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Pull-backs and Product Tests

By Alexander Wilce

Department of Mathematics and Computer Science

Juniata College
Huntingdon, PA 16652

(28.X.1996)

Abstract. Let A and B be test spaces. We study the test space B(A, B) consisting of graphs
of bijections / : E —» F between tests E 6 A and F G B. Elements of B(A, B) may be

interpreted as products, in something like the sense of Piron, of tests in A and B.

Introduction
In a long series of papers (cf [2], [3], [4] and references therein), D. J. Foulis and the late
OH. Randall developed a straightforward but versatile generalized probability theory based

on what are now usually called test spaces. In brief: A test space A is simply a non-empty
collection of discrete sets E, F,.... each thought of as the outcome-set for some measurement

or test. When A contains only one test, one recovers (discrete) classical probability theory;
when it consists of the set of maximal orthonormal bases of a Hilbert space, one recovers

quantum probability theory.

This note concerns the following construction: If A and B are test spaces, let B(A, B)
denote the set of bijections / : E —* F between tests E 6 A and F G B. Identifying each

such a bijection with its graph. B(A, B) may be regarded as a test space in its own right.

We propose to interpret B(A.B) as the test space consisting of products, in something
close to the sense of Piron [8] and Aerts [1], of tests E € A and F G B. The construction
is also of interest on purely mathematical grounds. On the one hand, it preserves various
standard regularity conditions on A and B; on the other hand, as soon as A and B contain
tests with more than two outcomes, the structure of B(A, B) becomes quite rich, even if A
and B are classical. Moreover, for certain categories of "uniform" test spaces, B(A, B) is

effective as the direct product of A and B.
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In section 1. we discuss our construction in general terms. In section 2. we discuss the
stability of various regularity conditions on A and B under passage to B(A. B). In particular,
we show that if A and B are algebraic, then B(A.B) is algebraic as well. In section 3. we
characterize the logic of B(A. B) in the case that A and B are algebraic.

1 Questions, Products and Pull-Backs

As explained above, a test space1 is a non-empty set A of non-empty sets E,F,.... Elements
of A are called tests and elements of X := {JA are called outcomes. The intended
interpretation is that each test E G A is an exhaustive set of mutually exclusive outcomes, as,
for instance, the set of outcomes of some experiment. Borrowing terminology from classical

probability theory, we refer to any subset of any test E G A as an event of A. We write
£(.4) for the set of all events of A.

Test spaces provide the foundation for a very natural - and conceptually uncomplicated -

generalization of elementary probability theory having both classical measure-theoretic and
quantum-mechanical probability as special cases. It is worth a moment to give a sketch of
this. One defines a state on a test space A to be a map w : X —* [0,1] such that u>(x) > 0 for
each x G X and Hise^1) 1 for each test E G A. In other words, a state is a real-valued
function on the set of outcomes that restricts to a probability weight on each test.

Note that if A consists of but a single test - i.e., if A {E} — then a state is simply
a discrete probability distribution and we recover discrete classical probability theory. In
this case, we call A a classical test space. One can also consider the test space consisting
of all countable partitions of a measurable space by measurable sets; this may be called
a Kolmogorov test space. A quantum test space (or frame manual) is the set „4 of all
orthonormal bases of a Hilbert space H. The outcomes of A are the unit vectors of H.
Gleason's theorem [5] allows us to identify the states u) on A with density operators W on
H via the prescription u)(x) (Wx,x) (where x is a unit vector of H).

We may wish to attach numerical or other labels to the outcomes of a test. This motivates
the following terminology:

1.1 Definition: Given a set V, we define a V-valued question on a test space A to be a

bijection2 a : E —» V, where E is a test belonging to A. The question is posed by executing
the test E\ its answer is the value n(x) G V corresponding to the secured outcomes x G E.

Note that if V {yes, no}, this corresponds to the notion of a question as defined in the
work of Piron [8].

If a : E —> V and ß : F —» V are two V-valued questions, it is very natural to form their

'called also a manual or generalized sample space in the older literature
2the condition that a be bijective is benign: If not. replace V by the range of a and E, by the partition

{a"1(i)|xe V}.
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mil-hack — that is, the canonical bijection tv • ß : E xv F —» V where

ExvF { (x,y) € E x F \ a(x) ß(y) }.

ExvF —> F

ß

E — V

Vlore generally, given an arbitrary collection {rvjig/ of V-valued questions o^ : E, —> V, one
•an construct E { x G Yl,eiE, | a;(x,) atj(xj) Vi, j € I } and set njcv^x) YljOj for

iny j G /. (Indeed, by iterating this construction and taking a suitable direct limit, one

;an construct a test space that is in some sense closed under the formation of products of
[/-valued questions. We shall not pursue this here.)

We may interpret E x v F as a test, as follows: One of the tests E or F is selected. If the
outcome of the selected test is, say, x G E, then the outcome of E Xy F is the unique pair
x,y) G E Xi/ F having x as its first component. Similarly, if the secured outcome is y G F,
;he outcome of E x v F is the unique pair (x, y) with y as its second component. (Note that
his in effect erases any record of which of the tests E and F was in fact selected.) To pose

:.he question a ¦ ß, one executes E xv F. Upon securing, say, (x,y), one records the value
-y(x) ß(y) as answer.

As the reader familiar with [8] will have recognized, this construction is analogous to the
lotion of a product of yes-no questions as defined by Piron:

If {a,} is a family of questions, we denote by n,cv, the question defined in the
following manner: One measures an arbitrary one of the Qj and attributes to
u,«, the answer thus obtained. ([8], p. 20).

This notion makes equal sense for V-valued questions generally, and we believe our construc-
:ion adequately captures it in a precise way.

The balance of this paper is devoted to a discussion of the test space consisting of tests
E Xy F arising from the formation of products of V-valued questions. This turns out to
have a surprisingly rich structure. Before carrying on, it will be helpful to reformulate the
definition of E x v F in a manner not depending explicitly upon the questions a and ß. To
this end, notice that ExvF is simply the graph of the bijection ß~loa : E —> F. Conversely,
given any pair of tests E, F e A and any bijection / : E —» F, we may understand / as

a test corresponding to a product of V-valued questions defined on E and F, respectively.
(To execute the test represented by /, one chooses E or F, executes it. and records the pair
(x,/(x)) or (f~l(y),y) according as x G E or y G F is secured.)

1.2 Definition: For two sets E and F. we denote by B(E, F) the set of (graphs of) bijections

/ : E —? F. abbreviating B(E.E) to B(E). For any two test-spaces A. B. we denote by
B(A.B) the collection of sets B(E.F) with E e A and F e B. We abbreviate B(A.A) to
B(A).
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Of course. B(A. B) may be empty. On the other hand, as B(E, E) jt 0, B(A) is always
rather large. Indeed, if .4 is a totally finite test space having k operations each with n
outcomes. B(A) has k2n\ operations (each with n outcomes). There is a natural embedding
of A in B(A). namely, the diagonal map X —* X x X given by x i—> (x. x). This maps each

test E G A to the corresponding identity function Id e-

In general, the set of outcomes of B(A. B) will be smaller than X x Y (since, e.g.. there

may be outcomes in the former that belong only to tests with n outcomes, and outcomes of
the latter belonging only to fc-outcome tests with k ^ n). In any case, if (x.y) and (u. r)
belong to (JB(A, B), we have (x,y) A (u.v) => xAukyAv.

We now consider some examples.

1.3 Example: Suppose A is a collection of pair-wise disjoint two-element sets. Then

B(A) { {(x.u).(y.v)} \xLy,uAv),
likewise a collection of pairwise-disjoint two- element sets. Notice that B(A) is naturally
isomorphic to the set of pairs {({x. u}, {y.v})\x A y.u A v), which is the model for the
manual of product questions given by Foulis. Piron and Randall in [4].

Once we admit test spaces having operations with more than two outcomes, the structure
of B(A) becomes quite involved. This is nicely illustrated even by the simplest example:

1.4 Example: Consider the hypergraph A {E) consisting of a single three-outcome
experiment E {x. y. z}. Then B(A) B(E) is isomorphic to the three-by-three "window"
manual:

(x.x) (y.z) (z.y)
I I I

{y-y) (2.2') {*,*)
I I

(z.z) (x.y) (y,x)

As B(E) contains four-loops but no three-loops, its logic is an orthomodular poset. but not
an orthomodular lattice ([7]). The state-space of B(E) is in effect the convex set of doubly
stochastic 3x3 matrices.

1.5 Example: Consider a Hilbert space H (of any dimension, over any field) and let A
be the associated quantum test space, i.e., the set of all (un-ordered) orthonormal bases of
H. Every bijection / : E —> F between two bases E. F G A extends uniquely to a unitary-
operator on H. If U is such an operator, its graph is a closed subspace of H x H. and hence

a Hilbert space in its own right. An orthonormal basis for U is simply the graph of U\b for
some E e A. Hence. B(A) is just the union over all unitaries U. of the frame manuals of
the corresponding subspaces U < H x H. (It is interesting to note that the set of graphs of
unitaries on H constitutes a partial Hilbert space in the sense of Gudder [6].)

We now consider a restricted class of test spaces for which the construction A. B >—»

B(A, B) behaves in a particularly satisfactory maimer.
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1.6 Definition: Let « be any cardinal. A test space A is «-uniform iff every test E G A
las cardinality «.

If A and B are both «-uniform, then Z X x Y and. in this case, (x. y) _L (u, v) iff x A a
md y A b. The class of «-uniform test spaces is large enough to include both classical test

>paces A {E} with #(E) k and also the frame manual of any Hilbert space of dimension
-,;. Notice also that if A and B are both «-uniform, then so also is B(A.B). In fact, as we
shall now see, B(A, B) serves as the direct product of uniform test spaces, provided we define

iur morphisms correctly.

1.7 Definition: By a uniform map between two test spaces A and B with outcome-
sets X and Y. respectively, we mean a function cp : X —> Y such that cp(A) Ç B and

rj _L Xi => tp(x\) A cp(x2) for all x, G X. (In the language of [4]: a uniform map is a positive,
¦mtcemip-preserving interpretation.)

Note that if cp is a uniform map. then ep is locally bijective, in that for every E € A,
-p\E : E —> <j>(E) G B is a bijection.

1.8 Theorem: Let A and B be «-uniform. Then B(A. B) is the direct product ofA and B
in the category of uniform test spaces and uniform maps.

Proof: Let A and B be «-uniform test spaces with \JA X and \JB Y. Note that
B(A.B) is again «-uniform, and that (JB(A.B) X xY. Let it\ and it2 be the projections
if X x Y onto X and Y, respectively. If (x, y) A (u, v) G U B(A, B), then x A y and u A v,
30 Tt,(x.y) A it,(u,v) for t 1,2. If / G B(A.B). then 7r,(/) dom(/) G A: similarly.
K-i(f) — ran (/) G #. Thus, both projections are uniform maps. It now suffices to show that
if C is a K-uniform test space with \JC Z. and cp : Z —> X and tp : Z —? Y are uniform
maps, then cp x tp : Z —» (X x Y) is an uniform map. If z A w, then 0(z) J. tp(w) and
</?(z) -L ip(w); hence, (cp x ip)(z) A (cp x ip)(w). Now suppose E G C. We must show that
(cp x tp)(E) belongs to B(A. B). Because cp\E is a bijection, we have

(ci x iP)(E) { (cP(z).xP(z)) \zeE} { (x,il,(è-l(x)) | x G <P(E) }.

That is, (cp x ip)(E) v ° (<A|e)_1 : 0(£) —» '/'(•r7)- Since V'If is bijective. this last belongs
to B(A,B).

2 The Structure of B(A, B)

In this section, we establish (Theorems 2.2, 2.3 and 2.5) that passage from A and B to
B(A, B) preserves each of three standard conditions often imposed on test spaces: That
of being algebraic, that of being coherent (though here we need an additional uniformity
assumption), and that of being regular.

Throughout this section, let A and B be test spaces with outcome-sets X and Y,
respectively. As noted above, the outcome-set of B(A, B) is in general a proper (possibly
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empty) subset of Z Ç X x Y. An event for B(A. B) is any subset of the graph of a bijection

/ : E —> F with E G A and F G B. Evidently, any such subset is the graph of a bijection
between two events A Ç E and B Ç F. Thus,

S(B(A,B)) ç B(£(A),£(B)).

Again, the inclusion is generally proper - indeed, it is easy to see we have identity iff A and
B are n-uniform for some finite n.

Events A and B of a test space A are said to be complementary - the short-hand is Ac B
- iff A fl B 0 and A U B G A. lì A and B are both complementary to a common third
event, one says that A and B are perspective, writing A ~ B. A test space is a algebraic
(in the older literature, a manuai) iff, given any events A, B and C, A ~ B and BcC imply
AcC.

2.1 Lemma: Let / : A -+ A' and g : B -* B' be bijections belonging to £(B(A, B)). Then
(1) fog iff Ac B andA'cB'.
(2) f ~ g iff A~ B and A1 ~ B'.

Proof: Note that (2) is an immediate consequence of (1). To establish (1), suppose Ac B
and A'cB'. Then / n g 0 and / U g G B(A U B. A' U B') Ç B(A.B); thus. fog.
Conversely, if / eg, then / n g 0 and / U t/ G B(E, F) for some BgÌ,F£B. But then
A U B E G .4 and. as / U g is again a bijection. we must have A fl B 0 - whence. /1 c B.
Also. A'UB'= /(A) U ,ç(B) F e B. and. again because / U g is a bijection. A' n B' 0.

so A'cB'.

2.2 Theorem: IfA and B are algebraic, then B(A. B) is likewise algebraic. If the test space
B(A) is algebraic, then A is algebraic.

Proof: Suppose that / : A -> A', g : B -> B' in £(£(.4, ß)) with / - g and gch:C -* C.
By Lemma 1. A ~ BcC and A' ~ B'cC. If A and ß are algebraic, it follows that
/IcC and A'cC". But then fchhy Lemma 2.1. Thus, B(A,ß) is algebraic, if B(A) is

algebraic and AcCcBcD in £(A), then Id A ~ Id s C Ido, hence, Id 4 C Idß, whence,
Id 4 U Id o Id aud belongs to B(A) - whence. Ac D. and it follows that A is algebraic.

A test space A is coherent [3, 4] iff for all events A and B of A. A C B1 => A A B.

2.3 Theorem: Let A and B be coherent and n-uniform. Then B(A. B) is also coherent.

Proof: Suppose f,g G £(B(A,ß)) with / : A -> A' and g : B -> B'. Suppose / Ç g1.
Then for every x (ZZ A. (x,f(x)) A (y,g(y)) for every y G B; hence, x G B-1 and (since 9 is

surjective), /(x) G B' Thus, A Ç B1 and (since / is surjective) A' Ç B' Since A and ß
are coherent, A X B and A' _L B'. Thus, /nff 0and/U<;G B(£(A)). Since A and B
are n-uniform. f -L g. Thus, B(A,B) is coherent.

A support of a test space A is a set S Ç X [JA such that for all E. F E A,

Ens cz F^> Fnsc e.
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The usual heuristic is that S is the set of outcomes that are possible in some state of affairs.

3y way of example, if ui is a (probabilistic) state on A, then Su {x G X\u>(x) > 0}
s a support of A. Notice that A" is a support, since test spaces are irredundant. It is

straight-forward that the union of any collection of supports is a support; hence, the set of
ill supports of A is a complete lattice under set inclusion. More details and motivation will
ie found in [4].

Let U B(A, B) Z Ç X x Y. Suppose S and T are supports of A. Then we define

SCAT := [X x T U S x Y] n Z.

2.4 Lemma: If S and T are supports of A and B, respectively, then S 0T is a support of
B(A,B).

Proof: Suppose / : E —» E' and g : F —* F' are operations in ß(A, ß), and that

/ fi (S 0 T) {(x. /(x))|x G E n S or /(x) G E' n T} C g.

Then E C\ S Ç F dorn (g) and E' C\T Ç F' ran (g), whence, as S and T are supports,
E n S F n S and E' D T F' fi T. Moreover, f\BnS g\Fns and f'^E'nr g'^F'rœ-
Hence, g n (S 0 T) f n (S (•) T). Thus, S 0 T is a support of B(A).

Remark: If p is a state on A. then pij is a state on B(A, ß) (provided that the latter
test space exists). Hence, given a state p on A and a state v on ß, we may form a state

pQv : -(p OTTi + V O 7T2)

on B(A. ß). It is easily checked that S^0^ 5M 0 S„.

A test space A is regular iff, for every x G X U A, X \ x1 is a support of A [4]. We
have:

2.5 Theorem: If A and B are regular, so is B(A.B).

Proof: For a typical outcome (x, y) G Z, we have

Z\(x.y)1 [(X\x1)xY U Xx(Y\y±)}nY (X\x±)Q(X\y1)-

Since A and ß are regular, this last is a support by Lemma 3. Hence. B(A, B) is regular.

Let us adopt the following notation: If S is a support of a test-space A and a : E —» V
is a V-valued observable, then we write {rv G A} for the collection of all supports of A such

that ct(S n E) Ç A. That is: {a G .4} is the set of all supports making the event a_1(A)
certain to occur if the test E is made.

2.6 Lemma: Let a and ß be V-valued questions and A Ç V. Then

{a-ßeA} {aeA}3{ß£ A}.
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Proof: Suppose a : E -* V and ß : F -> V. Let / /T'a {(x, y) e E x F\a(x) ß(y)}.
Then

(S © T) n / {(x, y)|a(x) ß(y) kx G B n S or j/ G F n T}.
Hence, 5 0 T n / Ç (q-/3)-](A) iff q(SHB) ç Aand/3(TnF) Ç A.

As a special case of the foregoing, note that a ¦ ß is certain to take a value in A Ç V in
a state of affairs represented by S O S iff both a and /3 are certain to lie in A in the state of
affairs represented by S.

3 The Logic of B(A, B)

If A is algebraic, the relation ~ of perspectivity is an equivalence relation on the set of
events of A. The set of equivalence classes of events is the logic of A, here denoted by
L(A). The equivalence class p(A) := {B G £(A)|B ~ A} of an event A is called the
operational proposition corresponding to A. As is well-known, L(A) can be organized into
an orthoalgebra via the partial binary operation p(A) ffip(B) := p(A U B), (well)-defined
for pairs of events A, B with AAB. (For details, see [2] and [3], or [4].)

If A and ß are algebraic, then B(A,B) is also algebraic, by Theorem 2.2. In this section,
we characterize n(B(A, ß)) in terms of n(A) and n(ß) for a large class of algebraic test
spaces.

3.1 Definition: Events A G S (A) and B G £(ß) are comparable iff there exists a bijection
/G£(B(A,ß)) with/: A-+B.

Note that if A is «-uniform, then any two proper events A and B of a given cardinality
are comparable.

Let A and B be comparable events. By Lemma 2.1. the proposition p(f) corresponding
to any (hence, all) bijections f : A ¦—> B consists exactly of the union of the sets B(C, D)
of bijections between C and D with C ~ A and D ~ B. Thus, the proposition p(f) is

completely determined by the pair p(A) and p(B). Let us write p(A, B) for this proposition.

3.2 Lemma: Let A, B G £(A) and CD e £(ß) with A and C comparable and B and L>

comparable. Ifp(A, B) A p(C, D), then A AC, B A D, AUC and B U C are comparable,
and p(A, B) © p(C, D) p(A U C, B U £>).

Proof: If p( A, B) A p(C, D) then for every bijection f : A ^> B and every bijection g : C —>

D, /n2 0and/Us:AuC-» Bu D belongs to £(B(A)) -whence, A1C. B X £>, and
p(A UC,BuD)=p(fUg) p(f) © p(ff) p(A, B) © p(C, D).

Note that A1CJ1D need not imply that p(A, B) X p(B, D) unless A is uniform.
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If A is uniform, then any two perspective events have the same cardinality. Hence, we

nay define a map p : U(A) —> « (where « is the cardinality of a test in A) by

p(p(A)) #(A).

tVe call p(p) the rank of the proposition p G n(A). Note also that if p X q then p(p ffi q)

i(p) + p(q) for all p. q G n(A). The proof of the following is straightforward:

J.3 Theorem: Let A and ß be n-uniform test spaces with logics L and M, respectively.
Let

L x„ M { (p,q) G L x A/ | p(p) p(q) }.

For all (p, q),(u,v) G L xp AI, write (p, q) X (u, v) iff p X u and q X v, and, if this is the

:ase, set (p, q) ffi (u, v) := (p ffi q, u ffi v). Then (L xp Al, X, ffi) is an orthoalgebra, and there

s a canonical isomejrphism L xp M —» n(B(A, B)) given by p(A, B) t—» (p(/l), p(B)).

3.4 Definition: Call an algebraic test space A saturated iff for every A G £(A) there is

»me x^ G X [j A with {xA} ~ A.

By way of example, if A is any manual, the manual A* of partitions of A-operations by
4-events is saturated, with {U A} ~ A for any subset A of such a partition.

3.5 Lemma: Let A and B be saturated. Then every bijection between proper events of A
mei B can be extended to an element of B(A. B).

r'roof: If A and B are proper events of the same cardinality with A Ç F G A and B Ç F
n B. then there exist outcomes x and y with {x} ~ F \ A and {y} ~ F \ A. Since A and
S are algebraic, {x} U A and {y} U B are tests in A and ß. respectively, to which we may
"xtend any given bijection / : A —> B by setting f(x) y.

3.6 Definition: Let L and A/ be two orthoalgebras. Let

L* M := { (p,q) G L x A/ | p 0 <=><? 0 & p 1 <=> g 1.}.

For (p, </) and (r. s) in L * AI. set (p, <?) X (r. s) iff p X r, g X s, and (p ffi q, r ffi s) G L* M.
If this is the case, define (p. q) © (r, s) := (p ffi r, q ffi s).

It is easily verified that (L * M, X, ffi, (1,1)) is an orthoalgebra in which the orthocom-
plement of an element (p, q) is given by (p, q)' (p'.q1).

3.7 Proposition: Let Ai and A2 be saturated algebraic test spaces. Then

L(B(A1.A2))~L(Al)*L(A2).

Proof: Let L L(B(A\,A2)) and L, L(A,). i 1,2. The two coordinate projections it, :

B(Ai, A2) —> A, introduced in the proof of Theorem 1.7 lift to orthoalgebra homomorphisms
L —» L,. Since Ai and A2 are saturated, these are surjections, by Lemma 3.5 above. Hence,

we have a natural map cp : L —> L\ x L2 given by cp(p) (it\(p), it2(p)) for all p G L. If
0(p) (l,g) G Li x L2, then p p(E,B) for some F G Ai and some event B E A2
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with q p(B). In order for A and B to be comparable, there must exist a bijection
/ G B(AUA2) with B f(A). But then B G A2. whence, q 1. Similarly, if p 0.

q 0 in order to preserve comparability. On the other hand, if p G L(Ai). q G L(A2). and
neither p nor g is 0 or 1. then, since each manual is saturated, we may choose outcomes
x E X-, UAi and y E X2 \J A2 with p p(x) and g p(y). Likewise, p' p(x') and
q' p(y') for some outcomes x' G X\ and y' G X2. Thus {x,x'} and {y, y') are two-element
tests in Ai and A2, respectively, whence. / {(x. y).(x',y')} belongs to B(Ai. A2). Thus,
7r(p(/)) ft(p(x,y)) — ÌP,q) is defined. The image of cp is therefore precisely Li * L2. It
remains to see that cp is an faithful (hence, injective) orthoalgebra homomorphism. But this
follows from Lemma 3.2.

A partition of unity in an orthoalgebra L is a finite set F {pi, ...,pn} Q L\ {0} such

that pi ffi • ¦ • ffipn 1. The collection A/ of all such partitions of unity is easily seen to be

a saturated manual, the logic of which is canonically isomorphic to L.

3.8 Corollary: For any orthoalgebras L and AI, L * M ~ L(B(Al- Am))-

Call two test spaces A and B uniformly compatible iff every bijection between events of A
and ß extends to an element of B(A, B). (By way of example: Any two saturated algebraic
test spaces, or any two uniform test spaces). The following generalization of Theorem 3.7 is

straightforward. We omit the proof.

3.9 Proposition: Let A and B be uniformly compatible test spaces. There is a canonical
embedding of L(B(A,B)) into L(A) * L(B) given by

(p(A.B))^(p(A),p(B))
for compatible events A and B.
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