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Atoms and Oscillators in Quasi-Periodic
External Fields

By Walter F. Wreszinski

Instituto de Fisica, Universidade de Sâo Paulo,
C.P. 66318, 05389-970, Säo Paulo, SP, Brasil

(24.V.1996)

Abstract. We review some results on the spectrum of oscillators and two-level systems in external
fields which are quasi-periodic in time.

It is a pleasure to dedicate this paper to Professors K. Hepp and W. Hunziker on the occasion

of their sixtieth birthday.

In recent years, there has been a increasing interest in quantum systems subject to periodic
or quasi-periodic perturbations. Some of this interest is due to the fact that such systems
constitute a paradigm for "quantum chaos" because the dynamics of their classical counterparts

is, as a rule, chaotic. Perhaps the most interesting examples of experimental relevance
are Rydberg atoms in intense external electric microwave fields [1]. One of the most striking
manifestations of quantum mechanics in the latter is the "quantum suppression of classical
diffusion", which occurs for large frequencies and leads to localization. At least two
independent mechanisms of localization occur in Rydberg atoms: a dynamic (pseudorandom)
Anderson localization [1] and localization by scars of special (unstable) periodic orbits [2].

What happens in the quasi-periodic case? Several results exist for particles in discrete
quasi-periodic potentials, beginning with the pioneering work of W. Craig [3], J. Pöschel [4]

and Bellissard, Lima, Scoppola and Testard [5], which relied on KAM methods. More
recently, a global (i.e., nonperturbative) result has been obtained by Siito [6] for the
Fibonacci Hamiltonian: the spectrum is singular continuous, supported by a Cantor set of
zero Lebesgue measure. For systems under perturbations which are quasi-periodic in time



110 Wreszinski

— e.g., atoms in bichromatic electric fields —, there are fewer rigorous or exact results.
Perturbative KAM results for small coupling were obtained by Blekher, Jauslin and Lebowitz [7]
for two-level atoms in quasi-periodic fields:

H(t) ßoz + ef(t)ox (1)

where 2ß is the energy difference between the unperturbed levels important and / is quasi-
periodic. The results of [7] rely on previous work by Bellissard [8] and M. Combescure [9].

Moreover, nonempty continuous spectrum was proven to exist generically for models of two-
level systems [7]. The latter is a nonperturbative result which we shall comment upon later.
Finally, in this paper we have generalized the results of [7] to a restricted class of quasi-
periodic perturbations in the case of large coupling. It should be mentioned that for two-
level Fibonacci Hamiltonians there exists a non-perturbative result [10] which states that the
spectrum (as defined in [10]) has no pure-point part. This result provides additional support
(a first indication came from the numerical results for the kicked rotor with two or three
incommensurate frequencies [11]) to the expectation that localization is weaker (if present
at all) in the quasi-periodic case. It seems to be difficult, however, to establish the result of
[10] using any of the two equivalent definitions of spectrum used in the present paper.

Since there are so few nonperturbative results for the spectrum of two-level atoms
under quasi-periodic perturbation, it is natural to ask what happens for the forced harmonic
oscillator, where a solution in closed form exists:

H(t) uj0a+a + Xf(t)(a + a+) (2)

Here a and a+ are standard annihilation and creation operators, and / is quasi-periodic.
This has been done by Jauslin and Nerurkar [12] and by us [13]. We shall focus on [13], which

proves slightly more than [12] in the resonant case, namely, that the spectrum is transient
absolutely continuous.

In order to pose the problems more precisely, it is better to consider the periodic case
first [14]. Let us assume we are given a Hamiltonian

H(t) Ho \- V(t)

where Ho is a self-adjoint operator on a Hilbert space TL with discrete spectrum {En}^Li
and V is, for instance, a bounded periodic operator, i.e., V(t + T) V(t). The quantum
analogue of Howland's method in classical mechanics [15], which transforms time-dependent
systems into autonomous ones by substituting time by a new dynamical variable, corresponds
to introducing the Floquet operator

K(t) A'o(i) - V(t) (3a)

where

K0 ijt-Ho (3b)
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Both A'o(i), the unperturbed Floquet operator, and K(t) are operators on

H®L2[Q,T}. (3c)

The spectrum of A'0 is £n,m torn + En m S TL, n 1,2,3,... where w 2îr/T and
is, in general, dense pure point, unless there are some commensurability conditions between

w and the En The basic question is: Is the pure point spectrum of K0 stable? The stability
of the pure point spectrum of A'o is usually called quantum stability [14]. As we shall see,
there is strong evidence for this term because in the stable case time evolution happens
essentially in a subspace of finite dimension. The case of continuous spectrum is referred to
as unstable. One reason is that it frequently occurs due to the presence of resonances (as in
example (2)), in close analogy to the (unstable) resonant tori in classical mechanics, which
lead to chaotic behaviour. What happens more generally is that, while the initial state is

localized in "phase space", time-evolution leads to derealization. As a consequence, one

may have unstable behaviour, such as the unbounded growth of the kinetic energy as in the
case of the kicked rotor [8]. There may be several degrees of derealization, with a hierarchy
of time decays of certain quantities, such as the autocorrelation function [16].

As in [17] we now consider the general situation described by the Hamiltonian

H(t) H0(x) + V(x,$(t)) (4a)

where x denotes the internal dynamical variables of the system, which act on a Hilbert
space Tt. Moreover,

e(t) gte

where gt is an invertible flow corresponding to the trajectory of a classical dynamical system
on a manifold fi, having an invariant ergodic measure p. Thus 9(t) is a classical variable
whose time-dependence is independent of the state of the system evolving according to H(t),
corresponding to an "external bath". Let U(t,s;0) be the unitary propagator associated

to (3). strongly continuous in t and s, and such that

U(t + a, s + a; 0) U(t,s; ga 6) a e U (5)

In analogy to the construction (3), let us define [17] the family of operators on

K H® L2(tt,du) (6)

given by

[W(t)iP}($) U(0,-t; fl)r_,0(ô)

r-tU(t,0; 6)ip(0) ip e >C (7)

where

(r-t4>)(0) (g-tO) - (8)
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Then [17] VK is a strongly continuous family of unitary operators with

W(t) e-iKt (9)

and

(K^)(i) -ijt^(gti)\t^AH(e)il> (10)

is the generalized quasienergy operator [17]. If the flow has a generator G,

d0

dt
G(e(t)), then

K -iG(6)--feAH(e). (11)

We list a few examples:

1) Periodic force: II H0 A f(x) cos(u;t + 0), Ü S\ 6(t) 6 + ut, dp d6, and

K -iuj-. A H(0) with H(6) HQA f(x) cos 0
00

2) Quasi-periodic force with two frequencies u>i,lo2: H H0 + f(x)[cos(cJit + Of)

A cos(uj2t + Of)], Q S1 x S1, gt(0i,02) (Oi + wii, 02+ui2t), dp dOxd02

K -iui — -iu2— + H(0i,02), (12)

H(0) H0 + f(x)(cosOi+cose2). (13)

We shall be specially interested in example 2. We may now describe the relation between

stability and the pure point spectrum of the quasienergy operator

K ipm Xm ipm ipm e K, (14)

more precisely. We follow [18]. Since K is defined on an enlarged space K. (6), one must
first embed the initial state ^>(0) £ Tt in K,, which may be done by the correspondence

tp(0) £H-ty(0)«l e K

where 1 is the function on L2(ii,dp) which assigns the value 1 to all 0 ¦ Because of (7)
and (8) it may then be proven easily [18] that for all t > 0 there exists an M independent
of t such that

tp(t)- Y, Cme-^rtip.m \\k~

• Ami.£ Cme-'x-trtifm \\\< £ \Cm\2<t2
m>M m>M
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where

V(t) U(t,O;Oi,02)(tp(O)®l)

and

Cm (</>m, V»(0)®1>*

The above uniformity in time means that the trajectories in Hilbert space are precompact
and is a sign of stability.

A second notion of spectrum is what we call the autocorrelation spectrum in [13], but is

actually due to Birkhoff and von Neumann (see [18] and references given there). Consider
the solution of the Schrödinger equation

i^ H(t)iP(t) e(0) ip

where H(t) is given by (4). Define the autocorrelation function

C*(0 Hm ±= [T ds{ip(s), ip(s + t)) (15)
(-.oo 2.1 J-T

when the limit exists. Under this assumption, C^, is positive-definite, hence by Bochner's
theorem there exists a Fourier-Stieltjes measure p^, such that

V(r) j'c-',A dp^(X) (16)G

Let {ip,}^ be a countable dense set in Tt (which we assume to be separable). We define
the autocorrelation spectrum as the union of the supports of the measures p^,. The sets of
ip such that //,/, is absolutely continuous (ac), singular continuous (se) or pure point define
the subspaces Tiac, TLSC or Ttpp, respectively. Equivalence between the above definitions
follows from ergodicity of the measure p : for almost all 0 [18]. Furthermore,

1 tT
C*W ,lim ^ / ds(ip,U(tAs,s;Oip)n

(-.oo 2,1 J-T ~

J^dp(e)(iP,U(t,0;OiP))n

(ip®l,eiKtiP®l)K

where (5) was used.

We now consider the oscillator model (2), with

f(t) Aj coso;^ + A2 cos u>2t (17)

We have the following result [13].
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Theorem 1 In the resonant case oj0 u>i, uj2 incommensurate with u>i the autocorrelation
function satisfies the inequality

|C*(i)|< ae-^+bt (18)

with a and è independent of t, and for ip in a dense set of (coherent) states. In the
nonresonant case, and under suitable diophantine conditions,

|w-m| > c|m|-Q |m|#0 (19)

for some a e U and C > 0 where u> ¦ m wofio + wimj + u>2m2 \m\ |tio| + |mi| + |m2|,
and m,, i 0, 1,2 are arbitrary in Z, C^,(t) is a special almost-periodic function, which
is not identically zero for ip in a dense set of (coherence) states.

It follows from well-known theorems [19,20] that

Corollary 1 In the resonant case the autocorrelation spectrum is transient absolutely
continuous (tp is in the transient Hilbert space Ti if C^, decreases in |t| faster than any
power of \t\ [21]) and covers the whole line. In the nonresonant case, under the assumption
(19), it is pure point.

If a > 3 in (19), the Lebesgue measure of the complement of the set of u> which satisfies

(19) is zero. The structure of C^(t), for ip |0), the ground state of the harmonic oscillator
(but generalizable to a dense set of coherent states) is

1 oo tuj-mT —iujmT

C^t] i™ 27
"(0 " ito • m
mo mpj — cc .-v

j[imi («,-(<))+ y nw".(0) (20)
,=0 mo,.,mj( ,=0

w m=0

where A is fixed, m0,rhi and m2 are linear combinations of the integers mo,...,mjv, the
Im are modified Bessel functions and the u,(t) are almost-periodic functions of t. Due to
the bound

m(t)m' eW'i
|/m. (Ui(t))\ < yß

*+s
(21)

and (19), the first summation in (20) tends to zero. The same bound (21) and the fact
that the almost-periodic functions form a closed subalgebra of L°°(M) [21], show that the
last summation defines an almost-periodic function which is easily seen to be not identically
zero. If, however, the ratios u>i/ui0 are Liouville numbers, the bound (21) does not suffice
to show that the first summation in (20) is zero, In fact, it is conjectured that in this case
the spectrum is singular-continuous.
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We now turn to the much more interesting model (1). The generalized quasienergy
operator is given by (12) with HQ eoz and (13), with f(x) — tox and (cos Oi + cos Of)

replaced by a general quasi-periodic function. Or, more generally, by

K I<oAeV(0i,02) (22)

where

A'0 =-lt^—- - zu>2—- +/?<t2 (23)
Oo\ Oo2

on K. C2 (gi L2(J,dp), T is the two dimensional torus S1 x Sl

dp -,—— dOi d02, and V(0i,02) is a 2x2 matrix. In [7] the following theorem has
(2*T

been proven.

Theorem 2 [7] Let V(0i,02) be such that each component is an analytic function in the

strip {0|lm0j < T0} ¦ Assume e.g. a u>2/u>i > 1| and (2/3/u>i)modi > 0.

Then, for any given n > 0 and fixed uii there exists a set of q's, Sn C (l,oo) of
Lebesgue measure jC(Sn) < n and a value ec(n) such that, if a € (l,oo)\S, and e < tc,
the spectrum of k is pure point.

The operator KAM method of [7] constructs a unitary operator R(a, t) such that

where g±(ot,t) are independent of 0 (0i,02), i.e., R transforms K into an operator
which is diagonal in the basis of eigenfunctions of the unperturbed K0 which are

e'~~ I
n

if m =+1 n (nun2) GZ2

4>,,m { VA "
(25)

M V) if m -l, m e {-1,1}

The transformation R is constructed by iteration R Rk R2Ri At each step the
order of the (^-dependent perturbation is reduced from e3 to e2j The fc-th step is defined

starting from an operator of the form

Kk Dk + Vk (26)

where

Dk A0 + gk (27)

with gk diagonal in the basis {ip„,m} and Vk hermitian. gk is generated by the previous
iterations and can depend explicitly on a, but not on 0 ¦ Writing Rk+i eWk+1 with



116 Wreszinski

W£+1 —Wk+i and assuming Wk+l of the same order as Vk which is verified a posteriori,
we have

A',+1 ew»' Kke-w>+> Kk + [Wk+1,Kk] A

A~ [Wk+i,{Wk+i,kk]} + i [Wk+i,[WK+i,[Wk+i,Kk]}} +

Dk + Vk + [Wk+uDk} + Vk+i (28)

where

Vk+l

+ Wk+i,

Wk+i,\[Wk+i,Dk)^ + Vk}

Wk+i,l[Wk+i,Dk

+

1 v,
3! 2!

Define for an operator A

A(m, m', n - n) (ipn.m, A ipn;m') ¦

Then, motivated by (28), we try to determine Wk+i and a diagonal 6g such that

e^'A'te^1 =Dk + 6g + Vk+i

which follows if
[Wk+uDk} + Vk Sg

The diagonal terms of (32) yields

6g(a,m) Vk(m,m,Q)

and one may choose Wk+i(m, m,0) 0.

The off-diagonal terms yield

Vk(m,m',n - n)

(29)

(30)

(31)

(32)

Wk+i(m,m',n -n) Dk(m,n) - Dk(m',n')

where the denominator in (33) is

Dk(m, n) - Dk(m, n) u> ¦ (n - n) + (m - m')ß + gk(a, m) - gk(a, m')

with
k

gk(a,m) Y 6gk.(a,m)
k'=l

(33)

(34a)

(34b)
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By (34a), the denominator in (33) may be zero or orbitrarily close to zero for infinitely many
m,m', and n — n ¦ In order to guarantee the convergence of the series for R, one must
restrict a to the set characterized by the Diophantine condition

Qk+i (7/c+i) < o Ç ük(lk) such that for Vn e Z2 and

m,m e {-1,1}, |w- nA(m-m')ß + gk(a,m) -gk(a,m')\ > A \)°
^ ^

where n and m — m' are not simultaneously zero, Q,0 (l,oo),r > 2 and jk+i is a constant
chosen for each step. Due to the explicit dependence of gk upon a, one has to control the
size of gk as well as its variation with a, and this is accomplished by the operator norm
[7,9]

rlnl

n.Am aa'eQ "i
Y, e ~ sup sup I |A(m, m + Am,n,o)| +

|A(m,m + Am,n,a) — A(m,m + Am,n,a'),
A =:—j -, ¦ (36)

The space of infinite matrices endoved with the above norm is a Banach algebra A(r, Q.).
The sets Q in (36) depend on k and are given by (35), and, correspondingly, the numbers
in (36), are related to the width of the strip of analyticity in Theorem 2. Starting from r0

given there, the width is reduced at the k'th step to rk with r^ > 0. The sets Qk are by
construction such that Slk+i C fi/t, and the Lebesgue measure of the complement of the

00
final set JÌ00 fl (fU\fîfc+i) ls proved to be small (see the statement of theorem 2). The

Jc=0

convergence of the operators Rk R2Ri is in the Banach algebra ^(r^, Ciao).

An interesting problem, relevant from the point of view of both experiment [1] and theory,
is the nature of the spectrum of K given bv (22), (23), for large coupling or, alternatively,
of

K K0Af(Oi,02)ox (37)

where

We have

Theorem 3 Let

where

Ko -iu)lwri^M-Ae<rz. (38)

f(0i,02) fi(0i) + f2(02) + u (39a)

fi(0i) Y Ci.n e'"*' i l,2 (39b)
nÇZ
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with

and

|C,,n| < 6,exp(-p,\n\) 6,.p, > O.i — 1,2

C — C

t/#0

(39c)

(39d)

(39e)

Then K is unitarily equivalent to an operator

T- d d
A -lui —— - iu2 —- + i/oz + V (a, Oi, 02)

oui ov2

where V is analytic in the strip

{0 (0i,02) s.t. \\m0,\ < p, 1,2}

(10)

Proof By a unitary rotation through 7r/2 about the y axis we map K to the operator
K', given by

A" -tw, J- - iu, J- + eox + f(0i,02)az (41)

Define, now, the operator U from K to /C by

/

[/

exp _ J_ y^ Çhn in«. L V^ 2'" gi"»
1 n^O l n£0

n£Z n6Z

0 exp

\

1 v^ C i,n /„ff
1 r.V^ *- 1." inO] j _ ST* - -^

regZ n e

By (39c), (39d), U is a unitary operator and

U-'K'U K

where K is given by (40), with

V(aA,02)^e(i JliA6ue2l){ " 2; ^ h(a,0u02) 0 y

(42)

(43)

(44)

A(or,0i,0j)=exp{-2Ê£
1=1 n?S0

ti6Z

re-.»

t Wj

By (39c) and (45), /i is analytic in the strip |Im 0,\ < pt. i 1,2.

(45)

There is a basic difference between the operator (40) and the operator (23)treated in
[7]: in (40) the "potential" V depends on a (see (44), (45)). In order to prove that the
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spectrum of K given by (23), is pure point in ref. [7], by an operator KAM technique, one
proceeds as described in the discussion of Theorem 2.

The assumption on the potential for the proof in [7] to go through is:

II V||ro,r,0<Ce (46)

where r0,ii0 are the starting values of the parameter r and the set ÇÏ in (36), and C is a

constant. In the case (23) of [7] this property followed directly from analyticity on a strip,
because the second term in (36) did not contribute, and the sup in (36) was irrelevant,

since V (in (23)) was independent of a. From (46) it follows that ||V||r0ln0 is sufficiently
small if t is chosen sufficiently small. We collect these remarks in

Proposition 1 Let V in (40) satisfy assumption (46). Then, if a > 1 (for definiteness)
and (2i//u>i)modi > 0, for any given rj > 0 and fixed wi there exists a set Sn C fio °f
Lebesgue measure C(Sn) < n and a value ec(n) such that, if a S (l,co)\5„ and t < ec(t])
the spectrum of K is pure point.

Assumption (46) must be verified in each particular case:

Corollary 2 Let f\(0\) cos 0t and f2(02) cos 02 in (39), and fi0 (1,°°). Then

assumption (46) holds for any 0 < ro < oo

Proof In this case, by (44), (45)

and

h(0u02) exp\-2i^)exV -2i*^
Wl J \ OJ2

V'(l,-1. n,a) V(-l,l,n,o) eJBl(-2/w,) • Jn
UJiOt

where Jn is Bessel's function of order n.

By (36)

+

U||ro.n0 < const.e Y e'"1-1 SUP I V(l,-1, rz, a)
„eZ2 0,0,'erio V

V(l,-1,n,a)- V(l,-1,n,a')

(47)

(48)

(49)

and by (48) and (49)

II V o.Oo < const, t I Y
Vn,gZ

Oro|ni|

W]
x i y e

\n2£Z

rol"2l g(n2) (50)
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where

g(n2) sup
aen0

2

+ sup

2

uii a
J-n-i 1

uiicr (51)

Using now the bounds, for a real

l-/»(*)l < (*/2)H
V(\n\ + 1)

Un(x)\ < \ (x/2)!"!-1 (x/2)l"l+1

r(|n|) r(|n|+2)

together with the mean-value theorem and the fact that a,a' > 1 in (51), because fio

(l,oo), we get

(IM)'"'' 2

r(|n2| + l) wi

(l/wj)!"2!"1 (l/w1)l"'l+1
r(|n2|) r(|n2|+2)

and hence, by (50):
II V||ro,n0 < eCiexp(r0C2)

where Ci and C2 are constants. ¦
What happens in the case v 0 in (39a)? In this case, the spectrum of

~ d d
Ao -",! —-",2 — (52)

with K — K0-\- eV(a,0i,02) in (40), is doubly degenerate, and some essential modifications
in the structure of the proof are necessary [22]. The same happens for / nonseparable, i.e.,
not the sum of two functions, each dependent on only one variable, as in (39) [22].

We now come to a harder problem, that of the existence of continuous spectrum [7]. For
this purpose, it is interesting to introduce a generalized Floquet operator Uf [17] which acts

on Ki Tt <8> L2(SX,d0i) and whose spectral properties are equivalent [17] to those of the
quasi-energy operator:

UF rlT2 m(0i)

where Ui(0i) U(T2,0;0i,0) (the monodromy operator) and

(tLT2<I>)(01) <I>(01-u1iT2).

(53)

(54)
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In the case of two-level systems, uj is an element of SU(2) and may thus be represented as

ui(9i)=[A b'a) (55)

with |a|2 + |6|2 1 It may be proven [7] that for any choice of functions a(0),b(0) with
|a|2 + |6|2 1 there is some quasi-periodic Hamiltonian

H fo(t)lAYfj(t)o~j, (56)
i=i

with /o./i,/2 and /3 real quasi-periodic functions,

fi(t) fi(uit + euw,t + $i) j 0,1,2,3

with fj(0\,02) continuous and 27r-periodic in (0\,02) € S1 x S[ and r such that Uj given
by (46), is the corresponding monodromy operator. This construction [7] relies on the fact
that SU(2) is simply connected and is not applicable to the scalar case (fj 0 in (56) for
two of the indices j 1,2,3) because U(l) is not simply connected. A simple example due

to Rychlik, reported in [7], is

ui(*i)=(Co' e\ (57)

The corresponding Floquet operator has no pure point spectrum (no eigenvalues). Since U]
is diagonal any eigenvector candidate is (y(0i),O) or (0,z(0i)). Consider the first type. The
eigenvalue equation is, by (53)

A_T2c'e>y(0i) e-^y(0i)

or
e!fll y(9i) e->XT>y(9i+ujiT2) e~ixT* y^ + 2na) (58)

with a ui-i/ui-i An eigenfunction is y e L2(Sl,dôi).

Hence
00

y(0i)= Y y^'vSl (59)
n=—00

with
00

Y W2<oo (60)
n~—00

By (58) and (59)

ì/n+i e e yn

whence \yn+i\ \yn\, which is incompatible with (60).

Now \\(y(0i),0)^ \y(0i)\2 & LAS1,dOi) is invariant under the map 0X -+ Ô, + 2tto
on .S'1 because of (49). Assuming q irrational, this map is ergodic and hence |y(#i)| is

constant for almost all Oi and we may write

y(0f) ecp[»V(0i)] (61)
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with tp real. Substituting (61) into (58), we see that the index (i,e., the number of times the
image wraps around the circle when Oi goes from 0 to 2it) of the left-hand side is larger
by one than that of the right-hand side. Therefore [7] the equation, for topological reasons,
cannot have a solution. Actually much more is proven in [7]: the spectrum is absolutely
continuous for all irrational a

An interesting and important open problem is to find out whether K as given by (22)
and (23), has some continuous spectrum for intermediate values of t.
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