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On the viscous damping of the
magneto-acoustic oscillations

Yu. S. Sayasov
Institute of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland

(26. II. 1979)

Abstract. Radial magneto-acoustic oscillations in cold, bounded, cylindrical plasmas are investigated,

taking account for the viscous losses. It is shown, that strong viscous stresses may arise in such
plasmas nearby the wall, where the radial component of the mass velocity drops quickly to zero.
Viscous dissipation connected with this boundary effect proves to be more pronounced than in the
infinite plasmas with similar parameters. Some discrepancies between theory and experiment,
described in the earlier papers, are interpreted as due to neglect of the viscous losses.

1. Introduction

Magneto-acoustic oscillations in bounded, cylindrical plasmas were investigated

in a detailed way in a number of papers (see e.g. Cantieni, [3]; Elmiger,
[5]). However, it seems that the viscous mechanism of their damping was never
accounted for. (Some estimates of its role, without consideration of the boundary
effects, were given recently for a particular case of the high-temperature, fusion-
plasmas by Kapitza, [6]).

For a plane, low-frequency magneto-acoustic wave propagating in an infinite
medium the attenuation coefficient due to both Joule and viscous losses is
(Landau, [9])

K=Je7A{tVh + Vm)' (1)

where vh -nip, vm c2/4ttct, cA Alfvén velocity, c light velocity, r\ viscosity
coefficient, a plasma conductivity, p mass density and ea is the oscillation
frequency. Thus, the ratio of the attenuation coefficients connected with viscous
and Joule losses is given by 4vh/3vm or, for a strongly ionized plasma, by

4y„_3-1013T4
3vm A1/2nA2 ' K)

where T is the temperature (expressed here and in the following in eV), n is the
ion density, A is the Coulomb logarithm, A mjmp, mt, mp are the ion and
proton masses. (We use here the transport coefficients for a strongly ionized
plasma as defined by Braginskii, [2]). For not too hot and not too thin plasmas the
ratio vjvm is small. (It is equal to 5 • IO"3 for A 1, T= 1 eV, n 1014cm~3).
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Thus, for infinite plasmas with similar parameters the viscous damping would be a
negligible one.

However, in a plasma surrounded by a solid boundary the viscous effects may
lead to the appearance of a boundary layer with quickly changing plasma velocity,
where the viscous force r\(d2vldx2) (v is the radial plasma velocity, x — a coordinate

counted normally to the boundary) can reach big values, thus influencing the
damping mechanism. The investigation of such effects described below leads,
indeed, to the conclusion, that the viscous damping proves to be more important
in the bounded plasmas than in the infinite ones, and can manifest itself there
even under conditions when the parameter vjvm is small. (A similar phenomenon
is known to exist in acoustics: a sound wave reflected from a wall experiences a
strong absorption in result of the boundary viscous effects (Landau, [9], §77)).

2. Basic equations

The linearized fluid equations for many-component, cold plasmas in the
magnetic field B0, we will study here, can be written as follows (see e.g. Spitzer,
[H]):

m„n.i^\ eanjsB+hvYB^ +R\,-^, (3)

where n„, ma, va, ea are respectively the density, mass, velocity and charge
corresponding to an a-particle, irj^ is the viscous stress-tensor, and RP is a
friction force acting on an a-particle. In the following we will restrict ourselves
with homogeneous, quasineutral, isothermal plasmas consisting of neutral particles
(density na, mass ma, velocity va), ions (density nt, mass m,, velocity t5;) and
electrons (density ne, mass me, velocity ve)- Introducing in the usual way the mass
velocity v (msnava + m^V: + meve)fp, current density / e(net5e - nsV,), neglecting
the members of the order of mjmi and of the order of (me/m;)1/2, using an
assumption of quasineutrality (ne ri\ n) and an assumption vin/<o » 1 (vin is the
collision frequency of ions and neutrals) we reduce (3) to a set of two equations:

p— -[fBo] + f, p min0, n0=na + n, (4)
dt C

dJ -vj+^ (è+-[vBoì)-eo^ijhl (5)
dt 4tt \ c I

where ea2 4ire2n/me, eoce eB0/mec, v is an electron-ion collision frequency, h is
a unit vector in the direction of B0 and f is the viscous force. Under an additional
assumption, we will use in the following, eo^ « 1 (eoci eBo/m^c and Tf is ion-ion
collision time) f can be represented in the form: / tj Au + (£-5T]) graddiv v,
where £ is the coefficient of second viscosity.

The inequality ViJeo » 1 (meaning that the neutral particles are carried along
with ions and, hence, that Vs ~ va) holds if the density of neutrals na is big enough.
On the other hand, for a completely ionized plasma we arrive at the same system
(4)-(5) neglecting the presence of neutrals from the very beginning.
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The equations (4)-(5) must be complemented by the Maxwell equations:

ft. ldÊ 4ir-r ~ ldHrotH -— + —], TOtE=——, (6)
C dt C C dt

which together with (4), (5) form a complete system. One must satisfy at a solid
boundary S, besides usual electrodynamical conditions, some constraints imposed
on the mass velocity v. The hydrodynamical condition of adherence of gas
particles to the boundary û(S) 0 can be used as such constraint in case the mean
free paths of ions and neutrals are small compared to the relevant distances
(including a boundary layer thickness). Otherwise (in a rarefied plasma) a well
known slip flow phenomenon can arise (see, e.g. Kennard, 1938). To account for
this phenomenon the condition v(S) 0 is modified for neutral gases as follows
(see, e.g. Serrin [13]): vn(S) 0, vt(S) Kirt(S), where vn(S), vt(S) are the normal
and tangential components of the velocity v at S, tr^S) is a tangential component
at S of the vector irikhk (h is a unit vector normal to S) and K is a constant
dependent of the gas properties.

A similar boundary condition, which is applicable for the cases when the
mean free paths of the particles are not so small compared to the boundary layer
thickness, can be formulated also for the rarefied plasmas. However, restricting in
the following to purely radial magneto-acoustic oscillations of an infinite cylindrical

plasma column surrounded by a solid boundary, we use only one of the above
mentioned conditions: vn(S) 0. This condition, which means simply that a gas
particle can not penetrate into the boundary, is just sufficient to obtain uniquely
the solution of the system (4)-(6). Nevertheless, it must be kept in mind that the
hydrodynamical description used here is correct only if the mean free paths of the
plasma particles do not exceed the boundary layer thickness.

3. Radial magneto-acoustic oscillations

We will assume as usual (see, e.g. Elmiger, [5]) that the excitation of the
magneto-acoustic oscillations of frequency ea is performed by a coil of radius b,
while a homogenous plasma is situated in an axial magnetic field B0 within a
cylinder of radius a < b. The space between the coil and the plasma is assumed to
be filled with an opaque dielectric. The non-zero components of the vectors E, H,
v, j now are: azimuthal component E^, radial component Er, axial component
Hz H, radial component of the mass velocity vT v and azimuthal component of
the current density /,,,. (The disappearance of the radial component /r 0 is a
consequence of the fact, that all the quantities Ê, H, v, j can be considered as
functions of the radius r counted from the system axis only; in combination with
an additional assumption, we use in the following, that the displacement current
(l/c)(dE/dt) in (6) can be neglected, it leads to the conclusion that

0 (rotrot È)r ™'Jr i.e. jr 0.

Accounting now for the fact that all the quantities in (4)-(6) depend upon the
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time as e~"°', we can reduce this system to the form

-ipa}U=-/<()B0 + -T} Ai«, Ai -—— r (7)
c 3 dr r dr

(v-iea)J4,=^(E<b-KB0^ (8)

dH 4-7T là w— U, -TrE„ i-H (9)
dr c r dr c

0 (v-iea)ir=^Er + eaceU (10)
47T

It is necessary to indicate here, that for this particular case the equations (7)-(9)
form a complete system, which, once solved, allows to find from (10) the radial
component Er.

As boundary conditions we will use

v(a) 0. H(a) H0 (11)

and conditions of regularity inside of the plasma column. In (11) H0 means the
field generated by the coil at its internal surface. This boundary condition (formally
allowing to eliminate the layer of dielectric a<r<b) is applicable if (ea/c)

(b-a)»l.
Introducing a dimensionless variable r —» r/a one can reduce (7)-(9) to an

equation for the function v v(r), satisfying the condition n(l) 0:

p, Ax AxV - a AxV - q2v 0, (12)

where

vhvm 4tj c2 taa Bl
P=_5—5, vh=—, vrn= — (v-ica), q

cAa 3p Wp cA 4Ttmsn

a l-i(e1 + e2), ex —r, £2 —T
CA CA

A solution of (12) can be easily obtained owing to the fact that solutions of the
equation A1/+fc2/ 0, i.e. /1 J1(kr) (Jt is a Bessel function), satisfy also (12),
provided the parameter k is defined by

pk4 + afc2-q2 0. (13)

We get, hence, two independent solutions of (12): u12 Cx,2-^1(^1,2'"), where C1>2

are some constants and, in virtue of (13)

fc,2
-aWa2 + 4pq2

(14)
2p

It must be indicated here, that the parameter p in (12) can be usually considered
to be small, e.g. for strongly ionized, monoatomic plasmas, when r\ -n,, rj;
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0.96TnT( (Braginskii, 1965) and for

5 • 102A1/2T

Boa
v » w, p ^7-^ (i.e. p 1.3 • IO"6

for T=leV,Bo=104G,A 40, a 5 cm).

According to (13) we have in a senior approximation over p:

kx -j=, k2 iJ—. (15)

(17)

va
The boundary condition u(l) 0 leads, evidently, to the following definition of
the constants: C12 ±CJ(fc2 x), i.e. the solution of (12), we look for, reads as
follows

v C[Jx(k2)Jx(kxr) - Jx(kx)Jx(k2r)l (16)

where C is a constant defined by the condition H(l) H0.
Particular solutions for the magnetic field-vector H, as defined by (7)-(9),

are: H1>2 D1>2Jo(fc1>2r). The constants D12 are connected with C12 by the
relation

D12 B0kx,2Cx,2lvm\i — -k2xX

Thus, the magnetic field distribution is given by

CB0/kxJx(k2) fc2Ji(fci) j „_ AH / /o(feir) J0(k2'-)\-

As the argument k2 in (17) possesses a big imaginary part, one can show, with the
help of the asymptotic representation of the Bessel functions, that
(Jx(k2)Uo(k2)) i- We get hence, a final expression for H H(r):

H H0[J0(kxr) - iDJx(kx)(J0(k2r)Ux(k2))]IF (18)

D=. K 1 +i^ F j0(kl)-DJl(kl). (19)
>vm l + i(e2/a)

Our formulas can be further simplified, if |e|«l, |e2|«l, |e2|«|ei|. These
inequalities are often realized nearby the first magneto-acoustic resonance (MAR)
and they ensure, that it is a narrow one. We can now represent kx and ^(fci) by
the developments

ki -7= q(l +|iei), Jo(ki) -Ji(<io)(Q ~ (Jo) ~ Ji(<ïo)'koei,
va

where q0 eo0a/cA 2.4 is the first root of the equation J0(q) 0. The coefficient
F in (19) become now:

V Wo / Qo yvm
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A quantity of interest is the modulus of the ratio of the magnetic field at the axis
H(0) and at the plasma boundary Ho:N \H(0)/Ho\. As follows from (10), it is
given nearby the first MAR (for ea « v) by the formula

(20)N
1 * 2.4cA

qoJi(qo) l(<a-<o0\2 2

where

a

1
0"

qo-Jifao)

and

i,l/^ <loVm ,1 /ïvl~2ei+ V + v •

q0 > vm 2cAa q0 V Vm
(21)

The parameter 2yw0 represents evidently the width of the first MAR, while the
quantity 1/y represents, as usual, the quality factor. It must be stressed here, that
the influence of viscosity is characterized by Yvjvm in (20), i.e. it is, indeed, more
pronounced than in infinite plasmas, where these effects are of the order of vjvm.
For strongly ionized plasmas and for ea « v the magnetic vm and kinematic vh
viscosities are given by

OceTe » 1)
c2

WpTe

8.3 • 105A

p3/2
(for

1.3TT, 2.6 • 101S"T-5/2

Vh
m, A1/2An '

where re, rt are the electron-ion and ion-ion collision times defined in (Braginskii,
[2]). The parameter y is defined now by

106A 2.4-106T2 B0
y 1 cA ;—=. (22)

cAaT312 A1/4An1/2 sf4^n~n

The influence of viscosity effects becomes appreciable, according to (22), if

fc <l0vm

q0 V Vm 2cAa
'

It leads to a condition specifying a range of densities where these effects must be
accounted for : n <5 • 1011BoT7/2aA~3/4A"2. It is interesting to indicate here that
the quality factor 1/y (or the value of the maximal ratio iVmax 0.8/y, corresponding

to ea ea0) possess as a function of temperature T (with all the other
parameters fixed) a pronounced maximum (Fig. 1).

Formula (22) for y is valid only for a high degree of ionization satisfying the
condition

1
_

An
Ti"2.1-107T3/2A1/2<<Vil
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Figure 1

Parameter 1/y for strongly ionized plasmas (formula (22)) as a function of temperature T for
Bo=103G, a 5 cm, A l (Hydrogen) and for different electron densities n. For comparison the
corresponding values of the parameter l/-y0 l(<a0vml2c^) (i.e. with viscosity effects neglected) are
indicated by dashed curves. The yalue of the maximal ratio N |H(0)/Ho| for a> <o0 differs from l/-y
by the factor l/[q0Ji(q0)] 0-8

(For Ar-plasmas iv is given by a semiempirical expression (Appert, [1]) vin
2.0 • 10~9T1/2na). For plasmas with comparable concentrations of ions and neutrals

1/t; » vm and viscosity is due mainly to ion-atom collisions. An approximate
formula for the viscosity coefficient, n \pul, can be used in this case. (Here u is a
mean thermal velocity and I is the mean free path of atoms connected with their
collision frequency by the relation I u/vta). For Ar-plasma we get, in virtue of
the expression for v-m mentioned above n 1.0 • 10~3T1/2 poise, in a reasonable
agreement with measurements (Schreiber, ([12]) of tj for Ar-plasmas. A
corresponding expression for the parameter y in (20) valid for a particular case of the
Ar-plasmas is

106A

:.ar12
¦ + 1.8-106T 1_

An0
cA

Bo

Y4
(23)

"7rm;n0

The dependence of y from T as given by (23) is reproduced in Fig. 2. Using the
assumptions |e12|«l, we can also simplify the formulas (16), (18) for v v(r),
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Bo 104G,n=10,6cm-

1 /10-
V

15 -3Bo 10°G, n=10'"cm

12 139 10
ev

Figure 2

Parameter I/7 for Ar-plasmas (A 40) as a function of temperature (formula (23)) for a 5 cm and

B0 IO4 G, n0 IO16 cm"3 or B0 IO3 G, n0 IO15 cm-3. For comparison the corresponding values
of the parameter \ly0 ll((aQvm/2c^) are indicated by dashed curves.

H (r). They are given now by

H=H0[j0(kir)-i/i(k1)(vh/I,m)1/2exp(-ip)]/F

« cA— [jx(kxr)-Jx(kx) exp ("^)]/*7.
where

F J0(kx)-i\j— Jx(kx)

or, nearby the first MAR,

F -Jri(q0)q0(ft) *""+ »7 )•
\ ea0 I

From (24), (6) we have also to the same approximation:

(24)

(25)

E<t> iH0^Jx(k1r)IF
c

(26)
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(In (24)-(26) the ratios /1(k2r)/J0((k2r), Jx(k2r)l(Jx(k2r) were replaced by their
asymptotic expressions valid nearby r 1).

The formulas (24)-(26) exhibit the presence of the boundary layer of
thickness

5=aVp=
Vvhv„

Ca

due to both electromagnetic and viscous effects.
It is instructive to rewrite the expression (21) for y, introducing the parameter

S, as follows:

Ho vm 1 vh
y=— 1

2 cAa q0cA8

As it is clear from this expression, viscosity begins to play an important role if

i^ ««2.9^1,
vm 2 a a

whereas for the infinite plasmas the corresponding condition is much more
stringent: vjvm > 1. The foregoing discussion was restricted to the relatively thick
plasmas satisfying the condition v^/ea » 1. The investigation of the viscous effects
for arbitrary values of the parameter p-Jca could be, in principle, performed by
replacing the system (4)-(5) by a set of equations accounting for the separate
motion of neutrals

ft 17 - [/Bo]- ftv-Xü, -va) + l (27)
at c

Pa T7 PiVindi - va) + fa, ft m^ (28)
of

at= ~VÎ+Û [Ê+c [^o]) " Wce[^] (29)

where fa T\a Ava + (4 +5T)a) graddiv va, ft t}; Ai5, + (£ +|tj,) graddiv u( and T}f,

T|a are the coefficients of viscosity for ions and neutrals. (System (27)-(29) differs
from a system (2)-(4) in Hoegger et al. [15] by inclusion of the viscous forces fa,
fi). The analysis of the general system (27)-(29) is quite complicated. However, in
case ViJea«l (opposite to that investigated above), the velocity of neutrals va
appears to be small compared to bt, as follows from (27)-(29). (The neutrals form
now a kind of 'background', not participating in the motion of ions). We have,
hence in this case a relation vt « (l/x)u between the mass velocity v and the ion
velocity v{, x n/n0 being the degree of ionization. Adding now the equations (27)
and (28) and inserting into (29) vt - (lfx)v, we reduce (27)-(29) to a set of two
equations

P^hîBoi+l (30)
dt C

dj -r.eap'
d-r-vi+Tn- (fi+~[SÖj)-«fa.[jÄ] (31)
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differing from that used in Skipping et al. [14] by accounting for the viscous force

1 1
fi - T), Av +- (d +|t)ì) graddiv v

x x

in (30). Repeating the calculations described above, we get the formulas coinciding
with (20)-(24)-(26) with the sole difference that the Alfven velocity must be
replaced by

cA
ßo

v4TTm;n

and the viscous coefficient tj by r//x.

4. Propagation of the magneto-acoustic waves, MAW,
in cylindrical channels

It was assumed in the foregoing discussion, that the excitation of MAW is
performed by a coil having the same length as the plasma column. However, a
question may arise about the role of the viscous damping if MAW are generated
by a short coil and propagate in a long plasma channel. The boundary effect
investigated above for a standing radial wave proves to be even more important
here. This can be shown easily under the following assumptions: (1) Excitation of
an infinitely long cylindrical plasma column of radius r a is performed by a coil
situated symmetrically relative to a middle plane z 0 on the surface of a thin
dielectric surrounding this column. It means, that the distribution of an azimuthal
external current-density is given by

j(z)=\ j(kz)e^ dkz.

Accordingly, we can assume, using in the following the homogeneous equations
(4)-(6), that the axial magnetic field H(r, z) satisfies for r q the boundary condition

H(a, z) — f j(kz)eik** dkz (32)
c -L»

where z is a cylindrical coordinate counted along cylinder axis; (2) The Ohm's law
will be taken in its scalar form /' =cr(E + (l/c)[t3B0]), which implies

v » ea and v » eace.

The basic equations (4)-(6) read now as follows

-ieapvr - B0er( E+ — vfioj + Tj(Aur +5AiHr) (33)

A Ä lv \ H=ic (34)
C \ c I ea

where A Ax + d2ldz2. (The axial component of the mass velocity vz=0 since
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(l/c)[j'B0]2 0). System (33)-(34) possess the partial solutions

vr(kz) AJx(Kr)e^\ E^(kz) BJx(krz)e^z,

where A, B are some constants. Inserting these solutions into (33), (34) we get a
dispersion equation coinciding (for frequencies not too far from the first MAR)
with (13), the sole difference being that k2 in (13) must be now replaced by
k2 k2 + k2z. Repeating the calculations described in Section 3, assuming e!«l,
e2« 1, e2« ex and introducing the dimensionless variables r —» (ria), z -* (zia) we
find approximate expressions for the two roots of this dispersion equation.

k2x k2x + k2 q2(l + iex), k22=k22+k2z =-?¥%=--,
wa ei<\q=—. (35)
cA

We can take in the following kz <q (since |k2|»|k1|)k2 iVï7p=kr2. The partial
solution vT(kz) satisfying the boundary conditions vr(a) 0 can be written now in
the form

vr(kz) C[Jx(krxr)Jx(k2)-Jx(k2r)Jx(klr)leik*z (36)

where C is a constant.
For the magnetic component H(kz) we find an expression coinciding with

(24), where H„ must be replaced by (4ir/c)j'(k2) and kx by Vkf-fc2. Integrating
this expression over kz taking, for sake of definiteness j(kz) J/ltr, i.e. j(z) J8(z)
(excitation by a single loop), we get finally (for l-r»Vp):

2/ r J0(VkT=lYzr)e^dkz_
c -L Jçhlk2x-k2z)-i\JxbJk2x-k2z)

where A (vjvm)1/2. Considering in (37) kz as a complex variable, we conclude
that the integrand (37) becomes exponentially small in the upper half-plane of kz
for |kz|—*oo. We can, hence, replace the integral in (37) by a sum of residues
corresponding to this domain. Accounting for the fact that zeroes ksz of the
denominator in (27) are given by the equation

K Yk\-(kz)2 qs-i\, i.e. fcs2 [q2-q2+i(q2El + 2Aqs)]1/2, (38)

where qs are roots of the equation J0(q) 0, we arrive at the expression

H y KJ0(Kr)eik** _4tt/
H0 s=0 kzJ1(qs) ca

It is seen immediately from (39) that for z—»°° the first term in this sum
dominates. Thus, accounting for the fact that ef« 1, A« 1, i.e.

kSz Vq2-q2 + (q2ei + 2Aqs)/2Vq2-q2,

one can represent |H(r, z)/H0\ for z —»°° in the form:

H
Ho

q0J0(q0r)e KZ
K^q2gi + 2Aq0

Jx(qoW(q2-ql)2+ (q2Sx + 2lqo)2' 2Vq2-q2
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where k plays a role of an effective attenuation coefficient replacing in this respect
expression (1) valid for a plane wave. For the frequencies very close to the first
MAR (40) must be rewritten as follows:

H
Ho

J0(q0r)e~

lq0Ji(qo)yJ(^f+y2'
k q0Jy (41)

where y is defined by (21). It is clear from (40) that viscous effects lead to an
additional damping with distance z, described by a factor

/ Aq0z \

(formula (40)), which can be very important for not too small values of the
parameter A. It must be stressed that the attenuation coefficient defined by (40) or
(41) can possess, as a function of temperature, a pronounced minimum (see Fig. 1

and Fig. 2).
As follows from formulas (39)-(41), the results,obtained here for an infinitely

long cylindrical channel can be extended also for a finite plasma column (e.g. for a
column closed by some conducting ends), provided the distances between the coil
and the ends are big compared with the attenuation length 1/fc. In this case the
boundary conditions at these ends become irrelevant, since the field amplitudes
are exponentially small there.

5. Comparison with experiment

In several experiments (Cantieni, [3]; Elmiger, [5]) a considerable reduction
of the magnetic field amplitude at the axis, compared with that calculated without
accounting for the viscous dissipation, was observed. This fact can be explained in
a natural way with a help of our formula (20). As follows from (20) the reduction
of the normalized amplitude N compared with that (N°) corresponding to neglect
of the viscous term (vjvm)1/2, for ea ea0, is given by

N 1""- (42)

qe

-!_ Ih

For an Ar-plasma studied in (Cantieni, [3], Fig. 12), for: t 100 ps, B 4 • IO3 G,
a 4.7 cm, T 2 eV (this value of T was taken by analogy with Fig. 10) the ratio
of experimental and theoretical (computed without accounting for the viscous
losses) amplitudes for ea ea0 is equal to about 0.66. On the other hand, we get
from (42) for this ratio NmaJN\Jnaji 0.75. (In this case cA B0N4irp).

For plasma with parameters t 150 ps, x 0.32 (Fig. 12 in Cantieni, [3]) we
find, taking T=1.6eV, from (42) NmaJN%iax 0.9, also in accordance with
experiment. Other curves in (Cantieni, 1963, Fig. 12) showing discrepancies with
a theory neglecting the viscous losses, can be interpreted in a similar way. Thus, it
seems plausible, that reduction of the magnetic field amplitudes observed in this
paper could be due to the viscous effect. For the plasma studied in (Elmiger, [5],
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Fig. 10) the ratio of experimental N and theoretical N^ amplitudes for <o ea0 is
equal to about 0.3. We find from (42) in this case, using the experimental
parameter listed in (Elmiger, [5]), the ratio Nmm/N^aax 0.4.

However, for this plasma the mean free paths of the plasma particles exceed
the boundary layer thickness 8 and, hence, the application of the .hydrodynamical
theory for interpretation of the experiment may appear doubtful. Nevertheless, it
seems possible, that an additional dissipation due to viscous boundary effects
could take place also in such rarefied plasmas. Of course, only a consequent
kinetic theory could justify this conjecture.

In conclusion, it is necessary to mention, that the problem of viscous losses
discussed here is of interest also in connection with the possibility of a HF heating
of the bounded cylindrical plasmas. The corresponding calculations were
performed e.g. in (Cross, [4]) without accounting of the viscous effects. In fact, as
follows from our theory, under conditions accepted in (Cross, [4]) the viscous
losses may compete with Joule losses, thus influencing the HF power absorption
in the plasma.

The considerable discrepancies between theoretical (computed without
accounting for the viscosity effects) and experimental values of the impedance of the
plasma column in an axial magnetic field (they are stressed e.g. in Lammers [10])
could be interpreted in a similar way. Investigation of these and related problems
is in progress.
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