Die Dampfdruckkurve des Thalliums bei sehr geringen Dampfdichten

Autor(en): Müller, Fritz

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 8 (1935)

Heft II

PDF erstellt am: 23.09.2024

Persistenter Link: https://doi.org/10.5169/seals-110523

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Die Dampfdruckkurve des Thalliums bei sehr geringen Dampfdichten

von Fritz Müller.

(17. I. 35.)

Zusammenfassung: Es wird mit Hilfe der Methode der Linienabsorption eine relative Dampfdruckbestimmung des Thalliums im Druckgebiet von $1,2 \cdot 10^{-6}$ bis $7,4 \cdot 10^{-4}$ mm Hg durchgeführt. Als gültige Dampfdruckformel ergab sich im Gebiet von 350° C bis 1200° C die folgende: $\log^{10} p = -52,23 \frac{A}{T} + B$. Die in dieser Formel auftretenden Konstanten A und B hängen von der Temperatur ab und können einer hier angegebenen Tabelle entnommen werden.

Einleitung.

Dampfdruckbestimmungen am Thallium sind bis zur Zeit im wesentlichen von zwei Autoren durchgeführt worden und zwar einerseits von v. WARTENBERG¹), andererseits von GIBSON²). V. WARTENBERG verwendet bei seinen Messungen eine dynamische Methode. Eine gemessene Gasmenge (z. B. Wasserstoff) wird in einem erhitzten Rohr über ein Schiffchen geleitet, in welchem sich eine genau abgewogene Menge des zu untersuchenden Stoffes (Thallium) befindet. Nach einer gewissen Zeit bestimmt man den dabei entstehenden Gewichtsverlust an Metall. Aus dieser Gewichtsabnahme sowie aus der Menge des vorbeiströmenden Gases kann der dynamische Druck des Metalldampfes berechnet werden. Trägt man den so ermittelten dynamischen Druck als Funktion der Strömungsgeschwindigkeit auf, so lässt sich der statische Dampfdruck bei der Geschwindigkeit Null durch lineare Extrapolation graphisch bestimmen. Dabei wird vorausgesetzt, dass entgegen dem Gasstrom keine Rückdiffusion des betreffenden Metalldampfes stattfindet.

Die von v. WARTENBERG angewendete Methode der Dampfdruckbestimmung lässt sich bei sehr kleinen Dampfdichten nicht mehr anwenden. Bei Thallium ist es jedoch von grosser Wichtigkeit, für tiefe Temperaturen (300-600° C) die Drucke genau zu

¹) H. v. WARTENBERG, Zeitschr. f. anorg. Chemie, **56**, p. 320, 1908; Zeitschr. f. El. Chemie, **19**, p. 482, 1913.

²) G. E. GIBSON, Diss. Breslau 1911. Einzelheiten aus der GIBSON'schen Arbeit sind dem Autor nicht bekannt.

kennen, da viele optische Untersuchungen über Absorption, Dispersion und Resonanzfluoreszenz sich gerade nur in diesem Temperaturgebiet durchführen lassen.

Wie aus dem Folgenden hervorgeht, lässt sich aus optischen Absorptionsversuchen eine Methode der relativen Dampfdruckbestimmung ausarbeiten, die den grossen Vorteil hat, dass sie sich bis zu sehr tiefen Drucken (10⁻⁶ mm Hg) mit grosser Genauigkeit anwenden lässt. Den Ausgang für diese Methode bildet die von R. LADENBURG¹) abgeleitete Beziehung zwischen der absoluten Intensität f einer Spektrallinie und ihrem maximalen Absorptionskoeffizienten $k_{l_{2}}$:

$$f = \frac{k_{\lambda_0} \cdot \bar{q}}{2 \frac{e^2}{m \cdot c} \cdot \lambda_0 \cdot N} \,. \tag{1}$$

Dabei bedeutet: \bar{q} die mittlere thermische Geschwindigkeit der Atome, λ_0 den Ort der Spektrallinie, N die Zahl der zur Absorption zur Verfügung stehenden Atome, e die Ladung, m die Masse des Elektrons und c die Lichtgeschwindigkeit. — Aus (1) geht hervor, dass bei Kenntnis der absoluten Intensität f, sowie des maximalen Absorptionskoeffizienten k_{λ_0} , die Zahl N der zur Absorption zur Verfügung stehenden Atome und damit der Dampfdruck berechnet werden kann. Zu Tl-Dampfdruckmessungen bei tiefen Temperaturen eignet sich hierbei ganz besonders die im verdünnten Tl-Dampf sehr kräftig absorbierbare Tl-Resonanzlinie $\lambda = 3776$ Å.E. Die absolute Intensität f dieser Linie ist jedoch nach der Methode der Linienabsorption noch nicht bestimmt worden. Der von KUHN²) aus der Magnetorotation bestimmte f-Wert (0,08) der Linie $\lambda = 3776$ Å.E. darf nach Erwägungen (Einfluss der Hyperfeinstruktur), die in einer früheren Arbeit³) gemacht sind, nicht zur Bestimmung des Dampfdrucks herbeigezogen werden, da er mit dem aus der Linienabsorption gewonnenen k_{λ_0} in Formel (1) nicht kombiniert werden kann. Es wurde daher eine direkte Messung von f mit Hilfe der Gesamtlinienabsorption genau nach der in I verwendeten Methode versucht; sie führte jedoch aus folgenden experimentellen Gründen zu keinem Erfolg: Zur Bestimmung von f ist bekanntlich die

¹) R. LADENBURG, Zeitschr. f. Phys. 4, p. 451, 1921; Verh. d. D. Phys. Ges. 16, p. 765, 1914.

²) W. KUHN, Det Kgl. Danske Vidensk. Selskab, Math.-fysiske Meddelelser, VII, 12, 1926.

³) F. MÜLLER: "Die Linienabsorption des Tl-Dubletts $\lambda = 3519/29$ Å.E. bei Temperaturanregung des metastabilen Niveaus 6 ${}^{2}P_{{}^{3}/{}^{2}}$ ", Helv. Phys. Acta, VIII, p. 813, 1934, im folgenden I genannt.

Kenntnis des Dampfdrucks p der absorbierenden Atome unbedingt notwendig. Da im Falle des Thalliums der tiefste gemessene Dampfdruck von v. WARTENBERG p = 0,056 mm Hg einer Temperatur von 634° C entspricht, so müsste die Linienabsorption von $\lambda = 3776$ Å.E. für diese Temperatur des Tl-Dampfes gemessen werden. Die Versuche zeigen jedoch eindeutig, dass bei 634° C die Gesamtabsorption der oben genannten Linie so ausserordentlich gross ist, dass man Schichtdicken von nur wenigen Hundertstel-Millimetern verwenden müsste, um eine exakte Absorptionsmessung durchführen zu können. Da dies jedoch aus technischen Gründen nicht möglich ist, so wird somit die Methode der direkten Bestimmung von f bei der Linie $\lambda = 3776$ Å.E. hinfällig.

Die Ermittlung der Dampfdruckkurve des Thalliums nach der hier beschriebenen optischen Methode kann jedoch unter Umgehung der obigen Schwierigkeit durchgeführt werden. Hierzu bieten sich zwei Möglichkeiten:

1. Die erste Möglichkeit besteht darin, die bereits zwischen 950° C und 1200° C¹) bekannte Dampfdruckkurve des Thalliums in ein solches Druckgebiet graphisch zu extrapolieren, in welchem aus der Gesamtabsorption der Linie $\lambda = 3776$ Å.E. die Grösse k_{λ_0} und damit ihr *f*-Wert bestimmt werden kann. Da jedoch auf Grund experimenteller Ergebnisse festgestellt wurde, dass dieses Gebiet bei Temperaturen um etwa 400° C liegt, wo der Druck des TI-Dampfes sich um Grössenordnungen von den Drucken im Bereich von 950° C—1200° C unterscheiden muss, so ist es höchst unsicher, eine derartige graphische Extrapolation durchzuführen.

2. Aus den Beobachtungen von FERMI und RASETTI²), sowie denjenigen von PROKOFJEW und SOLOWIEW³), geht mit grosser Sicherheit hervor, dass der Wert der absoluten Intensität f der Linie $\lambda = 3776$ Å.E. $(6 \ ^2P_{1/2} - 7 \ ^2S_{1/2})$ demjenigen der Linie $\lambda = 5350$ Å.E. $(6 \ ^2P_{3/2} - 7 \ ^2S_{1/2})$ gleich ist. Es gilt daher:

$$f_{3776} = f_{5350}.$$

Der *f*-Wert der Linie $\lambda = 5350$ Å.E., die nicht vom Grund-, sondern vom metastabilen Zustand 6 ${}^{2}P_{3_{/2}}$ ausgeht, lässt sich jedoch ganz direkt in der gleichen Anordnung und nach der gleichen Methode wie für das Liniendublett $\lambda = 3519/29$ Å.E. (siehe I) bestimmen. Es schien somit am sichersten, um den richtigen

¹) H. v. WARTENBERG, a. a. O., hat zwei einzelne Punkte der Dampfdruckkurve, und zwar bei 634^o C und 783^o C, bestimmt.

²) E. FERMI und F. RASETTI, Zeitschr. f. Phys. 43, p. 379, 1927.

³) W. K. PROKOFJEW und W. N. SOLOWIEW, Zeitschr. f. Phys. 48, p. 276, 1928.

f-Wert der Linie $\lambda = 3776$ Å.E. zu erhalten, diesen letztgenannten Weg einzuschlagen.

Damit zerfällt die Aufgabe der Dampfdruckbestimmung für das Temperaturgebiet unterhalb 634° C beim Tl in zwei getrennte Messungen:

1. Bestimmung des f-Wertes der Linie $\lambda = 5350$ Å.E.

2. Bestimmung der k_{λ_0} -Werte der Linie $\lambda = 3776$ Å.E. als Funktion der Temperatur.

Bestimmung der absoluten Intensität der Linie $\lambda = 5350$ Å.E.

Die Versuchsanordnung war in allen ihren wesentlichen Teilen dieselbe wie in I (Fig. 2, I). In das Resonanzgefäss wurde dabei das ganze Tl-Spektrum der Primärlampe ohne Filter eingestrahlt. Vor die Photozelle war an Stelle des Blau-Uviolfilters ein Aesculinfilter gebracht, welches bewirkte, dass in der Photozelle allein die grüne Linie $\lambda = 5350$ Å.E. zur Messung gelangte. Bei diesen Versuchen musste die Temperatur im Absorptionsgefäss so hoch gewählt werden, dass sich der in I erwähnte störende Einfluss der Temperaturstrahlung auf den Gang der Absorptionsmessungen schon stark bemerkbar machte. Dies umso mehr, als die Untersuchungen im grünen Spektralgebiet durchgeführt wurden, wo bei den verwendeten Temperaturen (780° C) schon eine merkbare Ofenstrahlung vorhanden war. Die Wirkung der im roten und gelben Spektralgebiet vorhandenen, sehr viel kräftigeren Ofenstrahlung wurde dabei durch Einbringen einer wässerigen Kupfersulfat-Lösung vor die Photozelle vermieden. Dieses Filter lässt die Wellenlänge $\lambda = 5350$ Å.E. noch gut durch, schneidet jedoch die intensive gelbe und rote Temperaturstrahlung praktisch vollständig ab. Der noch übrigbleibende, viel schwächere Teil der Ofenstrahlung konnte dann bei den Messungen ohne Schwierigkeit berücksichtigt werden.

Da die Absorptionsversuche für die Linie $\lambda = 5350$ Å.E. sich wesentlich zeitraubender gestalteten als im Falle des Dubletts $\lambda = 3519/29$ Å.E., so wurde nur ein einziger Punkt der Absorptionskurve gemessen; dieser jedoch mit möglichst grosser Genauigkeit. Dabei war die Temperatur im Absorptionsrohr so gewählt, dass die Gesamtabsorption ungefähr 0,4 betrug. Die Temperatur im Resonanzgefäss war bei allen Versuchen stets 720° C. Die Ergebnisse der Absorptionsmessungen sind in Tabelle 1 wiedergegeben. Die erste Kolonne enthält die Temperatur des Absorptionsgefässes in °Celsius, die zweite den hierzu gehörenden Partialdruck p_m der metastabilen Tl-Atome in mm Hg. Dieser

Druck ergibt sich aus dem bekannten Gesamtdruck und der Temperatur mit Hilfe des BOLTZMANN'schen Verteilungsgesetzes (siehe I, Formel (1)). In der dritten Kolonne sind die unter Be-

Т	p _m	$\frac{J}{J_0}$	
758°	$4,4 \cdot 10^{-5}$	0,41	
758°	$4,4 \cdot 10^{-5}$	0,44	
758°	$4,4 \cdot 10^{-5}$	0,41	
758°	$4,4 \cdot 10^{-5}$	0,40	
	_,	-,	

Tabelle 1.

rücksichtigung der Reflexionsverluste an den Quarzplatten des Absorptionsrohres (siehe I) gemessenen Werte der Durchlässigkeit $\frac{J}{J_0}$ eingetragen¹). Aus den Messungen der Tabelle 1 ergibt sich bei 758° C als Mittelwert für $\frac{J}{J_0}$ 0,41₅. Da die Schichtdicke genau dieselbe ist wie in I, so kann, unter Berücksichtigung des Verhältnisses der Dopplerbreiten von Emissions- und Absorptionslinie, für die Linie $\lambda = 5350$ Å.E. aus den Kurven der Fig. 10 (in I) der zu diesen $\frac{J}{J_0}$ gehörende Wert von k_{λ_0} entnommen werden. Man findet auf diese Weise für 758° C ($p_m = 4,4 \cdot 10^{-5}$ mm Hg):

 $k_{\lambda_0} = 0.11_4, \ (\lambda = 5350 \text{ Å.E.})$

Nach der LADENBURG'schen Beziehung (1) berechnet sich dann die absolute Intensität der Linie $\lambda = 5350$ Å.E. zu

$$f_{5350} = 0,010_8$$
.

Damit ist die für den vorliegenden Fall zur Ermittlung der Dampfdruckkurve des Thalliums notwendige Grösse der absoluten Intensität der Linie $\lambda = 5350$ Å.E. bekannt und damit der *f*-Wert von $\lambda = 3776$ Å.E.

¹) Es sei hier noch erwähnt, dass sich dieser Versuch an der grünen Tl-Linie wegen seiner einfachen Durchführbarkeit besonders gut zur Demonstration der Absorption durch metastabile Atomzustände eignet, da man von Auge beim Hineinklappen des Absorptionsrohres sehr schön die Schwächung und bei passenden Temperaturen (ca. 850° C) sogar das vollständige Verschwinden des sonst so intensiven grünen Resonanzleuchtens feststellen kann.

Absorptions messungen an der Resonanzlinie $\lambda = 3776$ Å.E.

Auch bei diesen Messungen ist mit Ausnahme der Filter die Versuchsanordnung im wesentlichen dieselbe wie in I (Fig. 2, I). Unmittelbar hinter die Primärlampe wird eine Glasplatte von 2 mm Dicke eingesetzt, wodurch die Emission der Linien $\lambda =$ 2768 Å.E. und $\lambda = 3519/29$ Å.E. im Resonanzgefäss verhindert wurde. Ausser der zu untersuchenden Linie $\lambda = 3776$ Å.E. wird dann im Resonanzgefäss noch die Linie $\lambda = 5350$ Å.E. emittiert. Diese kann jedoch durch ein Blau-Uviolfilter vor der Photozelle unwirksam gemacht werden. Damit war die Linie $\lambda = 3776$ Å.E. vollkommen isoliert.

Es wurden in dieser Anordnung zwei Messreihen durchgeführt. Bei der ersten ist ein Absorptionsrohr von 11,6 cm Länge verwendet worden. Da es jedoch wünschenswert erschien, in einem möglichst grossen Temperaturgebiet die Tl-Dampfdrucke zu ermitteln, und da im Absorptionsgefäss von 11,6 cm Länge bei Temperaturen über 440° C eine zu hohe Absorption auftrat, so wurde eine zweite Messreihe mit einem Gefäss der wesentlich kleineren Länge von 0,80 cm durchgeführt. — Bei der Herstellung dieses Gefässes musste besonders darauf geachtet werden, dass die absorbierende Schicht möglichst überall dieselbe Länge hatte.

Da das Gefäss ganz aus Quarz hergestellt werden musste, so war folgende Konstruktion angebracht: Es wurde ein Quarzrohr von 25 mm innerem Durchmesser an beiden Enden sehr gut planparallel geschliffen. Die Länge desselben war nach dem Schleifen 8,0 mm. Dieser Quarzring besass längs des obern Randes vier Einkerbungen (Fig. 1a). Er wurde dann mit seinem untern Rand auf eine plane Quarzplatte aufgelegt, die als Abschlussfenster eines Quarzrohres von 35 mm innerem Durchmesser diente (Fig. 1b). Auf den oberen Rand des Ringes war eine zweite plane Quarzplatte

aufgelegt, die ein Rohr von 30 mm lichter Weite, welches sich innerhalb des äusseren Rohres befand, abschloss (Fig. 1c). Die freien Rohrenden der beiden Quarzröhren bei b wurden dann unter dauerndem Anpressen der oberen Quarzplatte an den Ring miteinander verschmolzen. Zum Einfüllen des Thalliums, sowie zur Herstellung des Vakuums wurden bei a (Fig. 1b und 1c) Ansatzröhren an das äussere Quarzrohr angeblasen. Dabei musste darauf geachtet werden, dass den beiden Öffnungen a gegenüber je eine Einkerbung des Ringes zu liegen kam. Dadurch konnte erreicht werden, dass die Tl-Dampfdrucke im Gefäss sich in kurzer Zeit im Gleichgewicht befanden. Der Ring war nämlich zwischen den Quarzplatten so dicht eingepasst, dass ohne diese Einrichtung ein Druckausgleich im Gefäss nur äusserst langsam hätte vor sich gehen können. — Das Einfüllen des Thalliums geschah genau gleich wie in I. Ferner war ähnlich wie dort dafür gesorgt, dass der Bodenkörper im Absorptionsofen stets auf etwas tieferer Temperatur als der Absorptionsraum gehalten wurde.

Die Absorptionsmessungen wurden in einem Temperaturintervall des Tl-Dampfes von 350° C bis 500° C durchgeführt. Die Temperatur im Resonanzgefäss hatte dabei stets einen auf $\pm 1°$ C konstanten Wert, der zwischen 460° C und 480° C lag.

Zur Ermittlung der k_{λ_0} -Werte mit dem kurzen Gefäss war es notwendig, für die Schichtdicke von 0,80 cm die drei analogen Kurven $k_{\lambda_0} = f\left(\frac{J}{J_0}\right)$ zu berechnen, die in Fig. 10 von I dargestellt sind. Die so berechneten Kurven zeigt Fig. 2. Aus diesen Kurven lassen sich dann zu jedem gemessenen $\frac{J}{J_0}$ unter Berücksichtigung der Dopplerbreiten von Emissions- und Absorptionslinie die dazugehörigen k_{λ_0} -Werte entnehmen. Beim Gefäss mit der Schichtdicke von 11,6 cm konnten die k_{λ_0} -Werte aus den gemessenen Durchlässigkeiten $\frac{J}{J_0}$ direkt mit Hilfe der in I berechneten drei Kurven der Fig. 10 (I) erhalten werden. — Die Versuchsresultate, die mit den beiden Absorptionsgefässen erhalten wurden, sind in der Tabelle 2 zusammengestellt.

Gefäss	mit $l=11$.,6 cm	Gefäss	mit $l=0$,	,80 cm
T	$\frac{J}{J_0}$	k ₂₀	T	$\left \frac{J}{J_0} \right $	k _{lo}
3500	0,96	0,005	460°	0,72	0,60
380° 400°	$\begin{array}{c} 0,86\\ 0,72 \end{array}$	$0,01_9$ $0,04_4$	470° 480°	0,62 0,53	0,86 $1,19$
430° 440°	$\begin{array}{c} 0,38\\ 0,28 \end{array}$	$0,13_2$ $0,18_1$	490° 500°	$\begin{array}{c} 0,43\\ 0,33 \end{array}$	$1,62 \\ 2,19$

Tabelle 2.

Die erste Kolonne enthält je die Celsius-Temperaturen der Absorptionsgefässe. In der zweiten resp. dritten Kolonne ist die reine Durchlässigkeit des Tl-Dampfes, $\frac{J}{J_0}$, resp. die hieraus berechneten Werte von k_{λ_0} angegeben. — Dieser Verlauf von k_{λ_0} als Funktion der Celsius-Temperatur ist für die Linie $\lambda = 3776$ Å.E. des Thalliums in Fig. 3 dargestellt.

Die Berechnung der Dampfdruckkurve.

Schon eingangs wurde dargelegt, dass sich aus der Beziehung (1) bei Kenntnis der absoluten Intensität mit Hilfe der Messung von k_{λ_0} die Zahl N der Tl-Atome berechnen lässt. Die Anwendung der Zustandsgleichung idealer Gase, die im vorliegenden Fall sich ohne Bedenken anwenden lässt¹), ergibt dann $N = \frac{L \cdot p}{R \cdot T}$, wo pden Dampfdruck des Thalliums, T die absolute Temperatur, Ldie Avogadro'sche Zahl und R die universelle Gaskonstante bedeutet. Dieser Ausdruck für N wird nun in die Beziehung (1) eingesetzt. Auf diese Weise bekommt man für den Dampfdruck pden folgenden Ausdruck:

$$p = \frac{k_{\lambda_0} \cdot \bar{q} \cdot R \cdot T}{2 \frac{e^2}{m c} \lambda_0 \cdot L \cdot f}$$
(2)

Dabei wird für die absolute Intensität f der Linie $\lambda = 3776$ Å.E. der Wert $0,010_8$, wie er für die Linie $\lambda = 5350$ Å.E. ermittelt wurde, eingesetzt. Die zu verschiedenen Temperaturen gehörenden k_{z_0} -Werte werden dann aus der Kurve der Fig. 3 entnommen.

¹) Bei den hier angestellten Versuchen handelt es sich stets um äusserst verdünnte Dämpfe.

Die Resultate dieser Berechnung sind in der folgenden Tabelle 3 zusammengestellt:

Tabelle 3.

T in ⁰ Cels.	p in mm Hg ¹)
3 50°	$1,2_2 \cdot 10^{-6}$
385 °	$5,9_{5} \cdot 10^{-6}$
4000	$1,2_0 \cdot 10^{-5}$
443 ⁰	$7,4_8 \cdot 10^{-5}$
470°	$2,7_{3} \cdot 10^{-4}$
500°	$7,4_0 \cdot 10^{-4}$

Die Briggi'schen Logarithmen dieser Dampfdrucke p sind in Fig. 4 als Funktion der Celsius-Temperatur dargestellt (dick ausgezogene Kurve). Die dünn ausgezogene Kurve, die sich über

ein Temperaturgebiet von 634° C bis 1200° C erstreckt, umfasst das gesamte von v. WARTENBERG und GIBSON²) gemessene Dampfdruckgebiet. Die hier neu bestimmte, stark ausgezogene Dampf-

¹) Die Dampfdruckkorrektur infolge Temperaturungleichheit des Tl-Bodenkörpers und des Absorptionsraumes, sowie die bei den hier herrschenden, sehr tiefen Drucken auftretende KNUDSEN'sche Korrektur (M. KNUDSEN, Ann. d. Phys. **31**, p. 205, 633, 1910) wurden bei der endgültigen Berechnung stets berücksichtigt.

²) a. a. O.

druckkurve liegt in einem Temperaturbereich von 350° C bis 500° C und umfasst ein Dampfdruckgebiet von $1,2 \cdot 10^{-6}$ bis 7,4 $\cdot 10^{-4}$ mm Hg, also von nicht ganz drei Zehnerpotenzen. Die gestrichelte Kurve ist graphisch zwischen den beiden gemessenen Dampfdruckgebieten interpoliert.

Es ist noch von Interesse, zu untersuchen, wie sich der Verlauf der Dampfdruckkurve mit dem aus der Magnetorotation bestimmten f-Wert (0,08) von KUHN¹) gestalten würde. — Diese Kurve ist in Fig. 4 strichpunktiert gezeichnet. Dabei wurde so verfahren, dass zur Berechnung der Dampfdrucke in Formel (2) die hier bestimmten k_{λ_0} -Werte mit dem KUHN'schen f-Wert kombiniert wurden. Die so ermittelten Drucke p sind durchwegs etwa 8 mal kleiner als diejenigen, die sich mit dem in dieser Arbeit bestimmten f-Wert ergeben. Der nach KUHN berechnete, strichpunktierte Teil der Dampfdruckkurve lässt sich daher nicht glatt an den dünn gezeichneten, bekannten Teil der Kurve anschliessen. Dies ist wiederum ein deutlicher Beweis dafür, dass bei Vorhandensein von Hyperfeinstruktur die aus der Linienabsorption bestimmten f-Werte nicht mit den aus der anomalen Dispersion (Magnetorotation) ermittelten übereinzustimmen brauchen.

Über die Genauigkeit der in dieser Arbeit durchgeführten Dampfdruckbestimmungen lässt sich Folgendes sagen: Der wesentlichste Fehler ist dabei natürlich in der Bestimmung von k_{λ_0} als Funktion der Temperatur enthalten. Es ist daher von ausschlaggebender Bedeutung, welche Genauigkeit den für die Linie $\lambda = 3776$ Å.E. gemessenen Durchlässigkeiten $\frac{J}{J_0}$ zukommt. Die Messung der Durchlässigkeit $\frac{J}{J_0}$ ist im besten Fall auf $\pm 1\%$ genau. Ein Fehler dieser Grösse bedingt im k_{λ_0} einen Fehler von 2,5% (gerechnet für $\frac{J}{J_0} = 0,5$). Weitere Fehlerberechnungen für andere Werte von $\frac{J}{J_0}$ ergaben, dass für die hier verwendeten k_{λ_0} die relativen Fehler der Dampfdruckbestimmung stets innerhalb 4—5% lagen²).

Wie schon in der Einleitung erwähnt ist, findet sich in den "International Critical Tables", Bd. III, p. 204 für das Temperatur-

 \overline{g}

¹) a. a. O.

²) Über die absolute Genauigkeit der Dampfdrucke lässt sich keine Aussage machen, da diese von der absoluten Grösse des *f*-Wertes der Linie $\lambda = 3776$ Å.E. abhängt. Derselbe konnte jedoch, wie Eingangs erwähnt, nicht direkt bestimmt werden. Seine Grösse hängt vielmehr von der Gültigkeit der Annahme $f_{3776} =$ f_{5350} ab.

intervall von 950° C bis 1200° C eine Dampfdruckformel des Thalliums. Dieselbe lautet:

$$\log p = -52,23 \frac{A}{T} + B.$$

Darin bedeutet T die absolute Temperatur, p den Druck in mm Hg; A und B sind Koeffizienten, die nur von der Temperatur abhängen. Für das erwähnte Temperaturgebiet haben diese Koeffizienten die Werte: A = 120 kg Joules, B = 6,14. — Wenn man diese Dampfdruckformel in der gleichen Form auf das nun bekannte Druckgebiet unterhalb 950° C erweitern will, so müssen die Koeffizienten A und B für dieses Gebiet neu berechnet werden. Eine derartige Erweiterung wird als Erstes für die beiden von v. WARTEN-BERG gemessenen Drucke bei 783° C und 634° C durchgeführt. Der Ansatz hierzu lautet für das Temperaturgebiet von 783° C bis 950° C:

$$\log^{10} p_{950} = \frac{K}{T_{950}} + B$$
$$\log^{10} p_{783} = \frac{K}{T_{783}} + B,$$

wo $K = -52,23 \cdot A$. Setzt man nun bei 950° C den von GIBSON und bei 783° C den von v. WARTENBERG gemessenen Druck ein, so ergibt sich:

$$\log^{10} 10,5 = \frac{K}{1223} + B$$
$$\log^{10} 1,3 = \frac{K}{1056} + B$$

und daraus

$$K = -\frac{(\log 8,0769) \cdot 1223 \cdot 1056}{167} = -7016,19.$$

Mit diesem Wert von K berechnet man die beiden Konstanten Aund B zu: A = 134,33 kg Joules und $B = 6,75_8$. Mit Hilfe dieser Werte von \overline{A} und \overline{B} lässt sich dann im Gebiet zwischen 783° C und 950° C eine Dampfdruckkurve zeichnen, die sich an die oberhalb 950° C bekannte vollkommen glatt anschliesst. — Genau in der gleichen Weise lassen sich nun die Koeffizienten A und B für die tieferen Drucke stufenweise berechnen. Das Ergebnis dieser Berechnungen ist in Tabelle 4 zusammengestellt:

Temperatur- Intervall ⁰ C	A in kg Joules	В	
350°-443°	164,1	7,85	
443°-500°	185,0	9,37	
500°-634°	188,2	9,58	
634°-783°	168,1	8,42	
7830-9500	134, ₃	6,75	
950°-1200°	120,0	6,14	

-	-		
'l'a	hc		A
10	UC	7110	7

Somit ist für das Thallium im Gebiet von 350° C bis 1200° C eine Dampfdruckformel¹) gewonnen, die sich in folgender Form schreiben lässt:

$$\log^{10} p = -52,23 \, rac{A}{T} + B \, .$$

Die Werte von A und B sind dabei für die verschiedenen Temperaturintervalle aus Tabelle 4 zu entnehmen.

Zum Schluss sei mir gestattet, meinem hochverehrten Lehrer, Herrn Prof. Dr. EDGAR MEYER für seine Anregung zu meinen Untersuchungen am Thallium, für sein stets förderndes Interesse am Fortgang der Arbeiten, sowie für die gütige Überlassung der Institutsmittel, meinen herzlichsten Dank auszusprechen. Herrn Priv.-Doz. Dr. M. SCHEIN bin ich für viele wertvolle Anregungen und für seine unermüdliche Hilfsbereitschaft zu tiefem Dank verpflichtet.

Zürich, Physikalisches Institut der Universität.

¹) Die hieraus berechneten Dampfdrucke liegen vollständig auf der experimentellen Kurve der Fig. 4.