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On the Phase Transition of a Superconductor
by Gregor Wentzel

The Enrico Fermi Institute for Nuclear Studies and the Department of Physics,
University of Chicago, Chicago (Illinois)*)

Abstract. In previous studies of the statistical mechanics of a superconductor,
only the 'reduced Hamiltonian' of the BCS theory1) has been used which ignores
the vast majority of the electron-electron interactions. Here, the Hamiltonian is
extended by including the other interactions as perturbations up to the second
order. As a preliminary step, omitting all but the first-order terms in the Hamiltonian,

we derive a rigorous expression for the free energy. Then, to take account
of the second-order perturbations, a variational method is used. Particular attention
is paid to the behavior of the free energy near the critical temperature. Effects of
the lattice periodicity are not examined in this paper.

1. Introduction
The thermal behavior of a superconductor has been theoretically

studied by Bardeen, Cooper, and Schrieffer1), and by Bogoliubov,
Zubarev, and Tserkovnikov2). In both studies, the BCS model of a

superconductor was used. This model is characterized by a 'reduced
Hamiltonian' in which only pairs of electrons with opposite momenta
appear coupled. As a technique of calculation, BCS used a variational
approximation (minimization of the free energy), whereas BZTs were
able to prove that the free energy, as calculated by BCS, is exact in the
sense that the volume-proportional part of the free energy is completely
and rigorously given by the BCS result. (See, however, our comments at
the end of section 2.) Subject to certain conditions, the system has a
phase transition of the second order (in the absence of external fields), and
the specific heat vs. temperature curve shows a remarkable resemblance
to the experimental curves.

The following question must be raised, however. The interaction
matrix-elements contained in BCS's reduced Hamiltonian form only a

very small (actually, vanishingly small) minority among all matrix-
elements appearing in a more realistic Hamiltonian, e.g. in the
interactions mediated by virtual phonons. Some people argue that these
additional interactions, presumably, will affect the superconductive and
the normal state essentially in the same manner and can therefore be

*) Most of this work was carried out while the author was visiting at Bell
Telephone Laboratories, Murray Hill, New Jersey.
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omitted, in a first approximation, in spite of their large number. Plausible
as this argument is, it has not been substantiated.

The main purpose of the present study is to adduce some evidence in
favor of this view. If one wants to take account of all (or a majority of)
the additional interactions, he can do this only in some approximation.
We intend to treat the additional matrix elements in the Hamiltonian by
a perturbation theory up to the second order, and the results will show
that this is not unreasonable as far as differences between the
superconductive and normal phases are concerned. It will turn out that in our
approximation the phase transition (if it exists at all) retains very nearly
its second order character.

The procedure will be in two steps. We shall first simplify the BZTs
method2) and at the same time generalize it to allow the lowest order
selfenergy of the electron gas to be included. This problem can still be

treated rigorously. Then, adding the second-order perturbations, we have
to resort to a variational method.

2. First-Order Hamiltonian
We consider interaction operators involving products of four free-

electron absorption and emission operators

(k2 — kx k3 — kx + 0). They may refer to phonon-mediated and
(screened) Coulomb interactions. For the BCS pair interaction we have

k3= — kx, kx — k2, and s' — s. We write it as

H2= - V-1 Zkk. Jkk. («lft_ a*+) (ak,+ a_KA (2)

where ak+ refers to an electron with momentum k and spin up, while a_k_
refers to an electron with momentum — k and spin down. Jkk- > 0 is
favorable for 'superconductivity'. In addition, we include in the first-
order Hamiltonian the selfenergy term k3 k2, kt fe1( s' s :

Hi V-1 Zkk, Ikk,Zs aks a*ks ah,s aKs

V-xZkk. Ikk- Zs (a*ks aks - -j-) (ah.s ak,s - —)
1 y-i y t
2

V ^kk'1kk'-

(3)

Ikk' (like JklA is real and symmetric (Ikk 0). Note that, regarding
Coulomb interactions, we have included in Hx the single-electron self-
energies which should really be subtracted (aksd"ks= 1 — a*hsaks^- — alsaks),

but an equivalent subtraction can be made in the kinetic energy, provided
a high-energy cutoff is conceded.
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Now introduce operators

Aks [<hsaks--2 )+X
X 'Ik

861

(4)

(5)

(6)

where £k+, fÄ_, and r\k are real functions which are to serve as trial
functions. The 'perturbation' will comprise the terms

77' - V-^Zkk. (Ikk.Zs Aks Ak,s + Jkk, B\ Bk)

whereas all the rest defines the unperturbed system :

H° - Hkin + H1 + H2- H' + const.

Zk [(k2 - k\)\2 m] Zs (al aks - X) +

+ 2ZkZsrks (alaks-±-)

Zk Ak (ak+ a. U

(7)

where

IA ' X' '¦kk' ±k's

Ak=V-^Zk,Jkk.rik,

U V-1 Zkk, (Ikk, Zs iks ik,s + JkK rik %)

In (7) we can replace

2 Zs rks a'ks aks - X) by (Z, TV) Zs (aks

(8)

(9)

(10)

A
the difference of these expressions being proportional to Fk+ — 7"A_ which
will eventually vanish [see (26)]. The quantity

ek=(k2-k2)l2m + Z,rk, (H)

will then play the role of a 'renormalized' kinetic energy. The constant k0

shall be chosen such that ek vanishes at the Fermi surface.
77° is diagonalized by the quasi-particle transformation

ah. Ut. oc,., + Vt a_I_ 1

a_ ut oc_t_ — vk xt

(i + XX (!-«*/£*)

(12)

(13)
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Ek (A\ + #* (> 0) (14)

with the result

where

Ho=U + ZkEknk (15)

nk °X a*+ + <*-*- <*-*- -1 (16)

nk has the eigenvalues — 1, 0, 0, + 1. Note that 77° depends on the trial
functions through Ek [(14) with (8), (9), (11)] and U (10).

The free energy, at the temperature T 1/ß, of the unperturbed
system can then be written

/70 u + F> (17)

F'= -ß-iZklnZnexo(-ßEkn"k
(18)

-2ß-1Zk\n (2 cosh ß Ek\2)

Note that the thermal average of nk is

(nk)at, ÒF'IÒEk - tanh ß E J2 - Tk° (19)

Also, from (12) and (19)

(X «*,)* - 2- (r-' a* "*.)• ^ 2 0 - T*° XX) (20)

K+«Hk-)« -'J^*/2£* (21)

Let us now minimize F° with regard to the trial functions, using (19)

again :

ÖF° du ^ a dEk

Xx, o%r s^^'-dà '° (22)

dF° du
Wk Wk ~k" '*' ô^.-^tJ-^-O (23)

With the definitions (10) and (14) [with (8), (9), (11)] this gives

2tks T\ek\Ek (24)

2nk=r\Ak\Ek (25)

This result must be compatible with (8) and (9) :

rks=V^Zk.Ikk.T\.ek.\2Ek. (26)

Ak =V^Zk.Jkk.rl.Ak.j2Ek. (27)
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Equation (27), in conjunction with (14), is the integral equation, originally

derived by BCS1), which determines the 'energy gap' Ak as a
function of the temperature [see (19)], and its solution in the 'weak
coupling case' is well known. Then, inserting (26) into (11) gives the
renormalized kinetic energy ; the quantity

1 de,. 1 2 drkq 1

dk m k dk m*(k)
(28)

defines an effective mass m* which in turn determines the density of
states in the vicinity of the Fermi surface.

It remains to be proved that F°, as defined by (17), (18) and minimized
as described, gives the volume-proportional part of the free energy F
completely, or in other words, that this part is not affected by the
perturbation 77' (6). This is a consequence of the fact that the thermal
averages of the quantities Aks and Bk vanish:

(AJ«„ - 0 (Bk)„ 0 (29)

Indeed, by inserting (20), (21) and (24), (25) into (4) and (5) this is

immediately verified. Then, the proof given by BZTs2) for the case

Ikk- 0 can be readily generalized. Namely, writing down the mth order
correction to the partition function, Tr exp(— ß(H° + 77')), one meets
with expressions of the following type

V-" Tr [exp (- ßH°) 77^x...2m {exp [ß{ H") Ckf exp (- p\ 77«)}]

where each Ck. stands for one of the operators Aks, Bk, B*k. (The ßt are
integration variables.) It is easily seen that the Trace vanishes, on account
of (29), if one momentum, say klt is different from all the other momenta,
k2 k2m, occurring in the product. In order to obtain a non-vanishing
term, one has to have m pairs of equal k/s so that, after multiplying with
the appropriate factors Ikk-, Jkk- and then summing over kt... k2m, the
sum runs only over m independent fe-vectors. If one then divides by
Tr exp(— ß 77°) and finally writes the sums as integrals (for V -> oo), the
factors V~m and Vm cancel out and the result becomes volume-independent.

Hence, up to any finite order (m <^ A total number of particles) :

7>exp(-0 (H» + H'))
iim — ;—rrrif, finite,
F-^oo Tr eyzp (-ß H«)

and

lim V-1 (F-F») 0 q. e.d.
F-s-oo

The discussion of F° will be postponed, but some general comments
should be made at this point. While |fo (24) and T*fa (26) have well-
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defined signs, a simultaneous change of sign in r\k and Ak is compatible
with (25) and (27) ; but these two solutions are physically equivalent, and
we are free to choose Ak A 0. As is well known, there is always the formal
solution rjk 0, Ak 0; this is the so-called trivial solution. It should be

pointed out, however, that it is an unacceptable solution if a non-trivial
one, giving a lower free energy, exists. This follows already from the mere
fact that the free energy is defined unambiguously in terms of the energy
eigenvalues of the system. But it is also easy to see why the trivial
solution goes wrong. Indeed, it is clear from (7) that, for Ak 0, 77°

reduces to the kinetic energy, and all of the interaction 772 is then treated as

a perturbation, i. e. by an expansion in powers of a coupling parameter /.
This is certainly wrong for a condensed state in which some physical
quantities like the energy gap behave non-analytically as / goes to zero.
By the same token, the non-trivial 'rigorous' solution could be wrong too,
namely, if some collective effects are hidden in 77' and remain unnoticed
owing to the perturbation expansion. Quite generally, it should be
realized that the type of rigorous solution one obtains by the BZTs
method is heavily prejudiced by the type of terms which one includes in
the 'unperturbed' Hamiltonian, a choice based primarily on physical
intuition.

3. Second-Order Approximation
We now want to take into account, at least approximately, the vast

majority of the interaction matrix-elements (1), namely those which are
not contained in (2) and (3); we call them 77". None of them has a
diagonal part in our quasi-particle representation (xls ccks diagonal), and
it is convenient right away to diagonalize 77° + 77" :

S-1 (77°+ 77") S H° + h

(h diagonal, <~77"2). There are only three kinds of terms in the free-
particle representation which can contribute to h ; apart from numerical
factors and energy denominators, they involve the operators

Ox (a\ «J (a* <g (al av) (a"Q aQ) (30)

02 (a) ax) (a* «J (a*.k. «*+) (ak,+ a.k,.) (31)

03 (X- <X) («-*'- al'+) (ak"+ «-*"-) («*-"+ a-k"'-) (32)

(Greek indices stand for momentum and spin). For instance, 02 can arise
from a linear combination of two terms like

a\ an a-k'- ak+ and
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occurring in 77", by multiplying them crosswise with their conjugates.
Now, 02 actually simulates a BCS pair coupling of the type772(2). When
treated as perturbations, the matrix-elements 02 are 'dangerous' in the
sense that they cause divergencies (for Ak -> 0; see section 4). They are
more adequately accounted for by including them in 772 with a\aK and
a* « replaced by their thermal averages [see (20)]. This amounts to a
renormalization of the coefficients Jkk> in (2). As to the terms 03(32), their
contribution to the free energy is so small that they are meaningless
unless one goes to higher approximations in 77". Therefore, after the
renormalization of Jkk!, h can be entirely identified with the terms of the
type Ox (30). [Of course, Ox carries a factor V~2 and, because only three of
the four momenta are independent, hav will be proportional to V.]

The corrected free energy will be written

F= F° + f, (33)

with / given by

Tr exp [ß (A0 - H°) + ß (f - A)] 0,

or in lowest approximation :

f=Tr(h exp ß (F° - 77°)) hav (34)

77° and F° are again given by (15) and (17), (18), but in order to make
optimum use of the approximation (34), we now want to minimize F
instead of F°(3). Note that hav [see (30) and (20)] depends on the trial
functions only through Ek. Setting

ÒFfòSt, 0, dFjòVk 0,

one sees immediately that in all Equations (22)-(27), rk° must be replaced
by

rk - Ò (F' + f)/ÒEk 4- ohJÒEk. (35)

Thus

2 X rk eJEk, 2r1k rk Ak\Ek, (36)

7 ki 7 k V~ Zk, Ikk. xK EK\2 hk,,

Ak V-^Zk.Jkk,rk,Ak.\2Ek..
(37)

Regarding the perturbation 77' (6), we observe that (29) is now no longer
rigorously true. However, (Aks)av and (Bk)av are still small as A, and hence
the contribution of 77' to the free energy is small as A2 (or even less) and
must be neglected here.

55 HPA 33, 8 (1960)
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Our approximation can only be meaningful if we find rk close to t". To
examine whether this is so, let us look at the limiting case of low temperatures.

For 7 0, of course, only the ground state (all a.*ks a.ks 0)contributes:

rk (T 0) 1 - dhJdEk (38)

From the unperturbed ground-state or quasi-vacuum, only emission of
quasi-particles is possible, hence the energy denominators in A0 are all
negative [— (7sA 4- E + Ev + E A], and one sees easily that the
differentiation of these denominators gives the predominant contributions to
dh0ldEk. Their sign is such that rk < 1. Equation (37) then tells us that
the perturbation A0 has the effect of replacing the pair coupling constant

/ Ikk') by a smaller one

Jeff--Jr= Jkk'Xk,, t<1 (39)

(averages taken over an energy shell \ek\ A co, where co ^> Akin the 'weak
coupling case'). The usual analysis of Equation (37) then gives

A Ak tv eo exp (- xlyjr) (40)

if / t > 0; otherwise the trivial solution, Ak 0, takes over. While t < 1

has the effect of making the 'gap' A smaller, it should be remembered
that we are now dealing with a renormalized / and a corrected density
of states y [see (28)]. The energy difference between the superconductive
and normal ground-states is given by

(U -ZkEk + A0) - (U - Zk Ek + h0)Ak_0 (41)

The perturbation A„ obviously depresses the normal state more
effectively than the superconductive one.

In making order of magnitude estimates we have taken the 77"

matrix-elements of the general order JjV (like 772). In the weak coupling
case (A <^ co) one finds t close to unity, namely

1-T ~(yj)2~(\n cofA)-2, (42)

and also in (41), the term A0 — (A0X o is by a factor ~ (y J)2 smaller
than the other (unperturbed) terms. So far, the perturbation treatment
of 77" is apparently justified. It is, of course, conceivable that 77" gives
rise to collective effects which our method fails to detect, owing to the
perturbational expansion. But in such a situation the whole basic pair-
coupling idea of BCS would be in doubt.
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Going to high temperatures, T -> oo, we claim that xk, like xl (19),
vanishes :

xk (T oa) 0. (43)

Indeed, hav tends to zero once 7 has become much larger than all energy
denominators occurring in A. [Rewriting hav as an expression symmetrical
in 'initial' and 'intermediate' states, see Equation (63) in the Appendix,
shows this most easily.] (43) is even true to all orders in 77", and
presumably also to all orders in 77' + 77". Anyway, within our approximation,
xk must be taken as zero for T -> oo, with the implication that Equation
(37), at sufficiently high temperatures, admits only the trivial solution
Ak 0.

"

4. The Phase Transition
We will then assume that a non-trivial solution of (37) exists only at

temperatures below a certain critical temperature Tc. For A 0, it is well
known that A Ak), as determined by Equation (27) with (19), goes to
zero at Tc as (Tc — T)1'2. We want to show that this remains true for the
perturbed system.

Let Ak Alk (44)

where Xk approaches a finite value (of order 1) as A -> 0. Now (37) can
be written

\ F-1 Zk (Jk,k XkjXk) rk (Ek, T)\Ek 1 (45)

and, with Ek (A2 X2 + el),/2, this will determine A as a function of T.
If this function goes to zero continuously as 7 -+ Tc, this value Tc defines
the critical temperature :

4" V~XZ* (h'k hih) rk (\sk\, Tc)l\ £,1 1. (46)

Both in (45) and (46), we transform the fe-sums into integrals over sk and
then subtract (46) from (45). Since T x Tc, the factors Jk'kXk\Xk- in the
two integrands can be taken as practically the same, and this also applies
to the respective densities of states, except possibly for terms small as

[A (T)]2. Then, the essential factor in the integrand can be expanded:

vk (Ek, T)\Ek - xk (| ek ], Tc)j\ ek \ tv

[(El - e2k) òlòel +(T- Tc) d/d 7J xk (\ek |, Te)f\ ek \

where the two terms are proportional to A2 and to T — 7\, respectively.
So, indeed

A2(T) 0 (Tc - T) for 7 tv Tc, (47)

with O > 0 [A(T) real for T < TJ.
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One might object to this argument that in the region \sk\ < Ak the
expansion of the integrand in powers of Zl2 is incorrect and that the
integral actually may contain terms which do not vanish as strongly as
A2. We shall prove in the Appendix, however, that for Ek <g T [this is

satisfied when Ek < A(T) -> 0] the function xk(Ek, T)\Ek can be expanded
into non-negative even powers of Ek. Then, (47) is obviously correct. It
should be pointed out that the terms of type 02 (31) which we eliminated
in section 3 by renormalizing Jkk, would have caused even an infinity to
appear for A -> 0. In this sense, they are 'dangerous matrix-elements'
which we may not allow to occur in the perturbation A.

It remains to discuss the free energy at temperatures close to Tc. Recall
Equations (33) and (17) :

F =U + F' + f (48)

U, as given by (10), is conveniently split into two terms [see (9) and (36)]

U =Ux+U2

u-i.=-j- v^Zkk' hk' (*k XX) (xk. ek.jEk)

U2 Zk X rik 2- Zk A2k xkjEk

(49)

Let us define a function ef> of T and A [see (44)] which becomes F if 7 and
A are linked by Equations (37) or (45) but, if this equation is disregarded,
has 7 and A as two independent variables :

<f>(T,A(T)) F(T), (50)

cf>(T, A)=U+ F' + f. (51)

Here, each term is meant to depend on T only through the Boltzmann
factors [see (18), (34), (35)], and on A through Ak (44), as specified by all
preceding equations except (45). Then, the validity of (50) is obvious. On
the other hand substituting into (51) the 'trivial solution' A 0, one
obtains the free energy of the 'normal state' (which is a fictitious state for
T<TC):

<f>(T,0) F„(T). (52)

However, since we want to compare (50) and (52) for the same system,
i. e. for a fixed total number of electrons, we have to admit an explicit
zl-dependence of k\\2 m in ek (11) :

k\\2m pt(T,A), (53)

such that pi(T', A(T)) and pt(T, 0) are the correct chemical potentials of
the two states :
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ek k2\2 m-pt(T,A) + F"1 Zk, Ikk, (xk, zk\Ew). (54)

For other values of A, cp' has no specific physical meaning and, to be sure,
it is not the quantity F which we have minimized (as a functional of
Ìks,r]k). Nevertheless, for small values of A, </> can be expanded into
powers of A, and in particular, for temperatures just below Tc where
A(T) is small, we obtain from (50) and (52) :

7(7) - Fn(T) Zj>0 X (-â^J,^)^_o [A(T)y (55)

while F(T) Fn(T) for 7 ^ Tc.
Now examine the first derivative

def)(T,A)ldA=ZkXkdef>ldAk. (56)

In application to functions of the Ek- alone, like (F' + f) or xkjEk, we
have *)

ò\òAk ZK Ekì(Ak òkk, + sk. dsk,ldAk) òjòEk.. (57)

If one then writes down d(F' + f)jdAk using (35), several terms are seen
to be cancelled by corresponding terms coming from dUxJdAk and
dU2jdAk in (56). But two terms remain:

(58)

With (44) and (57), one sees easily that X2 is proportional to A3 and
therefore leads to a term / 4 in the expansion (55). Indeed, the
predominant term in A2 is

A2 A*\zk X\ A,-1 ò(xk\Ek)\ÒEk + • • • « 0) (59)

The integral appearing here converges for A -> 0 against a finite value,
including the contribution of the region jej < Ak, by the same argument
as was invoked above (Appendix). Thus, if the term Xt in (58) could be

ignored, F(T) — Fn(T) would be proportional to [zJ(7)]4 or (Tc — T)2,
for 7 approaching Tc from below, and this would characterize the phase
transition as one of the second order (ÒFjdT continuous, d2FjdT2
discontinuous at TA.

H(T A)\ÒA Xx + X2

Xx (ZkTk eklEk)bpt(T,A)jòA

x2 ¦X-Z
2 * ài ò(xkfEk)jòA

*) Note that, at this point a A-sum is not yet considered as an integral over sk.
This makes it easier to take account of the zl-dependence of the density of states.
(Clarifying comments by Dr. Y. Nambu are gratefully acknowledged.)
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However, the term Xlt which originates in the rigorous treatment of
the selfenergy Hlt may give rise to a term / 2 in (55), thereby changing
the order of the transition from second to first. Moreover, the fe-sum in
Xx (58) is cut-off dependent, and we have to invoke a new physical
argument, outside the scope of our approximation, to specify the cut-off.
Here we want to exploit the observation made by Bardeen4) that the
coherent superposition of electron wave functions which is implied in the
quasi-particle transformation (12) and in all subsequent equations based

on (12), is meaningful only if the lifetime of the corresponding excited
electron states ± k is long enough to allow the particles to travel through
the coherence distance. Since the decay rate (imaginary part of Ek)
increases with \ek\, there will be a limited 'zone of coherence', say &!<A<A2,

in the vicinity of the Fermi surface (k kF), where the coherent electron
pairing takes place as described, whereas outside of this zone our approximation

is insufficient, and the best we can do is to set Ak 0 there. This
provides the necessary cut-off prescription, e.g. in (57) and (58). Then,
we have approximately, for 7 approaching Tc from below :

F(T) - Fn(T)=Ziki ww (xkekIEk)4^[pc(T,A(T))~- p(T, 0)] + ••• (60)

This may contain a term linear in Tc — T which then determines the
'heat of condensation', W.

The difficulty in computing W stems from the fact that it is the
dissymmetry in the properties of excitations with k > kF and k < kF which
governs the quantities in Equation (60), indeed not only the fe-sum

appearing explicitly but also similar sums occurring in pi [see (54)]. One
would have to know the difference in the lifetimes of 'electrons' and
'holes' at about equal distance from the Fermi surface! On the other
hand, just because only the dissymmetries contribute, we can expect W
to be small (compared with the area under the specific-heat curve) if the
zone of coherence is sufficiently narrow (k2 — k± -4 kF). Nevertheless,
there seems to be no obvious reason for W to vanish exactly (even for the
'unperturbed' system: 77" 0). We must therefore anticipate that there
exists a non-vanishing latent heat, though it may be too small to be

easily measurable.

Appendix
Labeling the eigenstates of 77° by a suffix A, we have

hN Z'N, | (A' | 77" | A) |2 (H°N - T^,)-1 (61)

Each virtual process N -> A' consists of the emission or absorption of
4 quasi-particles. In view of (35), we are interested in those terms of A

where one of those 4 quasi-particles is either k + or —A—. This part of
A will be called hk; it is volume-independent (V -+ oo). Furthermore, in
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each term of hk, we are interested only in those factors which depend on
Ek. Remembering that only terms of the type 0X (30) were to be retained
in A, such factors all originate in a\s aks and the energy denominators.
From (12) it follows that the Ek dependence of an individual term in (61)
is given by

: *ks (Ek - <?X + v\ x_k_s *_k_s (- Ek - QY*k "to"-** ¦¦ -
where Q is the energy change of the other 3 quasi-particles participating
in the special virtual process. Adding the k+ and —k— contributions
and inserting (13) and (16), one obtains

(El - Q2)-1 [(Q + ek) + (Ek + QeJEk) nj. (62)

In the corresponding term in the free energy (34), the thermal average
(19) is to be taken. Then, for Ek<%T and Q > Ek, the result can be

expanded into non-negative even powers of Ek.
As to the contributions Q < Ek, we avoid the singularity in (62) by

symmetrizing (hk)av in initial and intermediate states :

ZN A, exp (-ßH»N) ^W'^fj^1 [exp (-ßH%]
N .V

- exp (-£77°.,)]

(63)

In other words, whereas in (62) we have already summed over A' for each

A, we here go back and first symmetrize in every pair of states A, A'.
Now, in the terms with Q < Ek<^ T, (63) can be expanded in powers of
both ß Ek and ß Q, and the denominators can be cancelled out. Then one
sees easily that the odd powers of Ek appear always multiplied either with
(nk n'k) which vanishes identically, or with odd powers of nk or n'k which
vanish in the average (to be taken with /3=0).

This proves that, whatever the value of Q, all terms contributing to
fk — (hk)av can be expanded into non-negative even powers of Ek. Then,
however, the same is true for the functions

xk\Ek - A,-1 Ò (F' + f)\ÒEk and A,-1 ò(xk\Ek)\ÒEk.

This justifies the statements made in section 4, in the discussion of the
Equations (47) and (59).
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