate than ||ife||2 as EfO (so that ||RE||/||iiy|2-» 0).
1 € cr(-AQE) implies

A(«fe,(l + ARErVE)=l
The leading order is implicity given by k ||ife||2 1. Perturbation theory tells

us that ||ARE|| < 1, whenever E lies in an interval around the E-value given by the
leading order (the length of the interval also being of this order). To find the
higher order terms, we expand (1 + ARE)_1. Compared to [2] we avoid the use of
det(l + AQE).

Case (D) differs from this scheme in that PE wiïl be a compact operator
whose eigenvalues spread apart at a larger rate than ||RE|| blows up.

[1].
Case (A). Since Ve C1 this case is completely analogous to the problem in

If J Vdx 7^=0 we define

1 V(p)V(-p') r „n _E V(0)V2^(P2-E)1/2(P'2-E)1/2

RE QE-PE (7)

If JV 0,

1 V(p)+V(-p')
sFPn-(p2-E)ll2(p'2-E)V2

(8)
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Ve (A) implies |R0(p, p')l —œnst./max(|p|, |p'|) so that R0 is bounded (see
Appendix). Then ||RE||^||Roll CE — 0) and as k \ 0, —kQE can only have eigenvalue
+1 if J V< 0. For J V 0 this follows as in [1]. Setting ||APE|| 1 we find in leading
order

(-E) 1/2. V(x) dx (9)

in accordance with [2, 3].

Case (B). The same decompositions work. We only need remark that
(H.S. Hilbert Schmidt)

I|Re||h.s. e-1/2o(£)

by dominated convergence, while ||PE|| 0(E~1/2). Hence PE will dominate RE as
EfO. We do not give the details of the asymptotics in this case.

Case (C). Here V(p) is logarithmically divergent at the origin. Hence the
decomposition (7) is no longer meaningful but this can be remedied. We assume
for simplicity that WeLx and W(0)^0. The right decomposition is

+-
a In V — E

tt(p2-E)V2(p'2-E)
Rp QE-RE (10)

where a is the constant in (C). ||PE|| (ln V^Hl/V1! while ||RE|| ~ l/V^E. The
latter fact follows from a consideration of RE(p, p') whose explicit form can easiïy
be worked out. The first order correction to the eigenvalue a ln Y—E/Y—E of PE
is («fe, REife) where <fe (-E)1/4/(p2-E)1/2Tr1/2. We get

-E(ife, REtfe) V- E(ife, QEife) - V-E(il>E, PEfe)

V(p-p')
—a In Y-E+- E f V

ttV^tJ (P2-J
dp dp'

E)(p'2-E)

^alnV^Ë+i f (-^-+W(x))e~2^M dx
2 J \b + \x\ 1

-* -a(C-ln(2b))+- | W(x)dx c as E f0.

Here

C du+\
J0 U Jx u

du

is Euler's constant. To find the ground state we have to solve

-Aa ln x — Ac x, x V — E

(ID

(12)
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Iteration gives

vriË= + Aa ln (1/A)-Aa ln ln (- j-k(a In a + c)

lnln(l/A) A /lnjn(l/A)\
+Aal^î/ÂT~Mï^(aln(1/^ (13)

These few terms are consistent with the first order perturbation of PE(11). We
observe that as a [ 0 the first three terms reduce to -A J Wdx in accordance with
(9) but the first five terms go into -A(l-l/ln(l/A)) J Wdx!

Case (D). It is crucial to write V in the form (D). Then, if W 0,

QE - EY"12^1 Q_x, E < 0. (14)

by performing a diïation.

aCas

(p2-E)V2\p-p'\1~a(p'2-E)1
0YP,P') ,„2 „^,. ,n-a,,2_^y2, E<0, 0<a<l (15)

where Ca cos(Tr(l-a)/2)T(l-a)lir. —Q_i is compact and positive. Let
(-Qi/a)ifc oiift, (s 0,1,...), o-0>o-1>---11^11=1. Denote by E° (s 0,
1,... the bound states of p2 — ka/\x\a in increasing order. Then

(-Ey<2 (kao-sY«2-°* (16)

Adding We (A) means perturbing QE by an operator whose norm is
bounded by const. E"112 as E |0. This cannot affect the leading order (16). We
denote by Es the bound states of p2 — ka/\x\a + kW. Then, ES=E obeys

(-E)1-("/2) aAo-s(fe (l-AB)-VJ (17)

B (1 -AE^^a X o-iPiY^E (18)

ô L_ W(^Ë(P-P'))
(19)E V2W=Ë(P2+1)1/2(P'2 + D1/2 UJ

Pt(-) <fc(«fe). (20)

QE is related to QE in (2) by a dilation. The inverse in (17) is well defined for
we need only consider A =^E1~ac/2/(asa) corresponding to the leading order (16).
Now

(_Es)1-W2) kaa + ^asa(^s, B<fc) +AV(fc B2(l -AB)"V.) (21)

s euen: Assuming We (A) and W(0)^0

-1 f /—
(«fc, Bifc) («fc, QEifc) -~== j W(x)x2(xV-E) dx

"feffl f W(x) dx + 0(1). (22)
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Xs was introduced as the Fourier inverse of (p2+l)~1/2«fc. We also have (p2-
(l/o-s)|x|"0')^s -xs. Xs(0)i=0 by a Wronski argument. The 0(1) term follows
from dominated convergence. The second term on the r.h.s. of (21) is
0(k°-2am2-aA + 0(k2) whiïe the third is 0(A(4"3")/(2-")). It follows

(-Es)1/2 (oAas)1/°-Œ)-:~^ ï W(x) dx + 0(A5-3"/2~«) (23)
1 — ex J

Similar as in (C), the second order term does not reduce to (9) as a { 0
although Xs does not depend on a. To see this note that

V2^s(0) ((p2 + ir1/2,«fc)^
by the Schwarz inequality. Thus

xl(0)^ 1 1

1-a l(l-a) 2'

s odd: Assuming J |W(x)| (1 + x2) dx <oo we find

(«fc, B«fc) -V^Etó(O))2 | W(x)x2 dx + 0(1) (24)

where x^(0) p 0 for s odd. The third term in (21) is 0(A3) if W'(0) ^ 0 and smaller
otherwise. Thus

(-EY1'2 (aAo-s)1/(2-a) -A<4-«>/e->(o''a)2/(2 - (x's(0))2
1 — ex

x [ x2W(x) dx +0(k5-al2-a) (25)

Remarks, s odd also covers the three dimensional case for s-waves since the
odd functions satisfy a Dirichlet boundary condition at the origin: One can make
the limit a |1 in (25) using the fact that on odd functions Ca \p -p'l""1 goes over
into log(|p-p'|/|p + p'|) which is famiïiar as the s-wave part of |p-p'|~2.

In the very special case W(x) -W(-x), s odd,

(«fc,B«fc) 0

identically in E. We have to look at

A3crsa(<fe, B2djs).

If J xW(x) dxpO this term approaches

-cA3 [ xW(x) dx)\x's(0))2 1 P2k(x2k(0))2 (26)
\J ' k=0

as Es |0, where p2k (1 - (o-2fc/crs))_1. (26) would give the second order if it were
non-zero. However there are always positive and negative terms in the sum which
might cancel. We don't know the second order in this case.

The response of the asymptotic series to a replacement of —a/|x|" by —a/dxl" +
b), b>0, is surprising. It amounts to choosing

W -\x\a(\x\" + b)
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in (D). If 1 > a > 1/2 and s is even, the second order is still given by (22) and (23).
If 0<«<l/2, («fc,B«fc) is 0((-E)"_1) and the second order is (23) becomes
0(A(o,+1)/(2~")). This accords with the limit a | 0 (b>0) where one expects -E0~
0(A). If a 1/2 we get an 0(A ln A) term.

Simiïar effects occur if s is odd.

We conclude with the remark that the momentum space method also allows us to
discuss the threshold behavior of potentials like sin|x|/|x|. This has been discovered

recently and will be discussed elsewhere.

Appendix

This appendix considers a more general threshold behavior than the weak
coupling limit. We show how the methods of this paper can be used to give a
quick proof of a well-known fact about the ~ 1/1 + x2—potential. The appendix
also explains some steps in [1]. Let

H p2-k/(d2+x2), d>0, A>0.

We show

(i) H has one bound state it A < 1/4.
(ii) H has an infinite number of bound states if A > 1/4.

Since H serves parity, we consider H on the odd or even function separately.
Accordingly, we introduce QE + (-) even (odd)) and consider these operators
on L2(R+) (after an obvious unitary transformation). Then

1 e_dlp-p'l_g_dlp+p'l
Qe(P' P,) ~2d (p2-E)V2(p'2-E)-2> * P'a0 £"°- (AJ)

Q*-Q*= -h(p2-E)-Ç-Ef'2'E<()- (A-2)

QE—QE is a rank one operator whose negative eigenvalue goes to —°° as
E î0. Anticipating that Qq is bounded, we note that QE —*¦ Qö strongly and
llQill t llQoll- Moreover, Qö gets unitarily transformed when d varies (diïation)
and as d 4 0

Qö -» -A0(p, p') -1/max (p, p') (A.3)

strongly and ||Qo1l —l|A0||. The limit à \ 0 serves as an auxiïiary tool to discover
the spectrum of Qö from that of -A0. Substituting p —*¦ es (se(-°°<»)) we can
unitarily transform A0 into the integral operator with kernel exp (—|x-y|/2) on
L2(IR). Hence o-(A0) [0,4] o-(Q0) since, on the one hand, cr(Qö has to "fill
up" [0, 4] as d i 0 (strong convergence) [5, p. 290]) and on the other er(Qö) is
invariant as d changes, (ii) follows now from the fact that dim (RamP(1>oo)(-Qö))
oo if k > 1/4. (i) follows since (1, oo) e p(—Qö) for A < 1/4 and since QE differs from
QE by a rank one operator which creates one single bound state.
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