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Abstract. For general non-classical systems, we study the different classical representations that
fulfill the specific context dependence imposed by the hidden measurement system formalism
introduced in [6]. We show that the collection of non-equivalent representations has a poset structure.
We also show that in general, there exists no 'smallest' representation, since this poset is not a

semi-lattice. Then we study the possible representations of quantum-like measurement systems.
For example, we show that there exists a classical representation of finite dimensional quantum
mechanics with N as a set of states for the measurement context, and we build an explicit example
of such a representation.

1 Introduction

For a detailed introduction on the general subject we refer to [6], where we have proved that
every 'measurement system' (=m.s.) has a representation as a 'hidden measurement system'
(=h.m.s.). i.e.. every physical entity that is defined by a collection of states and a collection
of measurements, such that for a defined initial state we have a probability measure that
defines the relative occurrence of the outcomes, there exist a classical representation with a

very specific kind of context dependence. Thus, also for quantum entities there exist such

a classical representation. An obvious question is: which different classical representations
exist for a given quantum entity. In this paper we build a classification of all possible
h.m.s.-representations, for every given quantum m.s. A lot of preparing work has already
be done in [6], in section 4 and in the appendix. Therefore, we will regularly refer to the
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theorems and definitions of that paper. For the identification of the h.m.s.-representations
for quantum m.s. we proceed in three steps. First we show that the collection of possible
h.m.s.-representations has a poset structure, and this will allow us to characterize the possible
h.m.s.-representations for a given m.s. by its smallest h.m.s.-representations. Then we show

that in general, there exists no 'preferred' smallest h.m.s.-representation, and this forces us

to consider the quantum m.s. case by case. After these three steps we present two examples
of explicit h.m.s.-representations which illustrate the results that we have obtained in this

paper. As in [6], for a general definition of the basic mathematical objects we refer to [3]

and [9]. As in [6], we remark that the results presented in this paper where made known in
[5].

2 An additional assumption

In this paper we make a from a physical point of view very natural assumption, namely we
only consider h.m.s. for which there exists a probability measure p G MX such that this
h.m.s. belongs to HMS(/i), i.e., for every measurement of this h.m.s. we consider the same
set of states of the measurement context and the same relative frequency of occurrence of
these states. The motive of this additional assumption is essentially 'simplicity', since a

general treatment (which is indeed possible) would not lead to any new conceptual insights
or mathematical insights, but would only make things a lot more complicated. Nonetheless,
in the light of section 3.3 of [6] this assumption is also very natural since most m.s. that we
consider in practice have a sufficient additional structure to impose a representation for all

measurements, starting with a representation for one measurement, and all of the with the

same probability measure that determines the relative frequency of occurrence of the states
of the measurement context. We also remark that this assumption does not influence the
results of [6], and in particular does the existence theorem in section 4.3 remain valid. For
this subset of HMS that we consider in this paper we introduce the following notation:

HMS(MX) {£,£|£,£ G HMS(/i),/i G MX} (2.1)

3 A poset characteristic for possible representations

In section 4.1 in [6] we have defined a set M, consisting of classes of isomorphic measure

spaces. We also proved that for every separable measure space, there exists one and only
one class in M to which this measure space belongs (see Lemma 1 of [6]). In Definition 8 of
[6] we introduced a binary relation < on M. We have the following lemma:

Lemma 1 M. < is a poset.

Proof: The proof that < is reflexive and transitive is straightforward, so we only have
to verify whether it's anti-symmetrical. Let M < M' and M' < A4, and B,p E M,
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B', p! e M, and F : ß -+ B' and F' : B' ^ B fulfilling Definition 8 in [6]. First we prove that,
given the above stated assumptions (the existence of F and F'), there are two possibilities:
A4, A4' G Mx U MN and A4, A4' G Mlo. Suppose that M E Mm.a and A4' G Mn,a. with
a yt a'. Consider the sets F0 (0,/) G B, and B'0 (0,/') G B' (I and T are the greatest
elements of different Borei algebras). We have F(B0) ^ F0 since p'(F(B0)) p(B0) a and
p'(B'0) =a' fia. Thus, F(Bc0)nB'0 ^ 0 or F(BC0) C F0C. Suppose F(F^)nF0 / 0. According
to Lemma 3 in [6], B{. pi is a measure space (we also use the notations of Lemma 3 in [6]), and,
following Lemma 2 in [6] we find B/, pi Br, p. As a consequence, Br B; {F(F)|F G Bf}
(due to Proposition 3 in [6], {F(F)|F G Bf} is a Borei subalgebra of B', isomorphic with
Bi). But, since F(Fq) n F0 / 0. this situation contradicts with the fact that Br cannot be
embedded in a one-to-one way in B^j. If F(Fq) C B'0c we can make the same reasoning by
exchanging the roles of B,p and B',p'. In an analogous way one proves that the following
two situations: A4 G Ma, A4' G MxUMn and A4 G M\{A4B}, A4' Mr are not possible.
Suppose that M,M' E M\. Let B B' Bn, p pm and p' pmi. If i,j E N and i / j
then F({i}) n F({j}) F({z} n {j}) F(0) 0. Let n_ be the smallest integer such that
F({n^}) is not a singleton, and let n+ be the largest integer such that m(n+) m(n_). Since

(m(i))i is a decreasing sequence, (pm'(F({i})))i (pm({i}))t (m(i)), is also a decreasing
sequence. Since we have that:

1) (t'm'{F({i})))x is a decreasing sequence

2) (Pm'(i))i — (m'(T))i is a decreasing sequence

3) V? G N, 3) G N such that i E F({j})
4) Mi E X„__! : F({z'}) is a singleton

we have Ujl"-- F({j}) X„__i. Moreover, since for all i G F({n_}) : pm<(F({n_})\{i}) >
0, we can conclude with the following image:

MiEU^i-'FdJ}) : m'(i) pm,({i}) pm,(F({i})) m(i)>m(n_)
MiEF({n.}) : m'(i) pm,({i}) < pm.(F({n.})) m(n_)

V7GU^=:+. + 1F({j}) : m'(i)<m(n_)
Mi $ U^ï+F({]}) : m'(i)<m(n_)

In the case that n_ + 1 < j < n+, i E F({j}) and m'(z') m(n_), we have {i} F({j}).
As a consequence, there are at most n+ — 1 integers i such that m'(i) > m(n+) m(n_),
and thus we have m(n+) > m'(n+). All this results in the following equations:

Vt G Xn+_i : m(i) > m'(i).m(n+) > m'(n+) (3.1)

Analogously, with the same reasoning on F', we find that there exists an integer n', such

that:
Vz G Xn^_! : m(i) < m'(i),m(n'+) < m'(n'+) (3.2)

The contradiction between eq.3.1 and eq.3.2 indicates that there exist no such integers n+
and n'+. As a consequence there exist no integers n_ and n'_, and thus, F and F' are onto,
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i.e.. they are isomorphisms of measure spaces (see Proposition 3 in [6]). As a consequence,
B.p B'.p', and thus we have M A4'. The case A4. A4' G Mx proceeds along the same
lines. It is also clear that the case M E Mx and A4' G Mn is not possible. For the case

A4, A4' G Mi,„ we already know from the foregoing part of this proof that F(B0) B'0.

Along the same lines as for the case A4, A4' G Mx U Mn, and by applying Lemma 3 in [6],
we find that A4 A4'. •

Moreover, M, < has a greatest element, namely Mr (see Lemma 6 in [6]). Thus, M, < is

a poset with a greatest element. As we will show now, this poset characterizes the possible
different candidates for h.m.s.-representations. First we introduce 'inclusion up to
mathematical equivalence' based on the definition of 'belonging up to mathematical equivalence'
(see [6]). If £,£ G N implies that E,£<iN we write:

N^N' (3.3)

If both NdN' and N'dN are valid, we write:

N~N' (3.4)

One easily sees that the condition 'E.£ G N implies that £,£^N" is equivalent with
'£,£ &N implies that E,£jLN". Thus, if N ä N'. then N and N' are equivalent sets

of representations, i.e., if a measure space has a representation £,£ in N, then it has a

representation £'.£' in N' such that £,£ ~ £',£', and vice versa. As we saw in section 4.2

in [6], with every p G MX we can relate Mß G M. For every A4 G M we can introduce the
collection of all h.m.s. in HMS(MX) which are such that Mß A4:

HMS(A4) U^^HMSf^)

This allows us to introduce the following collection of classes of h.m.s.:

• Mhms {HMS(A4)|A4 G M}

The importance if this collection of classes of h.m.s. follows from the following two theorems:

Theorem 1 Mp,p' E MX : A4M Mß, => HMS(/x) ~ HMS(//).

Proof: If E.£ fc HMS(/z), then E, £ &HMS(/z). As a consequence of Theorem 1 in [6] we
have AM(E,£) < Mß Mß>, and thus, again due to Theorem 1 in [6], £,£ ^HMS(fi').
This results in HMS(/i)JlHMS(/i'). Analogously, we find HMS(p') ^HMS(p), and thus

HMS(/0 ~ HMS(ti'). •

Thus, for a given m.s., if p and p! are such that Mß Mß', then HMS(/i) and HMS(//)
are equivalent collections of h.m.s.-representations. As a consequence, for all A4 G M,
HMS(A4) can be considered as a collection of equivalent h.m.s.-representations. The
different collections of equivalent h.m.s.-representations are ordered in the following way.
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Theorem 2 M. < and Mhms- fL are isomorphic posets.

Proof: We have to prove that HMS(A4) üHMS(M') -^ A4 < A4'.

i) A4 < A4' => HMS(A4)îlHMS(A4'): Since £,£ fc HMS(A4) implies E,££HMS(A4),
there exists p fc MX such that £,£ £,HMS(/i). As a consequence of Theorem 1 in [6] we
have AM(£,£) < Mß A4. If A4 < A4' then AM(£.£) < A4' A4,,, for every p! such
that A4M. A4'. Thus, again due to Theorem 1 in [6] we have S. £ £HMS(;/) ^HMS(A4'),
and thus HMS(A4)JLHMS(A4').

ii)HMS(A4)c^HMS(A4') => A4 < A4': If HMS(A4) £,HMS(A4'), then £, £ fc HMS(A4)
implies E.£^HMS(A4'). and thus, following Theorem 1 in [6], £,£ G HMS(A4) implies
AM(£,£) < A4'. Now we'll prove that there exists E,£ G HMS(A4) such that A4
AM(E.£). Let pA besuch that A4„ A4. We'll define a measure system E,£ G HMS(/iA).
For all e G £. let Oe A. Be BA. and define the set of strictly classical observables

{fiyje E £.\ E A} such that V;) fc E.e fc £.V\ fc A : <fi\,Ap) A. Thus. Mp fc E. e fc

£.MB E BA : AA^e F. and thus, as a consequence of Proposition 2 in [6]. Vp fc E.e G

£.MB E Be : PP,(B) pA(AABc) pA(B). Since V77 G E.e fc £ : Pp,e pA. we have
Mp G E.e G £ : A4p,c Mß. and thus AM(S.£) {A4}. All this leads us to A4 < A4'. •

4 H.m.s.-representations for a given m.s.

In the previous subsection, we have 'projected' the partial order structure of M on Mhms-
This allows us to translate the explicit structure of M in terms of 'representation of a m.s.
as h.m.s." In fact, the proof of the theorem on the existence of h.m.s.-representations (see

[6]) was a first example of this approach. In this subsection, we'll translate some more
structural properties of M to Mhms- Let us introduce the following notations referring to
the collection of all h.m.s.-representations in HMS(MX). for a given E.£ G MS:

• HMS(E.£) {E'.£' G HMS(MX)|E,£ ~ £',£'}

Mhms(E.£) {HMS(A4) G MHMs|E. £ ^HMS(A4)}

One can always enlarge the set of possible h.m.s.-representations if one knows the small'
HMS(A4) G Mhms(E,£), where we consider a h.m.s.-representation smaller than an other
one if their respective measure spaces related to (BA,pA) have this same ordering (in the
sense of Definition 8 in [6]). This fact is a straightforward consequence of Theorem 1 in [6],
and in particular of the presence of an order condition in the righthandside of eq.15.
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4.1 General considerations

There exists a smallest collection of mathematical equivalent representations for £,£ (i.e.,
a smallest element for the relation ÎL in the collection Mhms(E,£)) if there exists A4 G M
such that:

• E.££HMS(A4)

• VA4' G M with S.££HMS(A4'): HMS(A4) Q,HMS(A4')

In the following theorem we prove that in general, there exists no smallest h.m.s.-representation.
First we prove a lemma.

Lemma 2 For all N Ç M, there exists £,£ G MS such that:

AM(E,£) N (4.1)

Proof: Clearly, for all M E N, there exists pm G MX such that the related measure
space is in A4. Take N as set of states and £ as set of measurements, with for all e G £,
Be Br. For all A4 G N and all e G £, define the outcome probability Pm.c '¦ $m —+ [0,1]
such that Fvi.e f-M- Thus, as the class in M related to Pm.c we find A4.vi.e A4, and
thus AM(N,£) =N. •

We remark that this proof can also be applied to show that for all N Ç M, there exists
E.e G MS such that AM(E.e) N, i.e., it suffices to consider one measurement systems
to obtain all NÇM.

Lemma 3 M, < t's not a semi-lattice.

Proof: We have to give a counterexample, i.e., a set N C M which has no smallest upper
bound. Consider the set N {A4m\A4m2} where m,(T) §, m,(2) §, m2(l) f
and m2(2) \. We have that both A4m3 and A4m<, defined by m3(l) §, m3(2) \,
?n3(3) yj. 7774(1) |. 77i4(2) yj and t774(3) j, are upper bounds of N, but one
easily verifies that AI™3 -£ M™* and A4™4 ^ M™3, and thus they cannot be smallest upper
bounds. If A4 would be a smallest upper bound then we should have M™1 < M. A4™2 < A4,
A4 < M"313 and A4 < A4m4. But, we also have A42"" / A4. A4™2 / A4, A4 jt M™3 and
A4 fi A43'M. Due to Lemma 1 in [6] this is not possible since there does not exist an element
of M that fulfills these conditions. •

Theorem 3 There exist E.£ G MS such that Mhms(E,£) contains no smallest element for
the relation £L i.e., the collection HMS(E,£) contains no 'smallest' h.m.s.-representation.
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Proof: Following Lemma 3, M is not a semi-lattice, and as a consequence, there exists
N C M which contains no smallest element. By Lemma 2 we know that VN Ç M there
exists E,£ G MS such that AM(E,£) N. Thus, there exists no smallest A4 G M such that
AM(E,£) < A4, i.e., there exists no smallest A4 G M such that E, £ üHMS(A4) (see
Theorem 1 in [6]). Thus, as a consequence of Theorem 2. there exists no smallest HMS(A4) G

Mhms suchthat E,£ <lHMS(A4). If there exist a smallest E'.£' G HMS(E.£). then there
exists HMS(A4') G MHMs(E,£) with £',£' G HMS(A4'). By Theorem 2 we know that
HMS(A4')^HMS(A4") for all HMS(A4") G MHMs(E,£). This contradicts with the first
part of this proof. •

As a consequence of this theorem, we cannot make general statements concerning a smallest
h.m.s.-representation for a general m.s. Thus, we have to look for specific m.s. that are
such that we can make some explicit statements concerning the existence (or nonexistence)
of a smallest h.m.s.-representation. In the next section we will identify the collection of all
h.m.s.-representations of the m.s. that are encountered in quantum mechanics.

4.2 H.m.s-representations for quantum-like m.s.

In this subsection, we will study the possible h.m.s.-representations for some specific classes

of m.s. that allow some explicit statements concerning the existence (or nonexistence) of a
smallest h.m.s.-representation. We will show that these classes of m.s. about which we can
make some statements are of major importance for the case of quantum mechanics, since

they contain all quantum m.s. In fact, the statements that we are going to prove in this
section suffices to identify all possible h.m.s.-representations for all quantum m.s. We have
the following expressions that characterize certain quantum-like m.s.:

• If we consider an entity (e.g. a quantum entity) with only measurements with 77

outcomes, we clearly have AM(E. £) Ç M„.

• If we consider a quantum entity with measurements with a finite number of outcomes
we have Mx AM(E,£), as a consequence of the definition of a quantum state.

• If we consider a quantum entity with measurements with an at most countable number
of outcomes we have Mn AM(£.£).

As we will show at the end of this section, these expressions characterize the quantum m.s.
in a sufficient way to identify all their h.m.s.-representations. We start with a theorem which
states that if Mn Ç AM(E.£), then this m.s. has no smaller h.m.s.-representation than the
ones contained in HMS([0,1]), i.e., there exists a smallest h.m.s.-representation, but it is

one that needs the 'maximal' number of strictly classical observables, namely a continuous
set.

Lemma 4 Mx has a smallest upper bound in M, namely Mr.
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Proof: We only have to prove that there exists no smaller upper bound for Mx in M than

Mr. the greatest element of M itself. Suppose that A4 is such a smaller upper bound. If
M / M;, and B.p E A4, there exists a set F G B such that for all F' G B, F' Ç F implies
B' B or F' 0 (see Lemma 2 in [6]). Let p(B) a. Define N as the smallest integer
such that .V > 1/a. Consider A4™, where Vz G X,v : 777(7) l/N. Since Mx < A4 we
have A4™ < A4. Thus, there exists a cr-morphism F : Bn —* B fulfilling Definition 8 in [6],

Clearly, for all i fc X.v : F n F({i}) 0 or F n F({z}) F. Since for all i E XN we have

F({i}) 6 B and U,eX(F n F({?})) F n (U,eNF({z})) B n I B. there exists z fc XAr

such that FnF({z}) F, i.e., F Ç F({?}), and thus, p(F({i})) > a. This contradicts with
p(F({i})) m(i) l/N < a.

Lemma 5 Mn has a smallest upper bound in M, namely Mr.

Proof: If we consider A4JJ, where for all 1 in X,v_] : 777(7) l/N, and for all integers
1 > N : 777(7) /V_1.2 (777 defines a probability measure because /TJ;eNm(0 (N —

1 1 /A') + E,e\('2~'/N) (N - 1 + E,£n2_,)/ìV 1), we can prove this proposition along
the same lines as the proof of Lemma 4. •

Theorem 4 Lei E,£ fc MS. We have:

Mn C AM(E.£) => HMS(E.£)^HMS([0.1]) (4.2)

Proof: Following Theorem 3 in [6] we know that HMS([0,1]) HMS(A4H) G MHms(S,£).
If there exists A4 fc M such that A4 < Mr and HMS(A4) £ Mhms(E, £), then, as a

consequence of Theorem 1 in [6], AM(E, £) < A4. Thus, Mn < A4. This contradicts with Lemma
5 which states that Mr is the supremum of Mx. and thus, there exist no smaller upper
bounds. As a consequence, MHms(E.£) {HMS(A1S)}, and HMS(E,£) £,HMS([0,1]).

We proceed with a theorem which states that the smallest h.m.s.-representations in the case
that Mx Ç AM(E.£) is also contained in HMS([0.1]).

Theorem 5 Let E,£ fc MS. We have:

MxÇ AM(E,£) =>HMS(E,£)kHMS([0,l]) (4.3)

Proof: The proof of this theorem is the same as the proof of Theorem 4, if we replace
Lemma 5 by Lemma 4'. •

In the last two theorems of this section we identify measurement systems that do have
smaller h.m.s.-representations than the ones contained in HMS([0,1]), but for which there
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exists no smallest ones. More precisely, if we consider Mn for some fixed 77 G N in stead
of Mx, then, measurement systems E,£ G MS fulfilling Mn AM(E,£) do have smaller
h.m.s.-representations than the ones fulfilling Mx AM(E.£). but there doesn't exists a
smallest one.

Lemma 6 Let a E [0,1]. There exist one and at most two sequences (a,-),, with Vz G N :

a, G {0. 1} and such that:
a Y,a>/'2' (4-4)

i.e., there are at most two non-equal subsets B\.B2 E N such that:

E 1/2' E 1/2- (4.5)
i'efli leßj

Proof: This lemma expresses the well known representation of reals as decimal numbers,
but now in the scale 2 in stead of the scale 10. For a detailed proof we refer to [S] p.107-112.
Here, we'll only sketch how these two possible decompositions can be constructed. A first
decomposition is defined by: Vz G N such that a — TJj6X,_, aj/2J > 1/2': a, 1. otherwise:

a, 0. A second decomposition is defined by: V? G N such that a — TJj6x,_- aj/23 > 1/2':
a, 1. otherwise: a, 0. One can prove that for both decompositions, we find the same
sum a Hi6Nai/2', and that for almost1 all a E [0,1]. both decompositions give the same

sequence (a,),. If we define B, {j\aj 1} for the first decomposition, and F2 {j\a} 1}
for the second one, we find eq.(4.5). •

Lemma 7 If Mi E Xn, Q, E R and 777, Q,.(l - £j='i mf) then:

1-1

Vi e Xn : rm Qx. H(l - Q}) (4.6)
]=i

i-E^-nci-Go (4-7)
}=1 .=1

Proof: We prove this lemma by induction. For n 1 we have m^ Qx and 1 —mi \—Q\.
If the lemma is true Mn' E Xn_l5 then eq.4.6 is true Vz G Xn_i.

mn Qn(l-E777,) Qn(l-5:Q,n(l-QJ))
1=1 i=i j=i

On((i-Qi)-£«.-n(i-<w)
,=2 j=i

'We mean for all a S [0. 1] except for a set of measure zero.
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Qn(i-Q0(i-£3.''EU-<?;))
,=2 ; 2

QnUil-Qi)
i l

i-£»h (i-È<3.-8(i-<w)
7=1 .=1 7=1

(i-Q1)(i-ÊQ,'n(i-QJ))
,=2 ; 2

f[(i-Q,)
1=1

what completes the proof. •

Lemma 8 For all n E N, M„ has an upper bound in Mn-

Proof: Forali 777 G Mn, let Q, 777(1 and Vz fc X,^1\{1}: let Q, 0 if 1 - JjfÀ ™U) 0

and let Q, m(i)(l - £%) m0'))_1 if 1 - E)y=\ m(j)) + 0. Since for all i E Xn_,, Q,- 6 [0, 1],

we can define a sequence (qij)j, with Vz,j S N : q,j E {0,1}, such that (qx>]): represents
a binary decomposition2 of Q, fulfilling Vz fc X„_i : Q, TJj6N(<7,^/2J). Since N"_1 is

countable, there exists a one-to-one map £ : N —» N"_1. We choose one fixed £, and Vi fc N

we denote £(i) E N""1 as iui2, tn_i. Define 777' fc Aly such that Vz fc N : m'({i})
n™Ti1(l/2'-')¦ m' defines a probability measure (all summations are taken over N):

ni — l n — 1

rn'W £II(l/2") ££---X:n(l/2")
1 ; 1 M 12 i„_i j l

£(l/2'1)£(l/2'2)...£(l/2"-)-(£l/2jrI l
M 12 ln-1 j

We define F : Bn —> Bn such that for all j E Xn_i:

F({77}) {i|iGN,ViGXn_, :qhl] =0}
^(0'}) {Jlt'eN.VfcGXj-j :?,,, =0,9jlI, 1}

and for all F fc B„ : F(F) U,6BF({7'}). For all i,j G X„ such that j / j (i.e.. {i}n{i} 0)

we have F({i}) n F({j}) 0. Since:

F(Xn) U,eNF({i})

{i\j G Xn-u<H,i, I,™ G Xj-, : qk.,k 0}
U{z|V/ fc Xn_, : qhh 0}

{i\j E Xn_, : qhXj 1 or Vj fc X„_, : qhXj 0} N

2See Lemma 6.
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F is a cr-morphism. We still have to verify if pm pm> (see Definition 8 in [6]). For all

j GXn_,:

-(;) e ni= £ (fid- W-w n h
ieFU) k=i - ieF(j) k=i *¦ - t=i+i *

£(fid-%r))|e n £
J n n m-i 1

££¦•¦ £ (ïïd-^))^ n ^r
ueN,26N .m_i€N h=l - - Jfc=i+1 z

ïï(£(i-lt))£fL n £è
tel <keN ^ .,6N - k=j+l Û6N "

J_ _ v î^i v 2M "n v —ojt 2-< rik > 2-1 nk 11 A oA" (-.-M " J. .-TM ^- ; i 1 L. /-V —n(£^-£^r)£fi n £
tei A-eN ' iteN igN i-=j-r-i fceN '

7-1

na-£|é£f)tel fc6N ^ j6N -

U(l-Qk)Qi m(j)
h \

m —1 _ m—1 m-i
™'(") £ nU-^H ri(i-a) i-£^0') ^H

ifcF(n) 7 1
ZJ

7 1 7 1

as a consequence of Lemma 7. •

Theorem 6 Let E,£ G MS and tz G N. We have:

AM(S,£) CMn =>E,££HMS(E.Of.N) (4.8)

Proof: For all n E N we know that Mn has an upper bound A4 G Mn (see Lemma 8). Since

M G MN we have HMS(A4) dHMS(N). Thus, if M» AM(E,£). then AM(E.£) <
A4 and thus, according to Theorem 1 in [6], we have S, £ £HMS(A4) £,HMS(N). Thus.

E,£^HMS(E.Of.N). •

Lemma 9 For all n 6 N. there exists no smallest upper bound for Mn in M.

Proof: We prove that there exists no smallest upper bound in Mn for the case n 2.

For n > 2. the proof goes along the same lines, but gets very complicated on a ncta:ional
level. From the proof of Lemma 8 we know that -A4™, with Vz G N : m({i}) 1,2', is

an upper bound. First we will prove that there exists no upper bound for M2, smaller
than M^. Suppose that A4™' is such a smaller upper bound (it's clear that such a smaller
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upper bound cannot be an element of M„< for some 77' fc N). Let F : Bn —» Bn be a cr-

morphism fulfilling Definition 8 in [6], and which is not onto, i.e., there exists i g N with
{i} £ {F(B)\B E Bn} (otherwise, {F(B)\B E Bn} Bn because of the a-additivity).
Since z G N U,eNF({j}), there exists j E N such that i E F({j}). Denote F F({j}),
and let n E B be such that there exists n' E B : n' < n. Let Bi {77,77 + 1} and
F2 {n}U {z|z G N,z > 77 + 1}. Since 1/2" + l/2"+1 1/2" + E^+i l/2f+1, we have

HieBi ^/2' — X2i6S2 1/2'. For all i E Fi and for all z G F2 we have z > 77 > 7z'. and thus we
have F n Fj C F and F n F2 C F. Thus, B, £ {F(B)\B G BN} and B2 £ {F(B)\B E Bn}-
Consider A4™" such that m"(l) 1/2" + l/2"+1. Since A4™' is an upper bound for M2,
there exists a cr-morphism F' : B2 —> Bn fulfilling Definition 8 in [6]. Let F3 F o F'({1}).
We have /zm(F3) /zm»({l}) 1/2" + l/2"+1, and thus. E,£b3 1/2'' 1/2" + l/2"+1. Since

F3 G {F(F)|F G Bn} we have B\ ^ F3 and F2 ^ F3, and thus, there are three subsets
of N such that YZ.,eB, 1/2' YZ,iaB2 1/2' YZ,,eB% 1/2'. This contradicts with Lemma 6.

Now we'll construct an upper bound A4N' such that M^ 2 Adjj. Consider .A4™ where

m'(l) m'(2) 1/3, and for all integers z > 3 : m'(t) (3.2''-2)-1. If M$' > A4™, there
exists a (j-morphism F : Bk —> Bn fulfilling Definition 8 in [6]. Since, U,g.\F({z}) N, there
exist i,j E N such that 1 G F({z}) and 2 G F({j}). If i j then {1,2} Ç F({ij) and thus,
llm({i}) > m'(l) + rn'(2) 2/3, which is not possible. Thus we have m(z) pmi(F({i})) >

/w({l}) m'(l) 1/3 and m(j) pm.(F({j})) > /im-({2}) m'(2) 1/3, and this
contradicts with {z|z G N,7tz(z) > 1/3} {1}. We still have to prove that A4™' > M2.
Consider A4™" such that m"(l) a and m"(2) 1 - a. If a < 1/3, let F! 0 and a' 3a.

If 1/3 < a < 2/3, let F, {1} and a' 3a-1. If a > 2/3 let F, {1,2} and a' 3a-2.
Consider a binary decomposition a' H,eNa!/2' and define F2 {i\a[ 1}. One easily
verifies that the map F : B2 ^ BN defined by F({1}) B, U F2 and F({2}) N\ (Fj U F2)
fulfills Definition 8 in [6]. •

Theorem 7 VE,£ G MS. 77. fc N with Mn AM(E,£): HMS(E,£) contains no smallest
h.m.s.-representation.

Proof: If there exists HMS(A4) fc MHms(E, £) such that for all HMS(A4') 6 MHms(E.£)
we have HMS(A4) < HMS(A4'). Then, as a consequence of Theorem 1 in [6]. HMS(A4)
is the smallest element in Mhms such that AM(E,£) < A4, i.e., A4 is the smallest element
in M such that Mn < A4 (see Theorem 2). This contradicts with Lemma 9 which states
that Mn has no smallest upper bound in A4. •

With these theorems we are now able to identify the possible h.m.s.-representations of quantum

m.s. The different possible candidates for a h.m.s.-representation correspond with the
different possible measure spaces in M, and which are given by Lemma 1 in [6], and which
are essentially measure spaces related to a continuous, a countable or a finite set of states
of the measurement context. From Theorem 4 and Theorem 5 follows that if we consider

quantum m.s. with measurements with an unbounded number of outcomes, we are not able

to find smaller h.m.s.-representations than the one we have identified in Theorem 3 in [6].
i.e., a h.m.s.-representation with a continuous set of states of the measurement context. If
we consider a m.s. with measurements with 77-outcomes (e.g. a spin-1^ quantum entity)
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we find h.m.s.-representations with a countable set of states of the measurement context.
Nonetheless, there exists no 'preferred' smallest h.m.s.-representation3.

5 Two explicit examples

We end this paper with two examples, namely Aerts' model system for a spin-| quantum
entity (introduced in [1] and discussed in more detail in for example [5] and [7]), and a
'reduced' version of this model system that is implemented by the results of this paper.
These two model systems will enable us to visualize the results of this paper. We start
with Aerts' model system'1. As a representation of the states of a spin-i quantum entity
we consider the Poincaré representation, i.e.. all states are represented on a sphere in R3,

orthogonal states correspond with antipodic point on the sphere. If a point has coordinates
v, we denote the state corresponding to this point as p„. A measurement eu on the entity in
a state pv is defined in the following way:

•

•

•

Consider a straight line segment with one of its endpoints in the point u of the sphere,
and the other endpoint in the diametrically opposite point —u. We'll denote this
segment as [tz, —u].

We project v orthogonally on [—u,u] and obtain the point v'. This point defines two
segments [—u, v1] and [v',u] (see Fig. 1).

Consider a stochastic variable A located on the segment [—u,u], and suppose that
relative frequency of appearance of the possible A is uniformly distributed on [—u,u).
If A fc [—u,v'], the point corresponding to the state of the entity moves to u along
[v1, u] and we obtain a state pu. If A fc]u'. u], the point moves to — u along [17', — tx] and
we obtain p_u.

As a consequence, there are two outcome states for this measurement eu: pu and p_u. As
been shown in earlier publications, this model system gives rise to the same probability
structure as a spin-^ quantum entity.

3This obviously also implies that there exist no h.m.s.-representations with a finite set of states of the
measurement context

A Since Aerts' model system has already been published many times, we won't go in to much details. For
these details we refer to some of these earlier publications by Aerts and his collaborators.
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Fig.l: Illustration of a measurement eu on an Aerts' spin-j entity when the initial state is

Pv

Within the formalism of [6] and this paper, E corresponds in a one-to-one way with the
sphere 5. A corresponds with the line segment [tz.— tz]. pA is the uniformly distributed
probability measure of the stochastic variable A and Oe {pu.p-u}. For a clear description
of ifi\ we refer to Fig. 2. The different measurements in £ correspond with the different
possible choices of antipodic points, and their h.m.s.-representations are related in the way
as described in section 3.3 in [6]. Since it is shown in Theorem 6 that for measurements with
a finite and bounded number of outcomes there exists a h.m.s.-representation with A N,

we should be able to find such a 'reduced' representation for Aerts' spin-| quantum entity.
The straightforward way to do this is by explicitly applying the model used in the proof of
Lemma S5. We find the model system as outlined in Fig. 2.

6 Conclusion

We were able to identify the possible h.m.s.-representations of quantum m.s., and we showed
that it suffices to know the 'small' h.m.s.-representations in order to know the complete
collection of all h.m.s.-representations. Quantum m.s. with measurements with an unbounded
number of outcomes (i.e.. a finite but unbounded, an infinite but countable, or a continuous
number of outcomes) all have a 'preferred' smallest h.m.s.-representation with a continuous
set of states of the measurement context. Quantum m.s. with a finite and bounded number
of outcomes (e.g. spin-11^- quantum m.s.) have h.m.s.-representation with a countable set of
states of the measurement context (see for example the alternative for Aerts' spin-j h.mis¬
representation in section 5), but they do not have a preferred smallest h.m.s.-representation.

5For the specific case of n — 2. the rather complicated model of Lemma 8 reduces to a rather simple
model system.

Aerts': /\e[0,l]

h=l/2
1/2

o

o,

'Smaller':

h=\
1/2 o

o
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A=3/4

3/4

o

o,

h=l o

o,

A=2 1/4

1/4

o

o

A=3
1/8

1/8

1/8

1/8

o

o

Fig. 2: A comparison of Aerts' h.m.s. with a 'smaller' h.m.s. for a spin-1/2 quantum entity.
In the case of Aerts' h.m.s., for every A G [0,1] the state space is divided in an upper and a

lower half, depending on the value of A. If the entity is in a state located in the upper half
we obtain an outcome Oi and if the entity is in a state located in the lower half we obtain an
outcome o2. The arrows in the drawing correspond with the map fix : S —» Oe. In the case
of the 'smaller' h.m.s.. for every A G N the state space is divided in 2X spherical bands. If
the entity is in a state located in the upper band we obtain an outcome o\, if it is in a state
located in the second band we obtain an outcome o2, if it is in a state located in the third
band we obtain an outcome 0\, This h.m.s. is completely defined by the relation VA G N:

/<?i({A}) 1/2A. One easily verifies that this 'smaller' h.m.s. is mathematically equivalent
with Aerts' h.m.s.
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