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abstract. We compare the self-inductance formulae of Neumann, Weber, Maxwell and Graneau. To
his end we present exact and algebraic formulae for the self-inductance of solenoids, bi-dimensional
ings and coaxial cables. We show that these four formulas agree exactly with one another for
losed circuits.

3ACS number(s): 03.50.De, 41.20.Gz, 41.90.+e, 84.90.+a

L Introduction

Ne shall utilize in this work a powerful method of calculating inductances. With this method
me can obtain exact and algebraic results, instead of approximation formulae that are
presented is most situations. We have recently presented this method[l]. Although Sommerfeld
ìad presented a similar formula in his book ([2], p. 105), he dealt only with Neumann's

:xpression. In this work, and in the preceding one [1], we extend the method for the induc-
,ance formulae of Weber, Maxwell and Graneau. Let us first discuss briefly their historical

ippearance.

Consider a frame of reference S with origin O and two current elements l,dl, and Ijdt}
'e-mail: bueno@ifi.unicamp.br; homepage: http://www.ifi.unicamp.br/~bueno
2Also Collaborating Professor at the Department of Applied Mathematics. IMECC, State University of

Campinas. 13081-970 Campinas, SP, Brazil.
vmail: assis@ifi.unicamp.br; home page: http://www.ifi.unicamp.br/~assis
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located relative to S at r, and f3, respectively. In 1826 Ampère obtained the force exerted
by j on i, dpFj,, as ([3], Chapter 4):

d2F„ -^LI^ \2(dï, ¦ di,) - 3(f„ • dl)(f,} ¦ dì,)] (1.1)
47T rf, l s

where p„ Anx 10""7kgmC~2 is the vacuum permeability, r,3 \r, — r3\ and f,3 (r, — f3)/r%3.

When we integrate this expression over the two closed circuits C, and C3 the force can
be written as:

Po T j f f dl, x (dij x r,j) p„ j j ,jFCjC, ^IJ3f 6 - '7 ^ -^IJ3é 6 ¦-Zdi.-dt,. (1.2)
1 47T Jc, Jc, r23 Ait Jc, Jc, r2}

In 1845 F. Neumann introduced the coefficient of mutual inductance MN showing that
this force between two rigid closed circuits might be written as IJ3VMN, where

MN Hl r r dl^
Ait Jc, Jc, r,3

In 1846 W. Weber introduced a force law from which he could derive as special cases

Coulomb's force and Ampere's force (1.1), [3], Chapter 3. In 1848 he introduced a potential
energy d2Uw between two point charges dq, and dq3 from which he could derive his force as

^-a-H--â)< m
where e0 8.85 x 10~]2C2N~1m~2 is the permittivity of free space, c l/y/p0e„ 3 x
10877is"'1 and f,3 dr,3/dt.

Considering the neutral current elements as being composed of positive and negative
charges (dq-, —dq+l and dq^3 — dq+3) and adding the energy of interaction between
the positive and negative charges of one current element interacting with the positive and

negative charges of the other current element yields: dfUz^ 1,13d2M,', where

,,2Hw _ Po (f,3 ¦ d£,)(f,3 ¦ di3)
*3 Ait r.

d2Mw Pov.j ¦~.;v», <~2j (L5)
<tj

Here it was utilized I,d£, dq+,(v+, - iL,) and I3d£3 dq+3(v+3 — V-3), where va is the

velocity of the charge dqa relative to S, see [3], Sections 4.2 and 4.6.

Maxwell worked with an expression for M which was half Neumann's expression plus half
Weber's expression. Nowadays the simplest way to derive Maxwell's formula is to work with
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Darwin's lagrangian. Accordingly the energy of interaction between the charges dq, and dq3

noving with velocities v, and v3 is given by ([3], Section 6.8; [4], Section 12.7, pp. 593-595):

d2rj _ d^daJ 1

AitEc rt}
_ v,-Vj + (v, -r,3)(v3 -f,3)

2c2
(1.6)

Adding this expression for the positive and negative charge of one current element

infracting with the positive and negative charge of the other current element as we did for
Weber's law yields Maxwell's expression cPU,1? ItIjCpMjf, where

*<-£ï de, ¦ dl3 (r,3 ¦ dt,)(r,3 ¦ Mf)
(1.7)

More recently P. Graneau introduced a fourth formula to calculate the mutual energy
ir mutual inductance between two current elements from which he could derive directly
Ampere's force (1.1), namely ([5], p. 212):

"-<-£ z(r,3-dt,)(r,3-dt3) 2dl,-dl3 (1.8)

All these four expressions for d2M can be summarized in a single formula, namely:

d2M„ Ezl
Ait

1 + k\ de, -de3 [l-k\ (f,3 ¦ de,)(f,3 ¦ d£3)
(1.9)

where if k 1, —1,0 or — 5 we obtain, respectively, the formulas of Neumann, Weber,
Maxwell and Graneau.

It has been known for a long time that all these formulas agree with one another when

we calculate the mutual inductance between any two closed circuits. Only recently we have

been able to prove that the same is also valid for the self-inductance of a single closed circuit
of arbitrary form, [6]. In this work we illustrate this equivalence calculating exactly with the
four formulas presented above the self-inductance of a solenoid and bi-dimensional ring, as

this detailed comparison had never been done before.

For filiform circuits the integration of Eq. (1.9) yields infinite results. To avoid this we

generalized this expression for current flowing over the surface of bi-dimensional conductors,
namely ([1]):

47T U),U>„

i + k\ (e, ¦ e3) /i n {rtJ ¦ Q(r„ ¦ l,)
r>3

da,da3 (1.10)
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where e is the unit vector indicating the direction of the current flow, u> is the width (transverse

to £) of the conductor and da is an element of area in the conductor (see Figure 1 for
an example).

da

— /CO

CO

r..\
da

Figure 1: Bi-dimensional circuit illustrating the meaning of w, e and da.

2 Solenoids and Bi-Dimensional Rings

The self-inductance of the solenoid and of the ring will be calculated with the geometry
presented in Fig. 2. The cylinder has a length e and radius a, in which flows an uniform
surface poloidal current density K given by (I/f)cp, where ep is the unit vector in cylindrical
coordinates (p, cp, z). Here / is the total current flowing through the length £.

K

Figure 2: Cylinder with surface poloidal current density.

On replacing in Eq. (1.10): £, cp,, t3 ep3, da, adz,dep„ da3 adz3dcp3, u>, w} i,
r, ap, + z,z, f3 ap3 + z3z and the limits of integration yields

2 /-27T r2n i-l rt
LroUnäal ^J2jo #./o d^LdZ'LdZl
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x l(j + k\ cos(cp, - cp3)

2 [2a2(l - cos(cP, - ej)) + (z, - ^)2]1/2

<l - k\ a2sin2(cp, - tpf)
¦

2 [2a2(l - cos(<P, - <f>,)) + (z, -- z3)2fl2\

2p
3

)Q [i(K(9)-E(g))+p2(E(9)-l)" Ì

817

(2.1)

where p 2a/e, q p/(l + p2)1^2, K and E are, respectively, the complete elliptic integrals
if the first and second kinds[7], pp. 907-908. The first to obtain the self-inductance with
:his geometry in terms of elliptic integrals was Lorenz [8], p. 142. He worked only with
Neumann's formula. Here we obtained for the first time in the literature the same result
with the other formulae. This is a highly non trivial result.

The result in (2.1) is independent of k, so it has the same value for the formulae of
Neumann, Weber, Maxwell and Graneau. It is also exact and presented as an analytically
simple expression. As it was obtained without restrictions on e and a, it is valid either for
:he self-inductance of a long solenoid of length £ and radius o (e S> a), obtained by winding
N turns of wire on a cylindrical form, or for the self-inductance of a bi-dimensional ring
;k<o).

The expansions of Eq. (2.1) for the two limits cited above (e Z$> a and £ -C a) are,
respectively:

p0Tta
e

8 a la2
ì^ì + 2Ì2 (2.2)

Po« »(t) (2.3)

In most textbooks we find a result for the solenoid with TV turns valid for e » a (see, for
instance, [9], p. 442). The method utilized in the textbooks is given by L d$/dl\, where

$ is the magnetic flux over the circuit, and I\ is the current in each turn. This method is

only useful in highly symmetrical situations in which we can easily calculate $. The result

they obtain is given by

L textbooks —\rZ
polmdal MO™ (2.4)

Eq. (2.2) presents this result with corrections of higher orders.

The difference in the factor N2 is only a matter of definition. In the textbooks the

magnetic energy of this system is given by LI2/2, with L given by (2.4), as they concentrate
their analysis in the current I\ in each turn. If we concentrate on the total current / NIi
over the whole length e of the cylinder, the magnetic energy will be given by LI2/2, with L
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given by (2.2), so that the measurable self energy agrees with the previous value. However,
this last approach is preferable in some respects as it preserves the idea of L depending only
on the geometry of the system. In the solenoid when we change the number of turns N,
keeping Ix constant, the geometry (length e and radius a of the cylinder) is not modified, so
that L should remain the same. This happens with (2.2) but not with (2.4).

3 Coaxial Cable

In Fig. 3 we present the geometry for calculating the self-inductance of the coaxial cable.
There are two coaxial cylinders of radius a and b, and length i. The surface current density
K flows uniformly along the z ditection on the outer cylinder and —z on the inner one.

Km
K

Figure 3: Two concentrical cylinders making a coaxial cable, with opposite currents flowing
along the axial direction.

The self-inductance of the coaxial cable is given by: La + Lb + 2Mab. Here La (Lb) is the
self-inductance of the cylinder with radius a (b), and AIab is the mutual inductance between
the two cylinders. For La we substitute in (1.10): l, t3 z, da, adz,dcp„ da-, adz3dcp3,

u), ojj 2ita, r, ap, + z,z, r3 ap3 + z3z and the limits of integration to obtain:

ßc n-rt 1-27, ft rt

K
i

+

l+k
~^2~) [2a2(l - cos(& - ê3)) + (z, - z3)2\<"'

l-*\ (*, - z3?

2 J [2a2(l - oos(A - è3)) + (z, - *,)«]3/a
(3.1)
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For the coaxial cable we are just interested in the result of Eq. (3.1) for the limit e » a.

considering this approximation we obtain:

Analogously:

Poi
2n

pQi

ln
2(.

+ -3\ 2a, la2,,

L6« —2tt
,2A /fc-3

h,T + — ^(3-*) + ^(*-2)

(3.2)

(3.3)

For calculating the mutual inductance between the two cylinders of Fig. 3 we substitute
in (1.10): e, ~e3 z, da, adz,dep,, da3 bdz3dcp3, to, 27ra, u>3 2itb, r, ap, + z,z,
f3 bp3 + z3z and the limits of integration:

Mnh - Po

167T3

1 + fc

r2-ir r2irrZTT r£1t rr rt,

/ dcp, I dtp, I dz, j dz,
Jo Jo Jo Jo

2 J [a2 + b2 - 2abcos(o, - êf) + (z, - z,)2}1/2

1-fc (z, - z.

+

2 J [a2 + b2 - 2ab cos(<i1 - tj>,) + (z, - z,)2}3/2

Po_'

2tt

(k-2

2t\ fk-3\ (3-fc)aH ,„(2iy/ï\
2l

2n "a
A

<1 + r2^ (3.4)

where i y —1 is the imaginary unit, r b/a > 1 and we have considered e Z$> b > a.

Finally, as Lcoaxiai La + Lb + 2Mab, from (3.2) to (3.4) we obtain:

Pol
2tt lnr+-7(3-k) (l + r-lln e

rlE 2zyr
11-H

(3.5)

In [10], Vol. 2, pp. 24-1 to 24-3, we find the self-inductance of a coaxial cable analogous
to that of Fig. 3. It was obtained utilizing U LI2/2, where U is the magnetic energy
calculated through f f f B2dV/(2p0) (B being the magnitude of the magnetic field). The
result they obtained (supposing e S> b > a) was:

' textbooks Pol
2-rt

lnr. (3.6)

This result is exactly the zeroth approximation order of Eq. (3.5)
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4 Conclusions

In this work we have obtained analytically exact expression for the self-inductance of a
solenoid or a bi-dimensional ring, Fig. 2 and Eq. (2.1), using a powerful method of inductance
calculation [1]. With this method we have also calculated the self-inductance for the coaxial
cable, Fig. 3, in the limit of its length being much greater than its outer radius, Eq. (3.5).

For the cylinder with closed poloidal lines of current, Fig. 2, we have obtained an exact
equivalence between the formulae of Neumann, Weber, Maxwell and Graneau, see Eq. (2.1).
This exact equivalence is the main result of this paper.

On the other hand, for the cylinders with open axial lines of current, Fig. 3, we have not
obtained this equivalence as the final expression depends on k, see Eqs. (3.2) to (3.5). This
dependence on k will disappear if we consider closed lines of current (taking into account,
for instance, the radial currents at the lids in the two extremities of the coaxial cable of Fig.
3) [6]. This means that this dependence on k is not important for any experiment involving
only closed circuits as it will disappear and will not be detected by any experimental means.

For a general proof that the self inductance of a closed circuit of arbitrary form is the
same with all these expressions, see [6]. In this work we have been concerned in showing this
complete equivalence in specific examples which allowed exact integrations, as was the case

of the solenoid and bi-dimensional ring.
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