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On the Theory of Particles of Spin 1

by N. Kemmer
Tait Institute of Mathematical Physics, University of Edinburgh

Zusammenfassung. Verschiedene Formulierungen der Theorie des Vektormesons
werden diskutiert. Es wird gezeigt, dass die Quellenterme, mit denen ein Vektormeson

gekoppelt werden kann, im allgemeinen verschieden sind von den Termen,
die man naiverweise als Quellen identifizieren würde. Gewöhnlich enthalten die
wahren Quellen Ableitungen der Feldoperatoren, aber in Sonderfällen, zum Beispiel
in der Theorie von Yang und Mills, fallen die Ableitungen fort. Ein solches
Verhalten ist für die Renormierung der Theorie günstig.

1. Introduction
The quantum field theory of particles of spin one originated around

1937 and for a time it was widely used in attempts to construct a meson
theory of nuclear forces. The interest in spin one particles naturally
diminished when the pseudoscalar nature of the pion was established.
It also became clear that spin 1 theories, unlike those of spins 0 and 1/2,
presented grave difficulties to renormalization programmes. It then
seemed at least a fortunate accident, if not part of a deeper design that,
with the exception of the photon, particles of spin 1 seemed to form no

part of nature's scheme.

Recently, however, attractive developments of the theory of weak
interactions have been put forward which are based on the idea of a

heavy boson providing an intermediate link in /3-decay processes1)2).
The symmetries of these processes indicate that if such intermediates
exist they should have spin 1. (See, however, Fronsdal and Glashow3).)

If these ideas are correct, we can no longer shirk facing the difficulties
presented by spin 1 theory. Already it has been pointed out that for
certain special interactions renormalization difficulties are less grave
than was originally thought4). However, spin 1 theory is notorious for the
variety of the equivalent, or nearly equivalent ways in which it is

possible to present it, and there appears to the writer to be a certain lack
of clarity, if not confusion, in what is being and has been said about these

particles. It is the aim of this article to present an account of spin 1

theory which may illuminate some of the questions recently discussed
and which in particular subjects the problem of renormalization to a

rescrutiny. This study leads to the establishment of certain fairly simple
general criteria of renormalizability. The theory of Yang and Mills is

used as the one known concrete example of a theory, for which such
criteria hold.
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2. Different Formulations of the Theory of Spin 1 Particles
At a very early stage it was pointed out that a formulation of the

theory of free particles of mass m and spin 1 was provided by Proca's
equations*) **)

ò,Av - M/, - m X" ° }

XX»~WX =0 j
In this formulation the field associated with the particle is described by
ten components, the A which form a four-vector and the F an
antisymmetric tensor, the two quantities appearing on a completely equal
footing. By analogy with the electromagnetic field most authors have
preferred to use the quantities

a-p m~i A,, and fßV mi F/iP,

so as to give the equations the form

0Jßv - m2ai< ° Ì
(1')

fpv V» - Kap J

but, although (for »4=0) this transformation is trivial, the original form
seems slightly preferable for the following analysis.

The free particle equations (1) have as immediate consequences the
relations

KF,V + oMFvX + d„FAfl 0 (2a)

òA ° (2b)

The first line of (2) represents four component equations of which, however,

only three are essentially independent, so that altogether (2) cuts
down the 10 field components to six independent ones, just the number
necessary to describe a particle capable of three states of polarization.

In the more fashionable formalism the same situation is described
somewhat differently. There the variables are in the first place usually
normalised as in equations (1), but in addition a more substantial difference

in emphasis is made by replacing (1) by the single second-order
equation

dv (Ò^AV - ÒVA») - ™2X 0 (3)

*) A completely equivalent formulation of this theory is provided bv the equation

(dpßll+m)V 0

where the ßtl are lOx 10 matrices satisfying the Petiau-Duffin commutation rules

ßxßpßv+ßvßpßl S^ßv+oßrßx,
but we shall not make use of this formulation here.
**) We use the metric in which
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with the field F eliminated by means of the second set of equations of
(1). If the field F is used at all, it is thought of as the four-dimensional
curl of A by definition:

X^i(òA-W (4)

While for the free Proca field the change from (1) to (3) and (4) is a

trifling matter, we shall see below that an interesting difference in the
approach to the problem of interacting fields results from it.

It should also be noted that a corresponding change of emphasis in the
direction opposite to the conventional one is just as legitimate. We may,
if we wish, look on the Proca scheme as given by the equations

WX^W"«2fF ° (5)

which are obtained by eliminating the vector A from (1). On this view
A would be defined by

Au== dvF.,v. (6)
/* tn v tiV'

When scheme (1) is used, equation (3) is often thought of as composed
of the equations

(Ò2 + m2) A/t 0 (7)

and

àtA, 0 (8)

the latter of which is a consequence of (4), but not of (7). Together,
equations (7) and (8) are equivalent to (4) and they are particularly
convenient for one familiar version of the quantization of spin 1 equations,
in which dflAß is treated as a subsidiary condition restricting the
independence of the four components of A allowed by (7).

This attitude is equally possible if one chooses the Fßv field as

independent variables, for equation (5) may be replaced by

(d2 + m2) Fltv 0 (9)

and

Vv + VX + X?X o (io)

and the relation between (5), (9) and (10) is precisely the same as that
between (4), (7) and (8). One may, if one so chooses, regard (9) as the

equation of motion and (10) as a subsidiary condition.
The reason these variations of approach deserve some attention

becomes apparent when one goes over to the study of the Proca field in
interaction with external sources or other fields. According to which
approach is chosen, such sources will be defined differently and as a result
confusion may arise. Let us discuss the cases one by one.
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In a theory based on equations (1), one would naturally introduce
interactions with other fields by writing

d/iAv-dvA/l-mF/lv m/lv \

àvFpV -mAß =h i
and the two types of 'sources' / and m appear on equal footing. For
instance, in discussing renormalization, as we shall do below, there is no
reason to expect more divergent behaviour from m sources than from
/ of similar structure ; on the other hand, the same theory written in the
form (5) would take on the form

(Ò2 + m2)Afl s/i (12)

where - Sß mjß + ojnßV

and it would then appear that the part of the source involving m must
necessarily have the characteristics of a derivative coupling. That in
general this appearance has little physical meaning can be seen, for
instance, by writing the theory instead in the form (9) which becomes

(Ò2 + m2) Fßv V (13)

where —a — mm + d i —dijt [IV """"jiv ' ^lit V u vi /*

so that now the / coupling appears to be of the derivative kind. These

general considerations will form the background of the following
discussion of two separate, but related problems.

3. The Independent Degrees of Freedom of the Spin 1 Field
We have seen that the equations of non-interacting spin 1 particles

include, besides the equation of motion proper, the equations (2), which
according to the particular formulation of the theory may appear either
all as consequences of the equations of motion, or partly as such
consequences and partly as subsidiary conditions. What happens to these
relations in the presence of sources Clearly they will in general no longer
hold. In the linear (Proca) formulation the first set of equations (2) will
only hold if

òxm,iv + ò,imv\ + òvmxti ° I14)

and the second only if d f 0 (15)

In the conventional second order formulation, (2b) will be violated unless
d s 0, which is the same as (15), and in the 'inverted' second order
scheme (2a) is violated unless dx q + d qvX + dv qA 0, which
evidently reduces to (14).

Now it was already mentioned that the conditions (2) are necessary to
guarantee that the field should have only the degrees of freedom charac-
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teristic of a spin 1 particle. Does this mean that in interactions violating
either (14) of (15) additional degrees of freedom of the field, latent for a

free field, are excited This point of view has been expressed occasionally5),

at least in respect of (15), though due to the particular choice of
formulation the equivalent role of (14) has apparently not been noted.
This apparent difference in the conclusions with regard to two precisely
similar situations shows that a somewhat deeper analysis is needed.

One is here concerned with the total time development of the fields—in
quantal terms with the Heisenberg picture—and therefore one should
state the field equations in a canonical form. In the most familiar
presentations such a canonical form is usually given only in momentum
space and to state the corresponding equations in coordinate space is a
little troublesome and unless one employs Schwinger's6) general scheme,
cannot be done simply in terms of covariant quantities only, although
the theory is of course covariant as a whole. In these circumstances it is

appropriate to make the otherwise retrograde step of writing Proca's
equation in a three-dimensional vector notation. Using symbols that
stress the formal similarity to electromagnetism, we put

Fot X T£ijkFjk= Bi, A0 c/>, Pi. -^ijkmjk Mi. /o Q

Then equations (1) become

- Vcf> - À - mE P

V„j4 - mB M

V„B + E-mA =j
— V.E — mcf> g

while the consequent equations (2) appear as

VAE + B 0

V.B 0

V.A + cf, =0
The scheme (17) may be derived by variation of the Lagrangian *)

L % (E2 - B2) + m
(A2 - cf>2)

(16)

(17)

+ A A.E - A A.E + Vcf>.E + VJ3.A

+ P.E - M.B+j.A - gcf>.

(18)

*) We assume for simplicity that the sources are not themselves functions of
the field variables, but only slight modification of the argument is needed for the
more general case.

53 HPA 33, 8 (1960)
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but in this form L is not directly suitable for bringing into canonical form,
in the first place because the variables cp" and B enter without their time
derivatives. However, these variables may be eliminated by using the
second and fourth equations of (16).

We then get

L (£2 + A"> + In ((V-^2 + (V^2) +Ì ÀE - 2
A-È

j.A + P.E-- M.V^A
1 gV.E+^M2-
m ^ 2m 2m '

(19)

Here we have dropped a spatial divergence; the last two terms may also
be disregarded in this discussion as they only influence the equations of
motion of the sources* *).

From this Lagrangian, equations (16) are easily derivable, in the sense
that the symbols B and cf> are considered as given by their values from
(16) by definition.

Even in this form L is not yet ready for a canonical formalism. The next
step is to split the two fields A and E into (spatially) transverse and
longitudinal parts.

For any 3-dimensional vector field o we make the (spatially***)) non-
oc al transformation

.,U). (20)v vw + v&); W« 0 V„t/<2) 0

In this notation we find from (16) that

-X« - «E« P<«

E<2) _ mA&) y<2) |

and these relations may be used to eliminate Ea) and j4(2) from (19). In this
way we find

L

(21)

2m
(Am2 + £<2>2) + ((VA A«)2 + (V.E<2>)2

- _ (A«1'2 + E®2))

+ A'-l(jM + - pm - -1
VAM)*J m m

(22)

ßV) tpa) __ ± it®
'y mJ Vo)

Zm
(P<1)2_ M2+jf(2)2

**) As Fronsdal and Glashow3) point out, the form of these terms is important
for calculating the form of the interaction between the source fields.

***) This splitting must be distinguished from the four-dimensional split discussed,
e. g. by Glashow4).
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Here again we have discarded a spatial divergence, and now also a total
time derivative. The last term is again of no importance to the equations
of motion we are considering. From this Lagrangian the required equations

of motion follow again, but now clearly in a form which shows that
the variables canonically conjugate to Am and E(2) respectively are

— Amjm and — E(2)/w, so that the transition to Hamiltonian form is
immediate.

We are particularly interested in the commutation rules for the
canonical variables. In writing them down we must ensure that they are
compatible with the conditions (20) on ^4(1) and £<2). To ensure this one

may put
[A%(x), A? (y)] j [(ômn - Ì<g*d(x - y)]

[E%(x), Ef (y)] * Mi d(x - y)
(23)

(all other pairs commuting).
To eliminate the spatially non-local operators on the right hand sides, we

may go back to the total fields Am and En by using (21). This gives

[XX) + „ /<?(*), En(y) + A pW(y)] X(* - y) òmn (24)

The quantities
A + /<2> and E E A pa)

are thus the canonical variables in terms of which the field equations in
the Heisenberg representation should be discussed. Going right back to
the form (16) of Proca's equations, with the use of the further convenient

definitions mB V^A, mcf> — V.É, we see that their canonical form is

-Vi - À - mE P<2> - 1
/<» - - Vp

V„ A - mB

-VAß + E - m A =y<»+ - P« - X

VAM

V .E -met 0

(25)

It is now apparent that the sources entering the canonical equations
automatically satisfy conditions (14) and (15). There is therefore now no
question of spurious degrees of freedom being present in the field, whatever

the coupling. What is not made clear in the usual treatment is that
the sources to which the Proca field can couple are not those one would
expect from naively writing down the equations.
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The appearance of the equations (25) is of course not covariant ;

nevertheless they are equivalent to the original equations. This is evidently so

because the definitions of the quantities A, E etc. are themselves not
covariant. It should perhaps be re-emphasized that the transformation to
the new variables is non-local, but only in a three-dimensional spatial
sense, so that it presents no obstacles to this discussion based on the
Heisenberg representation.

3. Renormalization of Spin 1 Theories
To discuss the renormalization of the theory, let us return to equations

(11) as our starting point. We obtain by simple calculation the second
order equations

- (d2 + m2)All= mj^ + ovmßV + - ò^
- (d2 + m2) FA„ mmllv + djv - dj^ + - òAA^m^ + òymp/l + òpm^

(26)
These equations may evidently also be symbolically written as

A,= - 0^2 (X + An2 & + £ ÒPm"P)

X» ~ W+hn2 [ÔfP Ô»° + nA @A Ô"P + d"dPdfr + ¥0I>PÒJ] X

['
1

+ m(òpU-ò„jP)\- (27)

and hence we see that a theory in which the F are treated as an
independent set of variables involves as Green's functions the well known
expression

?(,» _ rn (Â |
d/ldv

(d2 + m2) (d2+m2) (vX?)
for the A „ field and the less familiar Green's function

WT^k S - WTnA) [*» *~ + i W. + ^A* + **,A*)] (28)

For the F field*). In an approach that does not treat the Fpv as

independent variables, which therefore does not include m sources explicitly,
the term involving ljm2 in ^8 drops out. In our approach, however, it
must clearly play as important a part as the corresponding term
involving lfm2 in <p

In the usual procedure of discussing renormalization in terms of a

series expansion of the S-matrix these Green functions reappear as the

*) We omit here the antisymmetrization of the Green's function with respect
to pi and v and with respect to Q and a.
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propagators associated with the internal lines, and in them the terms in
ljm2 are responsible for the fact that spin 1 theories are in general not
renormalizable.

It has recently been pointed out4) that in the special case when the
term d djm2 in ^ß has no effect, i. e. if in terms of the current s of
equation (12) we have d„ s 0 (a conserved current), the theory is
renormalizable provided only s satisfies certain conditions of simplicity.
If, for the sake of brevity, we confine ourselves to source functions
constructed from boson fields the renormalizability conditions on a theory
with conserved current are that any term in s should involve (i) the
products of no more than three boson field operators, (ii) if it involves the
derivative of one field operator this may be multiplied by at most one
non-differentiated field operator, and (iii) not more than one derivative
of a field shall occur in any term.

In this context one should note that the condition of current conservation

is necessary simply because the offending term in ty contains
two derivatives ; the quantity that determines renormalizability is in fact
not s but ^p s„. It is therefore clear that the condition of current
conservation may be relaxed, provided that, by virtue of the equations of
motion fß^ s„ rather than s^ itself satisfies conditions (i), (ii) and (iii). This
is precisely the situation in the case of 'partial current conservation' as
defined by Glashow.**)

The above discussion is but a restatement of known results. It is based
on the conventional statement of spin 1 theory. If however we choose the
linearized form of the theory the statement of renormalizability
conditions appears in a somewhat different form. We have then to consider
the sources / and mllv separately. Apparently this is a complication, but
it brings us the gain that now the appearance of the Fpv

field in the
sources need not be classed as an appearance of derivatives. We then find
that a theory of Proca particles is renormalizable if

dAß 0 and VV + òAnv\ + òvmx,i °.

or if at least the quantities ty^ jv and ty a mpa. involve:
(i)' no terms with more than three boson field operators (among which
both the Ap and the F' may be included),
(ii)' only one derivative term multiplied by no more than one non-
differentiated field operator (defined as above), and
(iii)' not more than one derivative of a field operator which is not re-
expressible in terms of the A and Fßv.

It is also clear from our previous discussion that the 'inverted' scheme

may equally well be used for the discussion of renormalizability. With it
**) Recently Salam has stated objections to Glashow's treabment.



838 N. Kemmer H. P.A.

conditions similar to our first three must clearly be imposed on *ß ,pa.qpa
with q defined by equation (13) and with the F now functioning as the
sole non-derivative field operators.

4. The Yang Mills Theory
We shall now discuss briefly the renormalizability of the Yang-Mills7)

theory in terms of our criteria for the linearized approach. This
theory involves an isobaric triplet of fields A'p and F*v (i 1, 2, 3) and
a corresponding isobaric triplet of currents

f s (A1 Fk - A" F'J ft 6 \ V fLV V fAV>

J k
V

and m1 e (A A" - A" Av),
flV o \ fl v fl ]/.

(i, j, k cyclic). We take all three fields to have the same non-v
mass m. It is then readily calculated from the equations of motion that
d „ j), 0. On the other hand we find

dM +d„m', + d„mi sm(F[ Ak + X A] + FL Ah
A flV

' ft VA ' V Aft O \ /./J, V ' ßV A
' VA It,

Fk, A' - Fk A' - F".A>)
Aft V flV fi VA (II

(29)

This is not zero, but nonetheless ^P„„>/)0. »»„ satisfies criteria (i)', (ii)',
(iii)'. Hence the above criteria are satisfied.

Salam and Ward8) have pointed out that the situation remains
unchanged if the third component of the Yang-Mills field is replaced by
the electromagnetic field. This can be checked by noting that our criteria
are still satisfied if in the second, but not the first set of the Proca equations
for the three fields the mass terms (even all three) are taken to be different.

The question whether it may be possible to construct other schemes

satisfying our conditions, will not be examined here. Except for the
neutral vector meson no other renormalizable scheme has so far been

suggested. It may well be that the analysis presented here can do no more
than restate known results in what is perhaps a more direct and simple form.

The writer is sincerely grateful to be able to join in this tribute to the

memory of Wolfgang Pauli, one of the greatest physicists of this century,
who was also so good a friend and wise a counsellor.
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