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Nonlinear wave propagation in relativistic continuum
mechanics1

by Gérard A. Maugin
Université Pierre-et-Marie Curie
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au C.N.R.S., Tour 66, 4 Place Jussieu,

75230 Paris Cedex 05, France

(9. X. 1978)

Summary. We present a unified approach to the foundations of nonlinear wave propagation in
relativistic continuum mechanics. The material descriptions of interest are elasticity and magnetoelas-
ticity and the limiting cases of relativistic hydrodynamics and magnetohydrodynamics. The interest is
focused on the propagation properties of infinitesimal discontinuities in finite initial states, the
properties of weak shocks and the thermodynamics of strong discontinuities (shocks). The study is
made for a particular type of motion, so-called one-dimensional relativistic motions.
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1. Introduction

Unless one is interested in very weak signals, which occur in the detection
problem (Cf. [l]-[2] and the contributions of Pallattino and Pizella in [3]), either
physical circumstances (the dense solid-like matter of certain astrophysical objects
[4], the large velocities involved in galactic motions, the effects of strong magnetic
fields [4]) or the very nonlinearity of the field equations forces upon us the
consideration of nonlinear wave propagation in relativistic continuous matter.
Though sketchy as it is, this paper offers an attempt at a unified approach to this
problem for the states of continuous matter which may prove of interest in various
applications of relativity theory. We primarily consider relativistic elasticity
and magnetoelasticity, the cases of relativistic hydrodynamics and magneto-
hydrodynamics being obtainable by some adequate adjustments. In Section 2,
a general notion of deformation of matter in space-time is first given. In
contrast to previous papers of the author [5]-[9], a specialization is given to
so-called one-dimensional relativistic motions. Field equations and various simple
descriptions of relativistic elastic matter are also given. Section 3 is devoted to
recalling the precise mathematical definition of the two main types of singular
manifolds of interest (infinitesimal discontinuities and shock waves)2. Infinitesimal
discontinuities in nonlinear elastic bodies and hydrodynamics are dealt with in
Section 4. Section 5 offers a short (but probably the first one) treatment of shock
waves in relativistic elasticity. Section 6 is devoted to extending the above results
to the case of relativistic magnetoelasticity and magnetohydrodynamics. In
particular, the Hugoniot equation is constructed for such schemes once a plausible
model has been constructed and infinitesimal discontinuities have been
considered.

Since relativistic continuum mechanics is as old as relativity theory itself
(Einstein introduced the energy-momentum tensor for perfect fluids in his
pioneering papers), we think that combining this field of research with one of the
building blocks of twentieth-century applied mathematics, nonlinear waves, with
our modest means, is appropriate to a celebration of the genius of Einstein on the
occasion of the centennial anniversary of his birth.

2. Preliminaries

2.1. Notation

Let M= (V4, g) be a space-time of general relativity equipped with a normal

2) Simple wanes, of which the study constitutes a formidable task in the relativistic framework, are
not considered.



Vol. 52, 1979 Nonlinear wave propagation in relativistic continuum mechanics 151

hyperbolic metric g^ (a, ß 1, 2, 3,4; index 4 timelike; Lorentzian signature
+ ,+,+,-). u is the four-velocity such that gaßu"u0 +1 0 (c 1 for notational
convenience). da and Va denote the partial and covariant derivatives in a local
chart x" of M. JDA in general indicates the gradient operator in the direction of a
vector field A. Thus Du u" Va ¦ P' gaß + uauß is the spatial projector which is
systematically used in the following development to write down the local
canonical space-time decomposition of any tensor field defined on M. The local
spatial projection of any geometrical object A is noted Ax and admits u as zero
vector for all its indices in a local chart. Objects such that A=AX are said to be

J.

spatial. The transverse or spatial covariant derivative is defined by VŒ

Pj* Vß • R^yS is the curvature tensor R of M in a local chart.

2.2. Deformation of matter in space-time

Following previous works (e.g., [5]-[9]), we admit that the motion of a
relativistic continuum is described either by means of a canonical differentiable
projection <3> such that 0* : 3\B~\ —> M or with the aid of the space-time parametrized

congruence of world lines <#:x âf(X, t), XeB, relR. Here 3~[B] is the
open tube of V4 which is swept out by the material body B (whose constituent
parts are the material "particles" X) and M (V3, Gkl), K, L 1, 2, 3, is the
three-dimensional "material" manifold which serves to describe the material
continuum. B is an open region of M. t is the proper time of X along <ë\ M is
equipped with the local background metric Gkl and local charts XK, K= 1,1,3.
We have thus

0>:XK XK(x"), t t(x"), <e-.xa=êea(XK,T). (2.1)

These relations are in general assumed to possess a sufficient degree of continuity
and differentiability in their arguments so as to allow for the forthcoming
manipulations. For instance, one can define the inverse motion gradient X£ by

X*^ daXK (u"X* DUXK 0). (2.2)

The Jacobian determinant of (2.1)3 is defined by

/ det||F||, (2.3)
t

where

£={*!= (|p)x; *k"„ o} (2.4)

is the direct motion gradient two-point tensor field. J is assumed to keep the same
sign (say, plus) in the course of the relativistic motion of X. The chain rule of
differentiation yields

X^xl 8l, X%xßK Paß. (2.5)
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It is easily shown that

(Dux%)x eakxkK, (2.6)

2daß (i.„xotß)j_ — i-uFaß, (2.7)

where

eaß^ßua, (2.8)

dcsß e(«ß) |(Vßu„ + V„ue), (2.9)

(fA^) =(DuA„ßL + AYßVau^ + A„TVßM\ VA^AX, (2.10)

where £ indicates the Lie derivative with respect to a vector field V. In terms of
V

the differentiable projection 0>, we have

(£A^(x) ^-1[^(A)(X,r)](x), VA(x) Ax(x). (2.11)

2.3. One-dimensional relativistic motions

In the present work we focus our attention on the case of so-called one-
dimensional relativistic motions (cf. [10]). That is, we set forth the

Definition. A one-dimensional relativistic motion is a mapping (2,1)3 which,
at fixed t, depends only on a scalar coordinate defined along a given curve C in
M.

This definition is covariantly expressed as follows. Let A be the components
of the unit oriented tangent to C on M. Then we call X the scalar coordinate such
that

dx DA AKdK. (2.12)

It follows from this and (2.1)3 that (2.4) reads

F=f<g)A or x£ TAK, AK - G^AY fa^(dx3£a)^ (2.13)

That is, the strain field is entirely defined by the (spatial) strain vector t. Let

Df=f\a =f* V„. Then for futher use we evaluate the commutator [£)„, Df]. An
easy calculation leads to

[Du,Df]=u«/0[V„,Vß]-2)f, (2.14)

where

% -Df + e"ßf V„, Df - D(Duf). (2.15)

Therefore, the commutator [Du, Df] in general involves the curvature of space-
time. When applied to a scalar field or for vanishing curvature (special relativity),
(2.24) takes on the operator form

[dT,dx] + 3)f 0, (2.14')
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if 3T Du, and since

Df dx DA (2.16)

as is readily checked. For instance, for flat space-time

DJ" DuDf%a dTdxêea dxdJP* -%T* (2.17)

on account of (2.14'). Hence

(dTn± (dxu")± + aa(uß dx%ß), (2.18)

where aa =dTu" (dTua)± is the four-accéleration of X. The second term in the
right-hand side of (2.18) represents a purely relativistic epect. Equation (2.18)
might be called the kinematic compatibility condition for one-dimensional
relativistic motions.3)

We finally note the following demonstrable result:

?«CT^xÖ-O, i.e., V„(J-1r)-0, (2.19)

and the fact that the proper density of matter, p, is defined as being the image by
9* of the invariant density p0 in a reference configuration of the material (for
which J =1). That is,

p(xei?) p0(X)J-1, (2.20)

where x and X are related by (2.1)3.

2.4. Field equations

In addition to Einstein's equations

Raß-h"ßR kT*ß, R^^Rf^g^g^, R=Raa, (2.21)

where T"ß is the total energy-momentum tensor, we have

V«(pu") 0 (continuity), (2.22)

V„T"e 0, Tiaei=^(Taß-TPa) 0. (2.23)

In absence of electromagnetic fields and spins T"ß admits the following simpleca-
nonical space-time decomposition:

T"f3 p(l + £)u<*u3-f"ß, (2.24)

where taß tßct= (taß)± is the spatial relativistic stress tensor, and e is the internal
energy per unit of proper mass. Projecting (2.23)j along u and orthogonally to it,
we obtain

pDue taß daß (energy equation), (2.25)

pF*ßaß P°;V0rß (Euler-Cauchy equations), (2.26)

3) Compare the nonrelativistic case in Bland [11].
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where

Faß s (1 + e)Paß - p-Haß Fßa (Faß)± (2.27)

is the tensorial index of the continuum, cf. [5].
In absence of dissipative processes, the local statement of the second principle

of thermodynamics reduces to the equation

Dur, dTr, 0, (2.28)

where tj is the entropy per unit of proper mass.
For one-dimensional motions, (2.25) and (2.26) transform as follows. Introduce

the object with components TyK and the spatial vector field T' (the spatial
stress vector) in such a way that

TK » JXftyß, T* m rKAK. (2.29)

Then

Pß=r1xßKT'K J-lTfß, i.e., t J-1T(g)f. (2.30)

On account of (2.19) and (2.20), (2.26) takes on the form

p0F~ßdTuß (dxua)±. (2.31)

By the same token (2.25) transforms to

p0dTe Ta(dxua)±. (2.32)

2.5. Constitutive equations for elastic solids

For nonlinear elastic solids we may consider

e ê(t, r,). (2.33)

Then we have the constitutive equations

T (dë\ a
dé

T"=Po\ar)Y 0=; (2.34)
Vaf/J-' dr,

from Gibb's equation

Po0dT)=pode + TŒdf, (2.35)

where 6 is the proper thermodynamical temperature (0>O, inf 0 0), and (2.32)
is satisfied on account of (2.28) and (2.18) if and only if

ußdx%ß=Q. (2.36)

By use of 2P we can associate with A a unit spatial vector field on M by the
relation

A" L_1x^AK, AK LX*A", (2.37)

where

L - (P„ßx£AKx£AL)1/2 (Paßrf)m |f I + 0. (2.38)

These definitions will prove useful in the sequel.
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2.6. Isotropic materials

According to previous works [5]-[6], e depends on the components of f
through a dependence on the strain tensor EKI^=\(P<xßx<^x1\—GKY). That is,
E |[(f)2A<8>A-G]. If the material body is isotropic, then e depends on f only
through the three elementary invariants of E. Following Bland [11], it then is a
simple matter to show that e(f, t)) reduces necessarily to

(2.39)

fl Saßfß, (2.40)

e <p(f,N,V),

lltlC
/=

ith
-h=rK, N-- f2 -f =fi s0sßrf

Saß P?ß~ A"Ae » 3«« S"3AŒ : 0, S?a 2. (2.41)

It is assumed that r, 0 is the entropy of the homogeneous, undeformed natural
state of the body. For the sake of simplicity, <p is supposed to be an analytic
function of its arguments, but additional conditions will be imposed as the need
arises. In particular, the following derivatives are always meaningful:

def, _d2<f> ePep d2<p

d2d> a2d»
^fn _ -jj--. ' <Kn

dfdr,' ^vN dr,dN'

2.7. Neo-Hookean materials

If we expand ef>(f,N,r}) about the natural undeformed state (f, N, tj)
(0,0,0) and retain terms in r\ and in the components of f up to the second order
inclusive, we obtain

s^OoV+kìf+klN +^-Krif, (2.43)

where cL, cT, C, k and ö0(>0) are suitable constants. cL and c-t- will be recognized
as the longitudinal and transverse disturbance speeds of conventional elasticity. It
is assumed that

c2T>0, c2>2c|. (2.44)

The latter condition holds good for all known materials. The positive defmiteness
of e and the fact that 0 > 0 require that

0 0O + Cn-K/>O, C>3/c2/(3c?.-4c2-). (2.45)

C is always positive, but k may be either positive or negative according as the
solid expands or contracts on heating. The classical Lamé moduli Aj and A2 are
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defined by A2 p0Cx>0 and A1 p0(c£-2c2-)>0. For neo-Hookean materials,
(2.42) reduce to

4>n 2Ct, <fa cl, epfN fam fanN 0, <f>fri=-K. (2.46)

3. Definition of singular surfaces (Cf. [12]-[13])

3.1. Infinitesimal discontinuities

Let W(xa) 0 be the timelike regular hypersurface that represents a discontinuity

front which propagates in V4, and thus separates 38=£T[B] in two
subregions S8+ and 38" at each time. We set

la=daW L(K-aUua), <& L-VU, (3.1)

where Aa and L are given in (2.38) and °U is the (nondimensional) speed of the
singular surface measured with respect to the moving matter. la is oriented from
the "minus" to the "plus" face of W. A+ and A" being the uniform limits in
approaching W on its two faces of a field A, we note jAl AY- A~ the jump of A
across W. If A, g and u are continuous across W and if 8 denotes the Dirac
distribution with compact support on W, then we can write

olVaAl=!„SA (3.2)

and

8lVaAl LÀl,SA, 8lDuAi L°U8A, (3.3)

where the field SA is called the infinitesimal discontinuity of A across W. We call irx
the two-plane orthogonal to the unit spatial vector Aa. Then Saß is the covariant
projector onto irx. The canonical decomposition of any spatial geometrical object
along the direction of A and onto irx is effected by applying the operator S, e.g.,
wit an obvious notation and obvious properties for the elements of decomposition
thus introduced,

8ua ôuï + A" 8u, \<x8ul 0, 8u=\a8ua, (3.4)

Posa — Fsxß + 2F(c(Aß) + FAaAß F^ (3.5)

We call m0(xe3'[B]czM) {P, s, r,, ua, taß,fa, g»ß} a solution of the system of
equations formed by eqs. (2.21), (2.22), (2.31), (2.32) and (2.34) -provided such a
solution exists; this difficult problem of existence is not approached in this
paper)4. Then weak (or infinitesimal) discontinuities are defined by the following
set of hypotheses: ht: any typical solution 5D?0(X) is continuous across W; h2:

except for the metric g, all space-time derivatives of the first order of the fields of
the solution Tl0(x) suffer discontinuities across W (the case where [a^^l^O
requires a special study); h3: W is not a gravitational front, i.e., °U2 1 is excluded;
h4: W is not a material wave front or, in other words, since Dur\ 0 implies
^ot) 0 in agreement with (3.3)2, W is not an entropy front, i.e., % 0 is

excluded, so that 8r\ 0 necessarily.

4) See the early work of Pichon [14].
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4In virtue of hl3 W is not a shock wave since ^"1 0. In virtue of h3 and h
the admissible range for °U is limited to the open interval ]0, 1[<=|R if ^/ is to be
real and less than the light velocity in vacuum (relativistic causality).

We call principal wave fronts those wave fronts for which Aa coincides with
an eigenvector of the initial state of stress f"ß e SDÏ0. According to previous studies
[6], if W is such a wave front, then the corresponding Aa coincides also with an
eigenvector of the initial state of strains in the case of isotropic (even though
nonlinear) elastic bodies. Longitudinal wave fronts are those wave fronts for
which Su^ 0, 8u" 0, and transverse wave fronts for which 8u 0, \8u"\ ^ 0. We
shall not consider general wave fronts which may be called mixed wave fronts (Cf.
[5]).

3.2. Strong discontinuities

For strong discontinuities, or shocks, one must replace the system of conservation

laws by a system of jump relations at the point of discontinuity (which is a
mathematical idealization). Let Y~ and Y+ be the Heaviside (characteristic)
functions of S8~ and SB+, respectively. Let Txß be a tensor-valued function on
S8<=M, which is of class C(m)(38) - i.e., piecewise continuous. Then with T"0 we
can associate a distribution-tensor DT°ß with compact support on 98 (in the sense
of distributions) such that

D-TXK3 _ y "TWß _1_ y+'TWß /O f.\

Then (cf. Lichnerowicz [12])

V„DT"0 la 8lTaßi+D(yaT'ß), (3.7)

so that with the balance law \aT"ß 0 in 08- W, there is associated the jump
relation

ljT*ßl 0 across W. (3.8)

4. Infinitesimal discontinuities and characteristic manifolds

4.1. Wdue speeds

For one-dimensional motions eqs. (3.3) are shown to take the form

8ldxA] |f|2 SA, S[aTAl |f| % 8A. (4.1)

Then we take the infinitesimal discontinuity of eqs. (2.18), (2.22), (2.31) and
(2.28) on account (2.36), (3.3) and (4.1), and obtain the following system by
noting that the operator of infinitesimal discontinuity is a "derivative":

<%Sp + pSu 0, (4.2a)

aU8fß-\i\8uß=0, (4.2b)

% |fl"1^ 8uß - [fafk" + Ifa^dJ-] 8f
-[2^A«(fx)ß +4<{>NN(l±r (fx)0] S/!-[4>fVr +2^(fJ"] St, 0, (4.2c)

%St|=0. (4.2d)
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This is a linear system of eight equations for the unknowns 8u, 8u", (8f)± and 8r\.
Since we discard entropy fronts, Sn 0. Substituting then for (8uß)x_ from (4.2b)
into (4.2c) we are led to a linear system of three equations for (8f*)± in the form

(%/|f|)2F»ß Ôf -[4>ffA« +2V(fi)1 8f

-Vcp^aJe + 4fam(lx_T(ijß] 8fß 0. (4.3)

This we can decompose by using the canonical decomposition along A" and onto
irx by using the operator S and (3.5). Considering the case of principal wave
fronts, A" is an eigenvector of F™3 according to (2.27) if A" is an eigenvector of
t"ß. Thus F" 0. Let (d2, d3) be two unit space-like _yectors which form a
nonholonomic orthonormal basis in ttk. Let F2 F22 and F3 F33 be the diagonal
components of F"0 with d2 and d3 chosen along the principal directions of F"ß.
Call f2 and f3 the corresponding components of i±. Then (4.3) admits a nontrivial
solution if and only if the determinant of the 3x3 matrix

M A(W0, <U) - <b(Wo) (4.4)

vanishes, where

A(m0, % diag (fQ2, F2 Q", F3 Q') (4.5)

and

(<t>ff
Ifavih Ifa^fs \

2<Mi 2<^ + 4dW2 IfasnfJi J- (4.6)

Ifavh 4<f>NNf2f3 2fasl + 4<t>NNß/

Since F, F2 and F3 are positive quantities, it follows that the system (4.3) will have
real disturbance speeds °U if and only if the matrix <&(äft0) *s positive-definite [a
fact expressed symbolically by 4>(SK0) > 0]. This is Hadamard's celebrated condition.

Thus,

<&(3Ko)=^(f) > 0 (Hadamard's hyperbolicity condition) (4.7)

Considering the case /3 0, this condition yields the inequalities (the principal
minors of <I> must be positive)

4»ff>0, faj(l<t>N+4<pNNfl)-(lef>fNf2)2>0, d*>0. (4.8)

Then the characteristic speeds of the system (4.3) are found to be

/faj lef>N + 4cf>NNf21*1 /<Pff 2<pN + 4epNNf2 _\
~Y\f+ W2

+ /'
_|g/fr l<pN+4<pNNf2

^
2 \F F7 P
Ifl2ouf^l^fa(3) ~~ ^ £¦ «W
r*3

where

D (^+2^+^ûJ-^[faJ(2fa, + 4fa^m-4<pjNfii (4.10)
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If /2 0, eqs. (4.9) reduce to

q.2 _W\fa, lfa< (faj 2<Ml_|f|2 __•%1)- i If+ f2 +\T-"K)r7<,,<'-%
aUÌ2> ^w-<PN=aU23) el^ (4.11)'2 _

F2

We have a single root and a double root. For a neo-Hookean material (4.9)
reduce to (with |f | — 1)

%22) ^23) '%2-=c2:/F2. (4.12)

That is, we have a single root that corresponds to longitudinal elastic waves and a
double root that corresponds to transverse elastic waves.

From here one we shall consider only longitudinal waves. The study of the
polarization of the various waves is a straightforward matter and will not be
reproduced here (See [6] for a related study not limited to one-dimensional
motions).

4.2. The case of relativistic hydrodynamics

For perfect hydrodynamics e depends on f only through the determinant J
or, equivalently, through the matter density p. The deformation field is isotropic
so that J |f|3 pjp, and the body must necessarily be compressible. Thus
e d>(p, Tj). With p p2(dfadp), it is found that taß -pP"ß, <f>N 0, and faj
|f|~2(dp/ap) after some calculation. Hence the results (4.9) coalesce to provide the
relativistic sound speed a by

a2(Wl0) F^dp/dpX, F"1 -1 + e + (p/p), (4.13)

where F is Lichnerowicz' index [15] of relativistic hydrodynamics. Of course, only
longitudinal (sound) waves can propagate in this case. Viscosity would be required
to allow for transverse waves.

4.3. Growth of infinitesimal discontinuities

The system examined above is a special case of that examined in Ref. [6], and
therefore is quasi-linear hyperbolic. This means that for certain initial conditions
the corresponding infinitesimal discontinuities will grow to infinity in modulus
after a finite interval of time along the corresponding ray. That is, taking 8u as a
typical magnitude, 8u is governed along the ray of longitudinal elastic waves (for
nonlinear elastic bodies) by an equation of the type (cf. [5], [9])

DR (8u)-A (G?, m0)(8u) - B (%, W0) (Su)2 0, (4.14)

where DR is the invariant derivative along the ray, A and B are scalars, and GY
symbolizes the second-order geometry of the wave front. For A and B < 0, and
for a compressive wave (Su<0), |Sw|—»°° with a characteristic proper time
t* | A I1 log (Sw°/(Su°-(A/B))], where 8u° is an initial value. The infinitesimal-
discontinuity solution breaks out and we are led to study shocks.
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5. Longitudinal shock waves in relativistic elasticity

5.1. The Hugoniot condition for relativistic elasticity

We consider shock waves, i.e., singular surfaces across which [[u"1^0,
¦Ifl^O, etc. The space-time is assumed to be flat. On applying the formalism of
Paragraph 3.2, we find that the balance laws (2.22) and (2.23) give

lp(u"la)i 0 or m p(laua) const, through W, (5.1)

and

ml(l + e)ual-lta%l 0. (5.2)

On using the decomposition (3.5) for taß, (5.2) transforms to

mlFu°'i-\lLfa + flai 0, (5.3)

where F is the index in the direction of propagation:

F=l + 6-(t/p). (5.4)

Let (u°') ^((ua)+ + (uaY). Taking the inner product of (5.3) with (ua) yields, with
t p~\

mle-(f)rì-(Lfa-mFua)\luJ 0. (5.5)

This is the Hugoniot jump condition for relativistic continua)5. This can also
be written as

m|Iel + <t")|[M„I 0, r^TPHß. (5.5')

The case m 0, which corresponds to tangential shocks (so-called contact
discontinuities), is not envisaged. Furthermore, realistic shocks must be such that
hl>o.

For one-dimensional relativistic motions (5.5) can be transformed further.
Multiply (2.18)-on account of (2.36)-by p and take the jump of the resulting
equation in accordance with (3.8) to obtain

mlFl pMal (5.6)
so that (5.5) or (5.5') takes the form

pjel + <f")|[/j 0. (5.7)

It follows from (2.30), (3.1) and (2.20) that
ds

T* m(l + e)ua-p—Lf. (5.8)
dj«

5) For perfect hydrodynamics the shock is principal both ahead and behind and T" jF" 0, and
T= — p. Hence (5.5) takes on the form

mh+(p)TÌ + m(Fua)luJ 0. (a)

This can be shown to reduce to Lichnerowicz's Hugoniot equation for relativistic hydrodynamics.
At the nonrelativistic limit (5.5) reduces to

mIe] <T)-W, (b)

where T is the stress vector in the direction of propagation (compare Duvaut [16]). In the same
condition (a) reduces to [e+<p)t1 0 (compare Jeffrey and Taniuti [17], p. 138).
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Hence (5.7) reads

PoIel+(m(l + e)H--p~L^K,] 0. (5.9)

This is the Hugoniot condition for one-dimensional relativistic motions in
nonlinear elastic bodies.

5.2. Weak shocks in isotropic solids

These are shocks for which \lfi\ and [nl are small. On expanding e
ep(f,N,rì) in terms of its arguments, we have

(fa^ + fa^v(L)ZBYJ+lfa^\lfi)hi+l<P~lri¥+- • • 0, (5.10)

where " + •••" stands for analytic terms of third and higher orders in flfJ, ifi and
It/1. It follows from the implicit function theorem, (5.9) and (5.10) that In] is an
analytic function in the components of [f*] and in fact is of the third order in the
components of I/"]. That is,

h] 0(|W|3) for weak shocks. (5.11)

More precisely, it can be shown that, with fa^ 0,

Ui T^r(faJf%ff + --- (5.12)

for longitudinal shocks. The speed of these weak shocks is evaluated from (5.3)
and is given by

aU2ws=(fpS)~ + 0(\lrli), (5.13)

which means that °UWS does not differ much from the speed of infinitesimal
discontinuities ahead of the shock [compare eq. (4.11)!].

The second law of thermodynamics imposes that It,1>0 across the shock.
According to (5.12), this requires that if fa^>0, lfl>0 for realistic shocks which
are therefore tensive shocks, and if fajff<0, we must have I/]<0, i.e., compressive
shocks only are thermodynamically admissible. The general study of longitudinal
shocks of finite strength mainly is a thermodynamical study concerned with the
convexity and the connectedness of the so-called Hugoniot curve (Compare the
classical elastic case in Duvaut [16] and the relativistic MHD case in Lichnerowicz
[18]). This will not be done here.

5.3. Compressive shocks in neo-Hookean materials

In this case Œ/]<0 and (2.43) holds good. We have

mlFÌ lpfuaì, (5.14)

while eq. (3.8) gives

ttp(l + e)/Wl |Ipf (ci-K^)f I- (5.15)
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Taking account of (5.14) in (5.15) and taking the inner product of the resulting
equation with la, it is found that the invariant speed of the shock is approximately
given by

We see that if k < 0, the right-hand side of this equation is positive for compressive
shocks since I/]<0 and It/]>0. (F)~ is the longitudinal index ahead of the

shock, i.e.,

(F)- l + e--(^-n»Xßy
1 + 0otj" -|c£(/2)" 1 +relativistic terms. (5.17)

6. Relativistic magnetoelasticity

6.1. Basic equations

A simple realistic scheme for the relativistic magnetoelasticity of perfect
conductors of electricity can be extracted from the general theory presented in
Refs. [19]-[20]. First, as shown by Lichnerowicz, the whole of Maxwell's equations

for perfect conductors is contained in the covariant equation

Va(ua2eß-3P*uß) 0, (6.1)

where HC is the spatial magnetic-field four-vector.
The continuity equation and the entropy balance, (2.22) and (2.28), are still

valid, i.e.,

DuP + p V„u" 0, Dut) 0, (6.2)

and eqs. (2.23) are replaced by

V«T5So 0, lfö? 0, (6.3)

where the total energy-momentum tensor T^t) contains all effects of matter,
electromagnetic interactions, and electromagnetic free fields (spin effects are not
considered). Since the spatial electric-field four-vector must vanish (e 0) for
perfect conductors, the formulas given in Ref. [20] yield

TÔ&) [p(l + e)uauß - t^] + {^uaue -[gfZT -e(382-2i(.38)P"ß} (6.4)

and

pDue p0Dur| +1ß" \ßua - MaDu3ïa (Gibbs' equation) (6.5)

where 38 and M are the spatial magnetic-induction and magnetization four-
vectors, respectively. For an elastic body undergoing one-dimensional relativistic
motion we may take

e 6(f,S8, t,). (6.6)
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Then (6.5) may be rewritten as

PoDue PO0A.T, + TaDJ« - Pop-DA, p" - JTIp, (6.7)

where we have used (2.20). If follows from this the constitutive equations

de

ÔT,—, T.-»$l. »--(£-).
We uncouple the matter-field interactions described by (6.6) by considering the
following very special representation for isotropic bodies:

E e1(/,N,T))---3B2, A const., (6.9)
2p

so that eqs. (6.8) yield

0 ^1, ,*. p(Ë£l\ fßt Ma \®r. (6.10)

Setting p"1 1-A, so that 2P 0P* -MP p"1^", an easy calculation allows us
to find the expression of T(™ßt) as (for p^ 1, astrophysical case)

T\tt) Pd + ex)uauß -tßa + päf2(§g™3 + uauß) - p,9TWß. (6.11)

The last two terms form the electromagnetic energy-momentum tensor used by
Lichnerowicz (up to the signature of the metric). Substituting from (6.11) into
(6.3)t and projecting the result on the direction of u and orthogonally to it, we
obtain after a somewhat lengthy calculation:

pDu (ex + \-HC2^ (rß + p3r^ß-^p3Sf2P"ß)vßua, (6.12)

and the Euler-Cauchy equations of the motion in the form [compare eq. (2.26)]

pFPßaß P^Vßf"ß + p[9T Vß9£3 +Wß (Vß3T)x-Va(3if2/2)] (6.13)

where Faß is the "magnetic" tensorial index of the continuum [compare eq.
(2.27)] defined by

Faß (l + £l+^2) Paß-p'1taß=Fßa (Faß)±. (6.14)

Equations (6.1), (6.2), (6.12), (6.13), together with (6.10)1_2, Einstein's equations
(2.21) and the kinematical compatibility condition

(aTr)x=(ax"°')x, (6.15)

constitute the complete set of equations for the present theory. If ex depends on f
only through p, then the latter reduces to the theory of relativistic magnetohyd-
rodynamics as given, for instance, by Lichnerowicz [15]. Other models have been
developed by Bressan [21].



164 Gérard A. Maugin H. P. A.

Some other useful equations can be extracted from the above system. For
instance, by projecting (6.1) along and orthogonally to u, we obtain

uaußvjieß+'\jiea o, (6.16)
Wß vaua+(DuWß)±-sW (VaMß)x 0. (6.17)

Taking the inner product of (6.17) with H€ß yields

W2Volua+Du(HC2/2) + uß9r\ol2eß 0. (6.18)

Substituting then from (6.18) in (6.13), taking the inner product of the resulting
equation with HC, and accounting for (6.16), we arrive at

p(kl + e1)Vß3Kf,+XaVßtaß 0l (6.19)

which can be used instead of (6.12).

6.2. Infinitesimal discontinuities in isotropic solids6)

The system of equations we have to consider is the following one:

DuP + pV„u"=0, Duf"=Dfua, Dur,=0; (6.20)

uauß\Jieß + \JIC 0; (6.21)

He Vaua+(Dje)^-HPL (Vauß)± 0; (6.22)

p(l-rei)Vß^ß+^„Vßrß 0; (6.23)

pÎPçxD^ -PayVßPß - p,[ar Vß2ifß + HCß (Vß2T)±- V"(3if2/2)] 0; (6.24)

ni
taß p— fß, ex <p(f, N, tj) in relativistic magnetoelasticity, (6.25)

tosß=_pPcsß^ Ex <t>(p,T\), p p2— in relativistic MHD. (6.26)
dp

With %^0, eqs. (6.20) immediately yield

8p -p<U-l8u, 8f f<sur18u, 8fï faIT18ul, St)=0. (6.27)

Consider the case of principal infinitesimal discontinuities propagating in an initial
longitudinal state of deformation, i.e., f /A™, Saßfß 0, (6.25) yields

Pß p(fa\" + Ifa.S-jnf p4>fA7ß (6.28)

and, with 8f A„ of",

8Pß 8p(fakafß) + pfaxjA-fO Sf + pepfk« (8fß)± (6.29)

on account of (6.27)4. On substituting from (6.27)!_3 and taking account of initial
conditions, it comes

St"ß <U1(p4>sjf2AaAß 8u + p4>ffAa 8uß). (6.30)

Only the main steps in the derivation are reproduced.
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Setting Ht^HCa\a, from (6.21)-(6.23) we obtain

L<V.(uß83teß) + (la8%r) 0, (6.31)

aU8Heß+Heß8u-H€ii8uß=0, (6.32)
<%(1 + ex)(lß 8HCß) + L(fajf2WA8u 0 (6.33)

on account of (6.30). Finally, (6.24) yields

pL'UFPfx 8uß- pL%-VfffA" 8u - p,HT (lß 8H€ß) - pXaf,, 8HC

+ p.L\a8(HC2/2) 0. (6.34)

But from (6.31) and (6.32)

lß 8HCß LW€ß 8uß, (6.35)
8HT =aUT1(Heìì8uc'-3ir8u), (6.36)
8(HC2l2) sUT1(HCC€ß 8uß-HC2 8u). (6.37)

On substituting from eqs. (6.35)-(6.37) into (6.34), we arrive at a linear system of
three equations for 8ua. On using (3.4)j and a similar decomposition for Hf, i.e.,
HT =HCl+H€^a, this system reads

[fPU2^-(ßlp)HTHC±J- p.HCfS^+ p^||A"^xJ 8u»

+ [p%2(F"ßAß - (p./p)HrHCA - (p<t>fff + p,HC2Y)Aa + p,w$rYi 8u 0.

Setting

Al pLHCllp, Af p.He2lp, F^l + e-faf + Al, c2 fajf + A2±,

and projecting the above equation in the direction of A and onto 7rx yields the
equations (|%| f 1)

(1 -%2)(p^„/p)^±a Sul + (<%2F„- c2) Su 0,

{%2lSaJPßSß„-(p/p)Hr±He±J-A2SaJ SM^ + (l-%2)(p^|]/Pm Su =0. (6.38)

Consider the special case for which HC±3 0. Then the compatibility condition for
solving (6.38) splits in two parts and yields

eU2 °U2x A2/Fm, Fm l + e + (ptHC2/p), (6.39)

and

(m2-<gj)(cu2-<$l) (l-°U2)2M2dl, (6.40)

where we have defined various relativistic speeds and Alfvén numbers by

^2-c2/Flb <£i A2/Fx, Fx=l + e+A2, rff Af/F„,
12 ¦A2JF±

On setting

^^k&f + ^l-lsifsd2), a2=l-d2si2±,
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The roots of (6.40) are obtained as

<%Ì a-2(<£2-V2J), %i=a-2(^2 + Vs>). (6.41)

A long proof allows one to show that, in general, %lë<&2<°U^ (cf. the
nonrelativistic case in [22] and relativistic MHD in [12]). (6.39) corresponds to a
purely transverse (so-called intermediate) mode. (6.41)! and (6.41)2 correspond to
so-called slow and fast magnetoelastic modes. These two modes in general are
neither purely transverse no purely longitudinal in so far as elastic oscillations are
concerned. All modes, however, offer purely transverse magnetic oscillations.
Two special cases of obvious interest are:
(i) Purely longitudinal initial magnetic field: Then (6.39) and (6.41) yield

<tg °UÌ Af/(1 + e + A2), <&2 (fajf2)/(l + e - faf);

(ii) Purely transverse initial magnetic field: Then we have

<&1 %2 0, m2F=(fajf2 + A2Y)l(l + e-faf + A2±).

The vanishing double root corresponds to stationary modes (in a co-moving
frame). The simplicity of the above-obtained results follows from the simple initial
mechanical state. The case of general three-dimensional initial states of strains
requires a generalization of the purely elastic case studied in Ref. [6].

6.3. Notions on shock waves

Here we give only some notions on how the shock-wave problem can be
envisaged in relativistic magnetoelasticity. Magnetoelastic shocks can occur for
certain initial conditions since the solution of Paragraph 6.2 can break out in a
finite interval of time, the corresponding system of field equations being quasi-
linear hyperbolic and each weak-discontinuity magnitude being governed by an
equation of the type (4.14) along its ray.

According to eq. (3.8) quantities of the form laTaß are conserved across a
shock W if the conservation law VQ,Taß 0 holds true in 38- W. We can apply this
property to the general equations (2.22), (6.1) and (6.3)l5 in which T£ßt) is given
by (6.4). Let the symbolism °c INV (W, j) indicate that the quantity to which it
applies is conserved through W and has j independent scalar components in a
local chart of V4. Then, S- representing the state ahead of the shock,

m(S~) p(laua) oc INV (W, 1), (6.42)

Va(S~) (HTUu" -HT^U « INV (W, 4), (6.43)

Wa(S~) m(SY (l + ex +- HC2] u" - P% +)-p.HC2la - ixHT (HTlY)

oc INV (W, 4). (6.44)

But (6.43) shows that Vala 0, so that V" is tangential and in fact is INV (W, 3).
Define

p2 m'
H(S>m-2(S-)V"Va^-^. (6.45)
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Let va be the tangential component of ua. Then (6.43) yields

Vß(S~) maUuß-r!^^-Heß. (6.46)
P

Call Kß the tangential component of HCß, so that (6.46) renders

xß =^§=)K3prU«ß - Vß(S~)l (6.47)

Defining a magnetic pressure by pm =\p.HC2 and using (6.45) allows us to transform

(6.44) to

Wa(S~) [m(S-)(l- + ex)ua-taßlß] + pJa + ijLm(S-)H(S-)(pua)

+ -~rVa(S-)(Hri). (6.48)
m(S

This can be decomposed as

Wa(S-) Xa(S-) + é(S-)l",Xa(S-) oc INV (W, 3), ë(S~) oc INV (W, 1).
(6.49)

We find that

e(S~) ë(S~) - nm2(S-)H(S~) pm + (ricr)'1[m(S-)(l + e1)(u"IŒ) - taßljß]

oc INV (W, 1). (6.50)

Call ïïa the tangential component of [m(S~)(l + e1)u°1-("ßJß]. Then we have

X-(S-) ^ + p.m(S-)H(S-)(po-) + -7^=r(3rUV"(S-)«INV(W,3).
m(S

(6.51)

Other invariants can be found as follows. For instance,

%(S-) -X"(S-)Va(S-) -Wa(S~)Va(S~) <* INV (W, 1). (6.52)

But it follows from the definition of v" that

Vva - [l+^p^]. P°"Va -P(HTU. (6.53)

On account of (6.53)2 and (6.51) we therefore have

%(s~) - srava(s-) oc iNv w, i).
Finally, consider

HC(S~) m m-2(S-)X"(S^)XŒ(S-) oc INV (W, 1). (6.55)

On setting (these are not invariants)

*^2+7rrrH(s_)' (6-56)
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A, -(p/m(S-))(srOVa + m(S-)H(S-)(pva)
(m(S-)lp)%2va - (3TUK- A% - 0, (6.57)

it is possible to show after a lengthy, but simple, calculation that

9if(S-) -p2H(S-)^+m-2(S-)5'0!(Sr„+2pAc„)ocINV(W, 1). (6.58)

In spite of the formalism eq. (6.58) is none other than the Hugoniot jump
condition for magnetoelastic perfect conductors in relativity. It is also valid in
relativistic magnetohydrodynamics since no mechanical constitutive assumptions
have been made.

In the case of one-dimensional motions in isotropic magnetoelasticity (6.28)
holds good; we have thus

9* m(S-)[a + Sx)va + fafL(l'rU~1n-lpL4,NfS^r. (6.59)

This, with (6.45), (6.56), (6.57) and (6.53) allows us to find the complete
expression of the Hugoniot condition HC(SY a INV (W, 1). This will not be done
here. We simply remark that the thermodynamic study of magnetoelastic shocks
in relativity must be based on the discussion of the properties of the Hugoniot
curve associated with the invariant (6.58). This invariant has not the usual form of
a Hugoniot invariant. Rather, on account of (6.55), it is most like the square of
the invariant considered in classical magnetoelasticity. Indeed, if we had worked
along the same lines as in Paragraph 5.1 a long calculation, that we do not
reproduce here, would have yielded the jump condition

mUi + {fa)\\uJ= -mp.((HC2)-{HC)2)hl (6.60)

where t p \ ê e, + (pHC2/p), fa m(l + e)u" -1"%. Equation (6.60) has the
same structure as in classical cases7). It can be shown on the basis either of (6.58)
or of (6.60) that some results of Paragraph 5.1 are directly generalized. For
instance, instead of (5.11) one obtains

M 0(|IfP|,|M|3) (6.61)

for weak magnetoelastic shocks, whose speed does not differ much from the speed
(evaluated ahead of the shock) of weak discontinuities found in Paragraph 6.2.

6.4. The case of relativistic magnetohydrodynamics

For perfect relativistic hydrodynamics where (4.13) holds true, setting f
F/p, it is immediately deduced from (6.58) that

F2-(HCTr1m2(S-)f2ocINV(W, 1). (6.62)

7) Indeed, at the nonrelativistic limit, e.g., for classical magnetoelasticity, (6.60) yields

mI«]+<D-M=~l*Jïrl
since, then (X2>- (3(f)2 :p?J2 (Compare [22]). For classical MHD, one obtains (compare [17])

Ie+<p>.I=-Jl*JPH.
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This is Lichnerowicz's result [12]. For relativistic MHD, on setting a
f + p,H(S), the so-called Alfvén variable, (6.58) yields

F2-(rU"1m2(S^)f2 + 2pfx-p2H(S-)x^INV(W, 1). (6.63)

This can be written in terms of jumps and mean values as

|[F2l-2<f)|[p]l+2p<f)Œal+p(a>M 0 (6.64)

across W. This is Lichnerowicz's form. We refer the reader to this author [18] for
an exhaustive study of the corresponding Hugoniot curve.

7. Final remarks: Initial states and existence theorems

Attempts have been made to study nonlinear wave propagation in other
models of relativistic continua. For instance, Cissoko [23] considers the case of
relativistic anisotropic MHD. The same author, starting from a simplified version
of [24], envisages the case of relativistic conducting "ferrofluids" (nonlinear
magnetic constitutive equations). Coll [25] devotes some attention to detonation
waves in relativistic MHD. Viscosity, however, is seldom accounted for, except in
the case of weak-signal detection (Cf. the work of Gambini [27] based on [2] for
viscoelastic solids) and discontinuities in Madore [28].

One important feature of nonlinear wave propagation is the fact that propagation

occurs through an initial state of finite deformation and/or pressure and
finite bias electromagnetic fields. This initial state may be such as to produce
remarkable results. For instance, it has been proven by the author on the sole
hypothesis that the body be isotropic [6] that the characteristic speeds of longitudinal

and transverse elastic waves propagating through an initial state of high
pressure p0 (case of neutron stars) are related by the universal relationship

% ful + a2(W0), (7.1)

where a2, which is defined by (4.13) with p0 replacing p, is the sound speed of a
fictitious relativistic perfect fluid which would have a law of compression
corresponding to the initial state W0.

The mathematical question arises, therefore, as to the existence of such initial
states. This problem has been solved for relativistic hydrodynamics [29] and
relativistic MHD (Cf. [15] and the mathematical discussion of Friedrichs [30]).
For more involved descriptions such as those of relativistic elasticity and
magnetoelasticity, the problem remains open.
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