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Statistical mechanical methods and continued fractions

By O. E. Lanford III and L. Ruedin

Mathematics Department, ETH-Ziirich
ETH-Zentrum, 8092 Zürich, Switzerland

(6.V.1996)

Abstract. For a\, an a finite sequence of strictly positive integers, we denote by qn(ai,... ,an) the

denominator of the finite continued fraction [oi,... ,an] written as a quotient of two relatively prime integers.
We show that the sequence of functions logqn(a\,... ,an), n 1,2,..., have the formal properties of
a Hamiltonian for a one-dimensional lattice system, to which the methods of statistical mechanics can be

applied, and we investigate the properties of the system so defined.

1 Introduction

We are going to discuss here a one-dimensional statistical-mechanical system constructed out of
continued fractions. We will write continued fractions with the notation [oi,..., an] instead of the

typographically inconvenient
1

ai H

ai

1

an-i H

an

Formally, we can define this notation recursively:

[ai] := —, [ai,a2,...,an] :=
ai 1

ax +
[a2,... ,a„]
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From this definition, it follows easily by induction that

[oi, ...,ak,...an] [a1,...,(ak + [ak+1,..., o„])] for any fc < n.

In general, the entries a; can be elements of an arbitrary field (but it is then necessary to pay attention

to the possibility of encountering a zero denominator.) In our application, the aj will almost

always be strictly positive integers; the only exception will be that it is occasionally convenient to
let the last entry an be a real number > 1. In these cases, there are no problems with zero denominators.

Infinite continued fractions are defined as limits of finite ones: It is well known that, if all oi,
02,... is a sequence of numbers all > 1, then the sequence of finite ("truncated") partial fractions

[ai,..., an] converges as n —> oo; we denote the limit by [oi,...].

A finite continued fraction [d,..., a„] with positive integer entries is a rational number
between 0 and 1; we define pn(a,i,..., an) and qn(a,i,..., an) as the numerator and denominator of
the reduced-form representation of this number:

r i Pn(ai,---,an)
Oi,...,a„ =: g„(a1,...,a„)'

with pn, qn relatively prime positive integers.

The starting point for the work reported here is the observation that the sequence offunctions

H„(oi,...,a„) :=logg„(oi,...,o„)

can be taken to be the energyfunctionsfor a one-dimensional classical lattice system, with single-
site state space N+ := {1,2,...}. In essence what this means is that this sequence of functions is

extensive in the sense that

Hn+m(ai, - • ¦, an+m) ~ Hn(a\,..., an) + Hm(an+i,..., an+m).

In the case at hand, the "«" sign in the above equation can be taken to mean that the difference in
the two sides is bounded uniformly in n, m, and oi,..., an+m (although a bit less would suffice
for the construction of a statistical mechanical system.) In many respects, this Hamiltonian defines

an extremely well-behaved statistical-mechanical system; notably, the interaction is exponentially
decreasing. On the other hand, since the single-site state space is infinite, this system isn't quite
covered by the standard theory, and does indeed turn out to display a few - inessential - pathologies.

The investigation of this system is the subject of the second author's Ph.D. dissertation (Ruedin,
1994). This dissertation contains results of two different kinds: On the one hand, extensions of
many standard results to a a general framework adequate to cover the Hamiltonian Hn log qn as

well as many others, and, on the other hand, proofs of a specific results for this Hamiltonian. We

will concentrate here on results specific to this system, referring to Ruedin (1994) for the general
theory.

This article is organized as follows: Section 2 reviews a few facts about continued fractions used

in the remainder of the article, and the most basic properties of the specific Hamiltonian are
established in Section 3. In Sections 4 and 5 respectively, we summarize the properties of the canonical
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Figure 1: The thermodynamic functions

and microcanonical partition functions, and we introduce some ideas about "letting the size of the

system fluctuate," which are natural for applications to continued fractions. The effect of letting
the size of the system fluctuate is to fix the temperature at the particular value at which the pressure

vanishes; in the present case this turns out to correspond to inverse temperature ß 2. By
applying ideas about equivalence of ensembles, we show that, among rational numbers between 0
and 1 with reduced-form denominators not larger than some given large integer q, an overwhelming
majority have continued fraction expansions [ai,..., an] whose length n is approximately equal to

2

(t*)-1logg, for a constant e* (which we later show is equal to j=j—j-)1 In Section 6, we investigate

the question of how thick the energy surface has to be made in order to get the microcanonical
ensemble to function for our model, and in Section 7 we show that our system has no zero-point
entropy, i.e., satisfies the third law of thermodynamics.

In Section 8, we introduce a second observable (in addition to Hn), the sequence

Fn(ai,..., an) oi -I \-an,

and we investigate the joint distribution of Hn and Fn for large n. The quantity Fn has an
interesting interpretation: it is the depth in the Farey tree enumeration of the rational numbers at which
[ai,... ,an] occurs (see e.g. Kim and Ostlund (1989), §3). Ideas about equivalence of ensembles
in statistical mechanics suggest that there should be a constant kp such that most rational numbers

[ai,..., an] (n variable) with reduced form denominator qn « q have Fn « kp logg. One of the

stimuli for this investigation was a considerable body of numerical evidence that this is nof the case;
in Section 8, we show that, in fact, typical values of Fn/ log qn go to oo as qn does (i.e., loosely, that
fcj? oo.) In Section 9, we introduce an alternative representation for our system which is convenient

for some kinds of computation, and we evaluate the constant e* referred to above. In Section
10, we state -without proof- the solution to the problem of maximizing the qn(a,\, ¦. ¦ ,an) for fixed

n and ai 4 \-an, and we use this result to determine explicitly the "set of compatible values of
Hn/n and Fn/n for large n," i.e., the set of points in the plane representable as limits of values of
(Hn/n, Fn/n) as n —> oo.

For completeness, we show in Fig. 1 the microcanonical and canonical thermodynamic func-

1 As we learned after this work was nearly completed, sharper results in this direction were proved more than twenty-
five years ago by J. D. Dixon. See the discussion at the end of Section 5.
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tions for our system. Aside from a few qualitative features - e.g., p(ß) —¥ oo as ß —> 1 - which
will be explained in the course of the development, these graphs seem entirely unremarkable.

The work reported here certainly has some connection with classical ideas about "ergodic properties

of the Gauss map," as presented, for example, in Cornfeld et al. (1982), §7.4. Exactly what
the connection is remains something of a mystery for us; we do not see any strict mathematical
implications in either direction. There is a more transparent connection with the work of D. Mayer
(Mayer, 1990), who investigates an operator which turns out to be exactly the Ruelle transfer
operator for our system and proves a number of striking results about its spectrum. Mayer, however,

approaches the subject from a different point of view, and his results and ours seem to be more
complementary than overlapping.

The first author thanks D. Ruelle for a number of helpful remarks in the course of this work and

H. Epstein for many fruitful discussion.

2 Continued fractions

It is a standard fact from the classical theory of continued fractions2 that, if we write p„/qn as before
for the reduced-form representation of the rational number [a1;..., a„], then the pn and q„ both

satisfy the same recursion relation, namely

Pn anPn-l A Pn-2\ Qn unQn-l + Qn-2-

Hence, given the a„'s, and given pn (or qn) for two successive values of n, we can determine all
other pn's (respectively qn's) from the recursion relations. It is immediate that pi(oi) 1 and

<7i(ai) ai. Although p0 and q0 are not defined by the above, it is easy to check that, if we set

Po 0 and q0 1, the recursion relations give the correct p2 and q2 and hence all later ones as

well. Thus, we can alternatively define the pn's and qn's by:

Pn anpn-! + Pn-2; Po 0, pi 1,

<?n dnQn-i A qn-2; q0 l, ?i ax.

From these formulas it is clear that qn(a\,..., o„) is a strictly increasing function of each of its
arguments, and that pn (aj,..., an) is independent of Oi but strictly increasing in all its other arguments.

The smallest value of qn(di,..., an) is thus qn(l,... 1), and these numbers are the Fibonacci

sequence. To fix the normalization, we define the Fibonacci sequence Fn by:

Fn Fn_! + Fn-2 with F0 F 1;

it then follows from the recurrences for pn and qn that

qn(l,...,l) Fn, and also

pn(l,...,l) Fn-i.

2Results quoted in this section without proof or explicit citation can be found in any of the standard classical texts,

e.g., Hardy and Wright (1960), Chapter X
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The Fibonacci numbers can be written explicitly via the Binetformula

77+1 f — l)n(i/~)n+l /T i
Fn -i v ; v / 77— where ._ Vo + t, the go/den nwmteK

V5 z

Since 7 > 1, we get Fn « jn+1/y/5 for large n and, in particular,

F„ > -7" for large enough n.

We prove here a simple result which we will need later concerning exponential falloff of dependence

of [a-i,..., a„] on arguments "far to the right."

Proposition 2.1 Let

a\,...,an,an+\,...am and a\,...an,an+l,...am,

be two sequences ofstrictlypositive integers, both of length at least n, which agree through the nth
place. Then

1[ai, ¦ ¦ ¦ ,Qm]
1 <

[Oi,...o^,J qnp„

The right-hand side of this inequality is majorized by l/(F„F„_i) and hence by 4j~2n~1 for large
enough n.

Proof. Let
f [an+i,...am] form > n

x := <

[0 for 777 77

Then

[ai,...,an,...am] [oi,...,an4-a;],
and we can write [oi,..., a'm,] similarly. The proof of the recurrences for pn and qn shows that

r Pn A xpn-i
[Oi, .am\ — ;

qn + xqn-i

wherepn and qn denotepn(ai,...,an) andqn(a\,...,an) respectively. Hence

[flli ¦ ¦ ¦ ;am]
_

[ai,...,a'm,]
(Pn + xpn-i)(qn + x'qn-!) - (pn + x'pn-i)(qn + xqn-i)

(qn A xqn-i)(pn A x'Pn-i)
xpn-iQn A x'pnqn^.i - xpnqn-i - x'pn-Xqn

(Qn A xqn-1)(pn + x'pn-x)
(x' - x)(pnqn-1 - pn-iqn)
(qn + xqn-i)(pn 4- x'Pn-i)
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Now\pnqn-i-pn-iqn\ land,since0 <x,x'< 1, \x'-x\ < l,and (qn+xqn-i)(pnAx'pn-i) >
qnpn, so the desired estimate follows. D

It is a classical fact, and not difficult to prove, that qn(ai,..., an) is symmetric under reversal
of its arguments, i.e., that

Proposition 2.2 q„(au -.,an)= qn(an, ¦¦-, ai).

This equation follows easily from the Eulerbracketfunction representation for qn, also known as the

Euler-Minding formula. See Roberts (1977), Ch. XIII, or Perron (1954), §3. None of our proofs
actually depend on this fact; we mention it only to avoid having to justify some otherwise odd-

looking choices for orders of arguments.

3 The statistical mechanical system

We consider the sequence of functions

H„(ai,...,a„) \ogqn(an,..-al) on PC.

for n 1,2,3,... (The reversal of the order of arguments on the right is inconsequential in view
of Prop. 2.2.) The first thing to be seen is that this system of functions is "extensive," in the sense

explained in the introduction. Once this has been established, we can interpret Hn as the "energy"
of a lattice system with n sites occupied by identical molecules with countably infinite state space.
We start by defining

hn(ai,... ,a„) Hn(ai,... ,an) — Hn-i(a2,.. .an)
qn(an,...,ax)

log 7 c
qn-l\fln, ,02j

for n > 1 and

hi(ax) =log(oi)
Then

Hn(ai,.. .,an) h„(ai,...a„) + hn-i(a2,... ,a„) -I h/ii(an).

We now have

Proposition 3.1

q„(a„,..., ai) 1

qn-i(a„, - - -, a2) [oi,...,on]'

(with qo := 1) and hence

h„(ai,..., an) - log [oi,..., an}.
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Proof. By induction on n. The asserted formula is true for n — 1. The recursion for the qj gives

qn(an, ...,ai) aiq„-i(an,... a2) + qn-2(an,... ,a3).

Dividing by qn-i gives

Qn

qn-i
qn-2

ai H

qn-i
l

[a2i...an]
1

by the induction hypothesis.

by the definition of continued fraction.
[Oi,...Onj

This proves the induction step and hence the formula. O

We now split the energy into an self-interaction part H^ and a remainder H^ by:

Hn0)(ai,...,an) := /i1(ai)-r-/7i(a2) H Vhi(an)
Hnn(au...,an) := Hn(al,...,an)-Hn0)(ai,...an)

h(n\ai, ...an) + h h^fan-i, a„),

where

hj (ai,.. .aj) := hj(ai,.. .aj) — hi(a\)
-log(oi •[ai,...,ai])

ai- log(
ai 4- [a2,.. -,a3]

[a2,.-., af]^
log(l +

Ol

forj > land/iil;(oi) 0.fi) i

Proposition 3.2 We have

0</i«(o1,...,on)<log2,
and there is a constant c such that, for all n > 1, and all pairs ofsequences

ai,...,an,an+i,...am and ai,...an,a'n+1,...a'm,£N+,

both with length > n, and agreeing in the first n places, we have

\h<£(ai,... ,am) - h®,{au a'm,)\ < c—

Proof. The first estimate follows at once from the formula

/>£W--,«m)=l0g(l4>'"-'n"t])-
«1
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The second assertion follows from Proposition 2.1 and the preceding formula, together with the
observation that the derivative of the logarithm is < 1 on the interval [1,2]. G

Note that it follows that

H^<Hn<Hn0)An\o%2
for all n.

The proof that the sequence of functions Hn is extensive is now nearly immediate.

Proposition 3.3 The difference

Hn+m(ai, ¦ • ¦, o,n+m) — Hn(ai,..., an) — Hm(an+i, ¦ ¦ ¦, an+m)

is bounded uniformly in n, m, a\, an+m-

Proof. Since Hn+m H^ + H$ - with the obvious arguments - we get

Hn+m(ai, - - ¦, a-n+m) — Hn(üi,..., an) — Hm(an+i, ¦ ¦ ¦ a,n+m)

^77+m(aiî • • ¦ jfln+m) - Hn '(oi,.. -,a„) — H^n'(an+i,.. .,an+m)

(hn+m{o-l,---am+n) ~ h® (d, 0„))

4 1" (.hm+2(an-i, ¦ ¦ ¦ an+m) — h2 (on_i, an))

Ahm+i(an, ¦ ¦ -Qn+m)-

The modulus of the right-hand side is majorized by

3-2 I

which is finite and independent of n, m, and the Oj. D

It is now also easy to give a potential from which the sequence of Hn's can be reconstructed:
We put

${j}(%) log%>

®{j,-Mai, • • •, o*) h{kI]_j+1(aj, ...,ak)- hf-^aj,..., ak-i) for j < k,

and $j 0 for finite subsets J of z other than intervals. It is then easy to check that

Hn(au...,an)= Y ®j(a\j)>
JC{l,...,7l}

and it follows from Proposition 3.2 that

ll*/IU o(7-2diam(J)),

and hence, in particular, that the interaction is exponentially decreasing.
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4 The canonical ensemble

The first observation we need to make is that the canonical ensemble only makes sense for inverse

temperature ß > 1. This is already true for the finite system. The canonical partition function for
a finite system with n (adjacent) lattice sites is

oo

zn(ß) Y exp(-ßHn(au a„)).
ai,...an=l

We denote - temporarily - the corresponding sum for H^ by Z^. From the inequalities

HnV<Hn<Hn0)An-log2,

it follows that

Zn°\ß) > Zn(ß) > 2~^Zn°\ß).

But
OO OO 1

zn0)(ß) (Ye-^nn (Y taT (C(/?))n,
a=l a=l °

and C(ß), the Riemann zeta function, goes to infinity as ß decreases to 1. Hence, the same is true
for the finite-system partition function for any n.

On the other hand, for ß > 1, the finite-system partition function is finite for all n. Using the
bound on Hn — Hn°\ it is easy to adapt the standard proof of the existence of the thermodynamic
limit of the canonical partition function for lattice systems - which assumes that the system at each

lattice site has only finitely many states, rather than countably many as in the case at hand - to show
that

K/*)= j™ ì log I7n(/Î)

exists for any ß > 1. The limiting function is convex on (1, oo), since this is true before passing to
the limit. From the estimates proved above we get the bounds

logC(/?)>p(/?)>logC(/?)-/?log2.

It is a standard and simple fact that the zeta function has a simple pole with unit residue at 1; from
this it follows that

p(ß) \og(ß-l) + ö(l) as /3->l.

Remark. The above lower bound can be improved - for ß near its minimum value 1 - as follows:
Since

hj(üj,..., an) log(oj 4- [aj+i,..., ajn}) < log(o^ 4-1),

we get
OO -I

zn(ß) > (E -sT (CO?) - i)n>
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and hence

p(/?)>log(C(j8)-l)«logCG8)-
l

CO?)

These estimates do not however tell us much about the behavior for ß —> 00; the upper bound

goes to 0 and the lower bound is asymptotic to —ß log 2. We will get better information about this

limiting regime later.

We will need here generalizations of a certain number of results which are standard for one-
dimensional lattice systems with finite single-site state spaces to our model (which has N+ as single-
site state space.) We referred above to one such result, the existence of the thermodynamic limit
for the canonical partition function. The generalization for that particular result is easy, but we will
require here generalizations of two other circles of ideas - Gibbs states and the transfer-operator
formalism - which are not quite so straightforward. These extensions have been carried out in all
detail in Ruedin (1994); we summarize the results here:

Proposition 4.1 1. For each ß > 1 there is a unique Gibbs state ap, (which is then necessarily
translation-invariant,) and

p(ß) s(oß) - ßlß,

where s(aß) is the Kolmogorov-Sinai entropy ofoß andlß the mean energy per lattice site ofaß.

2. p(ß) is a real-analytic function of ß on (1,00) and is strictly convex in the strong sense that its
second derivative is everywhere strictly positive.

5 The microcanonical entropy

Once again we need an extension of some standard results to our slightly-nonstandard technical
situation. The standard results can be found in Lanford (1973); an extension adequate to the present
situation is given in Ruedin (1994). To formulate the result we need, we use the following notation:
Let —00 < ei < e2 < 00; then V„(ei, e2) will denote the number of sequences oj,..., o„ of length
n with

ei < -Hn(au...,an) < e2
n

Proposition 5.1 There is a non-negative concave function s(e), defined on an open interval
(emin, «max), (where em;n may be —00 and emax may be 4-oo) such that

1. limn_+00=;logVn(ei,e2) supei<e<(f2 s(e) for all intervals (ei,e2) intersecting (emin, emax)

2- Vn(ei,e2) 0 for all sufficiently large nfor intervals (ei,e2) whose closures do not intersect
the closure of(emin, emax).
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The formulation of the preceding proposition is a little dense, and it may be helpful to elaborate on
it a bit. For purposes of this explanation, let us say that e is an asymptotically excluded value for
Hn/n if there exists a neighborhood of e which is disjoint from the image ofHn/n for all sufficiently
large n and an asymptotically allowed value otherwise. The set of asymptotically excluded values
is manifestly open. The first non-trivial assertion of the proposition is that the complementary set

of asymptotically allowed values is an interval; its interior is the interval (emjn, emax) of the proposition.

We will accordingly - if not quite precisely - refer to (em;n, emax) as the allowed interval.
The idea is then that, for any "sampling interval" (ei,e2), the number Vn(ei,e2) of configurations
with H„/n £ (ei, e2) should be asymptotically - for large n - about exp(nsei)£2), with a particular
form for the dependence of the exponent sei£2 on the sampling interval. Part 1. of the proposition

says that this behavior does hold for sampling intervals which overlap the allowed interval,
and part 2. says that a natural - and rather strong - variant holds for sampling intervals which stay

away from the allowed interval. It turns out, however, that the asserted exponential behavior can
fail - or at least is much more delicate to prove - if the sampling interval touches but does not overlap

the allowed interval, i.e., if e2 6m;n or ti emax; the proposition says nothing in these cases.
We remark that the proof of this statement depends not just on the "extensivity" of the sequence
of functions Hn in the sense described above; it is also necessary that they "grow at infinity" in an

appropriate way so as to guarantee, in particular, that V„(ei, e2) is finite for all finite n, t\, and e2-

An appropriate general formulation of the growth at infinity condition is given in Ruedin (1994);
we note here only that, in the case at hand, adequate growth at infinity is guaranteed by the fact that

Hn > H^ and that hi(a) grows adequately fast as a —> oo.

The above proposition is a general result, using only qualitative properties of Hn. In the case
at hand, we can be more specific.

Proposition 5.2 For Hn(a\,..., an) — logç„(ai,..., an), we have:

- fmin log 7 (with, as above, 7 ^ o

- ^max — OO,

- s(e) is strictly increasing on (log7, 00), and s(e) —> 00 as e —> 00.

Proof. We have already noted that

qn(au...,an) > qn(l,...,l) Fn « const7".

Hence,

V„(-oo, e2) 0 for large n, if e2 < log7,

and

V„(-oo, e2) > 1 for large 77, if e2 > log7.

From these two assertions it follows that emjn log 7.

We now claim that

sup s(e) —7 00 as «i —>¦ 00.
e<ei
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From this claim, it follows that s(e) is not bounded; hence, since it is concave, that it it is strictly
increasing on its whole interval of definition and goes to oo with e, and these are the remaining
assertions of the proposition

To prove the claim, we begin by considering the sequence qn(p,..., p) for general p £ N+. By
the recursion relation

qn(p, ...,p) =pqn-i(p, ¦ ¦ ¦ ,P) + qn-2(p, ¦ ¦ ¦ ,p)-

It follows from simple standard arguments - generalizing the derivation of the Binet formula for
the Fibonacci numbers, see also §10 - that

qn(p,...,p) ss const -7p,

where 7P is the positive root of the quadratic equation t2 - pt - 1 0, i.e.,

Ip g
(P + ^Jp2 + 4) (~ P Î0TP lar§e-)

Thus, if ei > log 7p and n is large enough,

-log«„(p,-..,p) < eu
n

and hence the same inequality holds for qn(a,i,..., an) provided that all the a; are < p. Thus:

Vn(—oo, ei) > pn for ei > log7P and n sufficiently large.

Taking logarithms, dividing by n, and letting n —> oo gives

sups(e) > logp forei > log7P;

letting ei decrease to log jp gives

sup s(e) > log p.
E<log7p

By letting p go to oo we see that s(e) is unbounded, as asserted, and this completes the proof of the

proposition. We can now in fact say a little more about the behavior of s(e) as e —> oo. Now that

we know that s(e) is increasing, we can simplify the above lower bound to

«(log7p) >logp,

On the other hand, 7P/p —* 1 as p -» oo, so s(e) in fact grows at least as fast as e as e —> oo. D

The next step is to argue that p(ß) is the Legendre transform of s(e) and to deduce analyticity
and strict concavity for s(e) from analyticity and strict convexity for p(ß).

Proposition 5.3 s(e) is real-analytic, strictly increasing, and strictly convex on (em\n, oo). The

function ß(e) —s'(e) maps (em-m, oo) diffeomorphically onto (1, oo); its inverse is e(ß) p'(ß).
For every ß between 1 and oo,

p(ß) sup(s(e) - ße);
e

the supremum is taken on at e t(ß), and nowhere else.
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Proof. The argument is standard, but we give it in detail anyway, since there are a few places where
special features of the situation at hand have to be invoked to rule out pathologies. We begin from
the fact that, since s(e) is concave, it is differentiable except at most at a countable set of points and
its derivative - where defined - is monotone decreasing. We define temporarily

ßmin := hm s'(e) and /?max := lim s'(e),
e_>£min

with the understanding that the limits are to be taken along the set where the derivative exists. Nothing

said so far rules out the possibility that ßmin ßmax. Nevertheless, the microcanonical analysis
leads to

Proposition 5.4 1. Ifßmin < ß < ßmax, then

p(ß) sup(S(e) - ße),

and the supremum is taken on.

2.1fß< ßmin, then

lim -logZn(ß) 4-00.
77—»OO fi

3. Ifß > ßmax, then

where Sq denotes lim£_>£+ s(e).3

P(ß) sQ- ßemin,

Again, we refer to Ruedin (1994) for the proof. The argument is essentially the standard one,
but a little extra effort is needed to work around the fact that Vn(e, oo) is infinite.

It follows from 1 and 2, together with what we know about p(ß), that /?m;n 1. If /3max were
finite, p(ß) would have to be linear from /3max to oo, and this violates the strict convexity of P(ß);
hence, /?max must be infinite. Thus, the Legendre transformation formula

p(ß) sup(S(£) - ße)
e

holds fori < ß < oo, with the supremum taken on. Furthermore, except for at most a countable set

of ß's, the supremum is taken on at a single point. We denote this point by e(ß); if the supremum is

taken on at more than one point - i.e., on an interval of non-zero length - then e(ß) is not defined.

For all relevant e and ß, we have

p(ß) +eß< s(e),

with equality for e e(ß). Out of this we can read the following: Let ßo be such that e(ßo) is

defined; this excludes at most countably many values. Put eo e(ßo)- Then ß h-» p(ß) + ßeo

3We are in fact going to show in §7 that so 0, but we don't need this fact for the moment.
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takes on its maximum at ß ß0, which implies p'(ßo) -e0- In other words: e(ß) -p'(ß)
whenever e(ß) is defined. But the only way e(ß) can fail to be defined is for the graph of s(e) to
contain a linear segment with slope ß, and this implies that e(ß) has a jump discontinuity there.

This, however, is ruled out by the fact that p'(ß) is real-analytic. The conclusion is that e(ß) is
defined for all ß £ (1, oo), and that e(ß) -p'(ß) for all these values of/?.

Substituting into an earlier formula, we thus get the parametric representation

s(-p'(ß))=p(ß)-ßp'(ß),

which, together with the analyticity and strict convexity ofp(ß), ensures that s(e) is real-analytic on
the image of the mapping ß >-> —p'(ß). By continuity, this image is an interval. Since p(ß) —¥ oo

as ß —? 1+, the same must be true of —p'(ß), i.e., the image interval must extend to oo. On the
other hand, the fact that /?max oo means that s'(e) goes to oo as e approaches em;n and hence

implies that there exists a sequence en converging to £m;n such that s'(e„) exists for all n. Denoting
s'(en) by ßn, we get that s(e) — ßne takes on its supremum at e„, i.e., that en e(/?„) —p'(ßn)-
Hence, the image interval also extends to em;n, so the above formula represents s(e) over its full
range of definition. Thus, s(e) is real-analytic where defined, and differentiation of the formula
gives s"(e) < 0 everywhere.

We have just argued that ß i-ì- e(ß) —p'(ß) sends (1, oo) diffeomorphically onto (log 7,00).
We denote the inverse mapping by /3(e); a standard calculation shows that /3(e) s'(e). We then
have:

p(ß) s(e(ß)) + ß ¦ e(ß) for all ß £ (1,00).

This completes the proof of Prop. 5.3

Everything said so far has used only qualitative properties of Hn log qn- We will now make a

first contact with "number theory." The argument is the reverse of what we ultimately want to do -
we will use some classical facts from number theory to prove something about s(e). The argument
is also illuminating as a simple example of how to compute more concrete quantities in terms of
s(e). The question we want to address is:

Question. How does the total number N(q) ofsequences ai,..., on with

q„(ai,...,an) < q

(n variable) behave as q —»• 00

Determining N(q) is almost the same as counting rational numbers between 0 and 1 with reduced-
form denominator < 0. There is in fact exactly a factor of 2 difference between the two question:
A rational number has exactly two continued fraction representations:

- the "standard" one - given by the Euclidean algorithm - which has the form [oi,..., a„] with
an > 2, and

- a second one [oi,... ,an — 1,1]
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(e.g., 1/2 [2] [1,1].furthermore, the number of rational numbers between 0 and 1 with
reduced-form denominator q is exactly <p(q), the Euler (^-function. Thus, we have the exact
formula

N(q) 2Y<p(j)-
7=2

By classical number theory (e.g. Hardy and Wright, 1960, Theorem 330) this sum is asymptotically
a constant multiple of q2. We now proceed to compute the asymptotic behavior of N(q) in terms
of the function s(e); comparing that answer with the one just obtained will tell us something about

We start from the fact that the number of sequences of length n with log qn < ne is, by definition,

Vn(—oo, e). Unraveling the notation: The number of sequences of length n with qn < o is
Vn(—oo, (logg)/n). Thus, the total number of sequences - of arbitrary n-is

N(q) YM-oo,1-^).
77=1 n

Although we have written the sum as running to oo, there are in fact only finitely many non-zero
terms for given q: qn(a,i, ¦ ¦ ¦, o„) > Fn, so

V„(-oo, --ii) 0 for Fn>q,
n

i.e., for

- log Fn> - log q,
n n

i.e., for
n logg

n > logo- — «
logFn log 7

In particular: The number of terms in the above sum is C(log q) for large q. From this, we want to

argue that for our purposes, it is adequate to approximate the above sum by its largest term. The

justification for this assertion runs as follows: For given q, let n(q) be such as to make

W-oo,^)
as large as possible, and put

y(q) ¦= -,—-¦logg

Then y(q) is certainly not much larger than 1/ log 7 for large q. We will argue later that y(q)
converges to a finite non-zero limit as g —> 00; for the moment, we accept this without proof to see

how the rest of the argument goes. The largest term in the sum is then

V„(„)(-oo, -r-r) ~ exp(n(g)s(l/y(g))) exp(r(g) logg)
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where t(q) denotes y(q)s(l/y(q)). Taking logarithms and dividing by log q gives a sequence which
has a chance of remaining of order unity as g —> oo. We can now justify the claim that the largest
term is an adequate approximation to the sum: We have

~ logVn(,)(-oo, -L) < -1- logff) V„(-oo, --Ü))
logg y(q) logg \£i n >

<-^logVn{q](-oo,-^)AO(1^),
logg y (g) logg

so the sequence built from the sum and the one built from its largest term do have the same limiting
behavior in the sense that their difference goes to zero.

We now make a heuristic argument, intended as motivation for a subsequent precise result:
Assuming that 77(g) converges to a limit y*', and assuming also the validity of an obvious exchange of
limits, we would expect that

lim log N(q) lim logVnfal(-oo, —r-r) =y*s(l/y*).
<7->°°logç 6 w ï->°°logg wn y(q)'

Furthermore, n(q) was chosen to make the corresponding term in the sum as large as possible, and

y* is the limit of the 77(g)/ log g's, so it should be at least plausible that

y*s(l/y*) supys(l/y) sups(e)/e.
y e

On the other hand, we showed above that

N(q) « const • g2 so lim log N(q) 2,
9-»oo log q

so, finally, we expect that

fs(l/y*) 2, i.e., sup ^ 2.
e e

With this as introduction and motivation, we formulate the following result:

Proposition 5.5 The function p(ß) has a unique zero, which we denote by ß*. The function s(t)/e
takes on its supremum at e e* := e(ß*). This is the only place where the supremum is taken on,
and the function is strictly increasing to the left ofe* and strictly decreasing to the right. We have,

furthermore,

2 ß* sup -^ lim -— log JV(g),
e e 9->°° log q

where N(q) denotes as above the number ofsequences Oi,..., an (n variable) with

qn(ai,...,an) < q.
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Proof. The logic is:

- We investigate first the problem of maximizing s(e)/e. We show that on the one hand the

supremum is taken on exactly at e(/3*) and on the other hand the supremum is also equal to
ß*.

- We then fill in the gaps in the earlier heuristic analysis to show that

lim log N(q) sup
<7->-°°logg e e

- Comparing with the formula for N(q) in terms of the Euler (^-function, we find

Up -^—logJV^) 2,
<7->co Jogg

which completes the proof.

We will prove later - by quite different methods - the explicit formula

12 log 2'

That s(e)/e takes on its supremum at e*, and that the value of the supremum is ß*, can be
motivated by putting the derivative of s(e)/e equal to zero. For a proof, it is more convenient to proceed
less directly.4 From the fact thatp'(ß) —e(ß) < —log7 < 0, it follows thatp(/3) —> —00 for
ß —¥ 00. We know, on the other hand, that p(/3) —> 4-00 for ß -> 1. Hence, there is a /3* such that

Piß') 0,

and since p'(/3) < 0 everywhere, this ß* is unique. From the Legendre transform

0=p(/3*)=sup(s(e)-/3*e),
e

and the supremum is taken on exactly for e e*. In other words:

s(e) :_ ß*e, with equality if and only if e e*.

Since all relevant e's are > em;n log 7 > 0, we can divide by e to get

s(e)
—— < ß*, with equality if and only if e e*,

which is the desired assertion about where the supremum is taken on and what its value is. To show
that s(e)/e is strictly decreasing with increasing separation from e*, we use the general fact that

(strict) concavity of s(e) on (emin, 00) implies (strict) concavity of

g(y)-=ys(-) on (0, l/em!n).
y

4The argument we are about to give is standard in the application of statistical mechanics to dynamical systems.
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This is true without smoothness assumptions, but can be proved particularly easily in the smooth
case by verifying that

s"(i/y)
g"(y)

y3

Since s(e)/e takes on its supremum at an interior point of its interval of definition, the same is true
for g(y); since g(y) is concave, it is strictly monotone decreasing with increasing distance from the

place where it takes on its supremum, so the same is true for s(e)/e.

This completes our analysis of the behavior of s(e)/e; we turn now to the behavior of N(q) for
large q. We have already given an outline of the argument; what remains to be shown is

;logVn(î)(-oo,-7-T) —> —-,logg ' n(q)'

(where, as before, n(q) denotes a value of n maximizing Vn(—oo, log q/n).) The first step in proving

this is:

Lemma 5.6 Let m(q) be a sequence of integers such that

logg
m(g)

Then

è £ (emin, 00)

1
/ loggv

v
s(e)

l0gVm(g)(-0O,—f-r) '

logg ' m(q) è

Proof. Let ei < t. Then, for sufficiently large q, \ogq/m(q) > eu so

logo
Vm(?)(-oo,—-y) > Vm(,)(-oo,ei),

again for sufficiently large q. Taking logarithms and dividing by log g gives

1
/ logo, rn(q) 1 s(ei)

: logVm(,)(-oo,-fi > t-^-t-t logVm(î)(-oo, ei) —> -^.logg K ' rn(q) logg m(q) e

Hence,
¦ f 1

/ logg^ s(ei)
liminf loglTnfoif—00,—t~t) > —z~-

q^oo logg 6 mWl m(q)' - I
This holds for all ei < ê, and s(e) is continuous, so we can replace ei on the right by è. In exactly
the same way - starting with ei > è - we show that

hmsup- logVm(ï)(-oo, —-r-r) < ——,
9->oo logg v ' m(q) e

and the lemma follows. It is clear that this argument also works, with the obvious modification in
the formulation, if m(q) is only defined for a subsequence of g's going to 00. Cl
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As a consequence of the lemma, we note that the sequence (log q)/n(q) - with n(q) defined as

above - cannot have any accumulation point in (emjn, oo) other than e*. Otherwise, letting n(q) be

a sequence such that (logg)/n(g) —> e*, we would eventually encounter a g for which

v / log°w,, i loS«\
Vfl(«)(-^'^)>V"(«)(-00'%))'

contradicting the assumed maximizing property of n(q).

By the same sort of argument as used in the proof of the preceding lemma, we see that if

hm sup—-- < emin,
9^00 m(q)

then

hmsup- logVm(g)(-oo, —t-t) < hm < sup
q-too logg 777(g) e->e+in e e €

Thus, it is also impossible that (logg)/n(g) have an accumulation point in [0, emin], so the only
remaining possible accumulation points for the sequence log q/n(q) are e* and 4-00. If we eliminate
the second possibility, it will follow that log q/n(q) -> e* and hence, applying again the lemma, that

1 logV„(,)(-CO,—r-r) —> ——,logg w n(q) e*

as asserted.

Lemma 5.7 Let m(q) be a sequence such that

ra(g)
^0

logg

Then
1

/ logg,
log Vm(q) ("OO, ——-,logç w ni(g)

limSUP TZZTZl0SVm(q){-OO, -j-^) < 1

Proof. Fix /3 > 1, and let 5 denote an upper bound for the Zm(ß)xlm. For any m and any real
number r, we get

Bm > Zm(ß)= Y exp(-ßHm(au...,am))
ai,...,am

> ^{exP(~/3^'"(ai'---'a'»)) : flt»(<ii «m) < rm}
> exp(-/3rm)Vm(-oo,r),

i.e.,

Thus,

Vm(-oo,r) < exp(ßrm)Bm.

1 AogVm{q)(-oo,l^-)<p^logB + ß.
logg w '

777(g)'
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The first term on the right drops out as g —»¦ co, so we get

lim sup logVm(q)(-oo, ——) < /3.
9->oo logg w m(q)

Since this holds for all /3 > 1, the lemma - and hence also the proposition - is proved.

We can expand on the above argument to establish a statistical relation between n and ç. Let
emin < £i < e* and let N^ (q,Ci) denote the number of n-tuples Oi,..., on (n variable) with

i \ s a ^QnÌAi,...,an) ^qn(ai,...,an) <q and < eu
n

i.e., with
g„(oi,...,on) < g and n > (ei)_1loggn(oi,... ,an).

The proof of Proposition 5.5 can easily be generalized to show that

lim JLlog7V«)(g,ei) sup^ < ^.?->°°logg 6 w' ; e<[, e e*

Hence, in particular,

hm —-fr—— 0.
9-+00 N(q)

The ratio N^fa, ei)/Ar(g) is the fraction of sequences Oi,..., an with qn < q which satisfy the

further condition that n > (ei)-1 loggn. Thus, we can say that, for g large, the overwhelming
majority of sequences with qn < çhaven < (ei)^1 log qn, and this holds forali ei < e*.

In exactly the same way, we argue that, for all e2 > A, the fraction of these sequences with
n < (e2)_1 loggn also goes to zero as q —¥ oo. Hence:

Proposition 5.8 Let e i < e* < e2. Then for q sufficiently large, an overwhelming majority of
configurations with qn < q satisfy

(e2)~Moggn < n < (d)-1 loggn.

Loosely formulated: For g large, nearly all configurations with q„ < q satisfy n ?» (e*)_1 logg.
We have already observed that the number of configurations with qn < g is twice the number of
rational numbers between 0 and 1 with reduced-form denominator < g; each rational number has

exactly two continued-fraction representations. The two representations of such a number have

lengths differing by one, which is unimportant at the resolution at which we are working. Thus, we
can reformulate what we have shown to say: For q large, nearly all rational numbers with reduced-

form denominator < q have continuedfraction expansions of length « (e*)_1 logg.

After we had obtained the result formulated in the preceding paragraph, we learned that a sharper
assertion had been proved in Dixon (1970). (See also Knuth (1981), §4.5.3, for a readable survey of
work in this direction.) Part of what Dixon proves can be formulated as follows: For any e > 0, and
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for g large, the overwhelming majority of rational numbers r between 0 and 1 with reduced-form
denominator q(r) < q, have continued fraction expansion with length n(r) satisfying

\n(r)-Xiogq(r)\<(logq(r))1^,

where A denotes £—. Loosely: For typical rational numbers r, with large q(r), n(r) differs

from A log q(r) by something not much larger that (log q(r))1^2, whereas our results show only that
the difference is typically o(log q(r Dixon also gives an estimate for the number ofconfigurations
which do not satisfy the asserted inequality. Although Dixon's proof is based on detailed estimates
in the spirit of analytic number theory, rather than the general statistical mechanical ideas we have

used, there are many points of resemblance between his argument and ours.

6 Full entropy

We are now going to explore the possibility of improving, e.g., Proposition 5.8 by replacing the

phrase "the overwhelming majority of configurations with qn < g" by "the overwhelming majority

of configurations with qn « g." This is a version of a standard problem in statistical mechanics:

How thick must the energy shell be to get the microcanonical ensemble to work properly? We

can formulate the question somewhat more precisely as follows: Suppose we choose, for each q,
a quantity S(q) between zero and one, and we let N(q) denote the number of configurations with
Q ~ ô(q) • g < gn < g. If we can show that

lim ; ìog N(q) lim ; logiV(ç),
?->°°logg 9->°°logç

i.e., ifwe can show that the set ofconfigurations withg—ö(g)-g < qn < g has "the same entropy" as

the larger set of all configurations with qn < q, then the argument of the preceding section applies to
show that the overwhelming majority of configurations with q — 5(q) -q < qn < q have n « e* log q.
The question thus becomes: How small can S(q) be without excluding too many configurations? In
particular: Is 6(q) small and constant allowed?

We will cast this question in slightly more general terms: We consider two sequences e^1' and
el2) with

- e*1' < A2) for all n, and

- e^ —7 e, with emin < e < oo,

and we ask for condition sufficing to guarantee

JimllogV„(e(1),el2)) S(e).

The following proposition gives such a condition:
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Proposition 6.1 Let the general setup be as described in theprecedingparagraph, and assume that
en ~ en Soes t° zero, ifat all, more slowly than exponentially in n, in the sense that

-loefe^-et1))
lim SUp -Af^An ^_i < 0

n-ioo 71

Then

}™^ogVn(em,eW) s(e).

Proof. We note first that it is always true that

lim sup - log V„(e« 42>) < lim - log V„(-oo, e™) s(e),
n-^oo Ti n—too 77,

so we have only to prove

Umjnf±logVB(eM>)>S(e).

We can thus assume without loss of generality that e^2' — e^ —> 0. Fix e" < e; we are going to argue
that, for n sufficiently large, any configuration Oi,..., a„_i of length 77 — 1 with

loggn-i(ai,...,o„_i) < (n-l)ê
can be extended, by proper choice of o„, to a configuration of length n with

nen1] < logg„(oi, ...,a„)< ne(2)¦

This will imply
V„(ei1),e(l2))>Vn_i(-oo,e-),

and hence

lhÄJnf ilogV^eW^i2)) > Jim ilogVn_i(-oo,e-) s(e).

This holds for all e" < e, so

liminf^logVn(eW,e(2))>s(e),

which is what we want to prove.

It remains only to prove the assertion about extension of configurations oi,..., an^i with

logg„_i(ai,...,a„_i) < ne".

For any an we have

gn(oi,... ,on) angn_i(oi,..., an_i) 4- gn-2(oi,... ,an_2).

Clearly, by taking an large enough, we can make qn > exp(ne^'). We choose the smallest an which
accomplishes this and show that then qn < exp(ne^), provided that n is large enough. Note first
that

qn qn-2 ^ / / (1) _>,-,
an > exp(n(en > - e)) - 1,

g«-i gn-i
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which is > exp (an) for all sufficiently large n, for an appropriately chosen a > 0. Next,

Çn(oi,... ,an_i,a„) _ .j
'

q„(al,...,an-uan-l) a„ - 1 + ^2-
yn—1

< 1 + 0(exp(-an)).

Hence,

log q„(au..., a„) -logqn(au... ,an - 1) 0(exp(-an));
since - by the choice of an -

logg„(ai,...,an-l) < ne{n\

and since, by assumption,

en ' — en^ ^ exp(—na) for large n,

it follows that

log qn(ai,...,an) < ne^2) for n large enough.

This completes the proof of the proposition. D

It is easy to translate this result to apply to the statistical relation between q and n:

Proposition 6.2 Let S(q) be a sequence in (0,1] such that

y l0g(l/%)) nhm sup —--1——^ 0,
9->oo log q

(i.e., 5(q) goes to zero, ifat all, less rapidly than any inverse power ofq), and let N(q) denote the

number ofconfigurations Oi,..., an with

(1 -5(q))q<qn(a1,...,an) < q. (*)

Then

Um-i-logJV(g)=sup^. (t)
q-+oo log g e e

Hence: For any r\ > 0, andfor large q, the overwhelming majority ofconfigurations satisfying (*)
have continued-fraction expansion of length between (1 — «)(e*)~1 logg and (1 4- 77)(e*)_1 logg.

We omit the proof; it is a straightforward adaptation of the proofs of Propositions 5.5 and 5.8, using
Proposition 6.1. We remark that the condition that 6(q) decrease less rapidly than any inverse power
of q is also necessary for (t); this follows from the elementary upper bound

N(q) < 2 Y J= 0(q25(q)).
j=(l-S(q))q
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7 The third law of thermodynamics

We are going to show here that

Proposition 7.1

lim s (e) 0.
£-+£mi„

In other words: Our statistical mechanical system has no zero-point entropy, i.e., it satisfies the

third law of thermodynamics. There are available general methods for proving the third law; see,
for example Simon (1993) §111.9 or Schrader (1970). Although these methods could certainly be

used here, we will instead give a simple "bare-hands" argument. In general terms, the argument
goes as follows:

- We show that our system has, in a particularly clean sense, a unique ground state and a "mass

gap."

- From this, we argue that the unique Gibbs state aß converges to the point mass at the ground
state as ß —> oo. Intuitively, this means that the entropy of ap should go to zero, and we show
that convergence takes place in a sufficiently strong sense that this expectation is realized.

- To finish the argument, we invoke a version of the "variational principle," saying that the

entropy of Oß is equal to the microcanonical entropy for e tp, where tp means the mean

energy per lattice site in ap. (For this conclusion, we need only the "easy" half of the variational

principle, i.e., the fact that Gibbs states maximize the free energy, and not the converse
assertion that states maximizing the free energy are Gibbs states.)

The heart of the matter is the "mass gap." Recall that the Hamiltonian ofan n-site finite system is

log qn(ai,..., an), and that qn is strictly increasing in each a, separately. Hence, the unique ground
state of the n-site system is the configuration (1,..., 1). Something much stronger is true in our
case: If we start from a non-ground state (oi,... ,an), pick any i for which o^ ^ 1, and replace the

corresponding a^ by 1, keeping all the other a/s fixed, then the energy decreases by at least a fixed
nonzero amount independent of n, i, and the configuration.

Lemma 7.2 There is a strictly positive number tg such that,

\ogqn(ai,...,ai-i,ai,ai+l,...an) > logçn(oi,..., a,-_!, l,a,-+i,.. .an) + eg

for all n, all i between I and n, and all configurations (oi,..., an) with a; ^ 1.

Proof. Since gn(ai,..., at,..., an) is nondecreasing in ai( it suffices to consider a^ 2. We will
write qj for g,-(ai,..., a,-_i, 1, a,-+1, ...aj) (with the obvious simplifications for j < i +1), and we

put

dj := qj(au...,aì-l,2,ai+l,...,aj)-qj for j> i and

dj := 0 for j < i.
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Since

g,(oi,...,Oi_i,2) 2gi_i4-g,_2 and

gi(oi,...,aj_i,l) gJ_i4-gi_2,

we get
di Çi-i-

The di+k satisfy the recurrence

di+k üi+kdi+k-i + di+k-2,

i.e., the same recurrence as the qk(ai+1,..., ai+k). In view of the initial condition

d,-i 0 and di qi-1,

(which differs only by a factor of g;_i for that for qk(<H+\, ¦¦ -, ai+k)), we see

di+k qi-iqk(a,i+i,..., ai+k).

Hence, setting i 4- k n,

Qn(o,i,..., 2,..., an) — qn Çi-i(oi,..., a,_i)g„_,(ai+i,..., an),

so we have only to show that

Qi-l(0-l, -.. ; aj-l)Qn-i(0-i+l, .-¦ ; 0-n)

Qn(o,\, ¦ ¦ ¦ 0,-_i, l,Oj+i, .an)

is bounded away from zero.

(*)

Now let qk andpj. denote qk(ai+ï,..., ai+k) and pk(ai+ï,..., ai+k) respectively. The qk andpfc

satisfy the same recurrence as the qi+k, but with initial conditions

go 1 g-i 0

Po 0 p_i 1.

It follows that

Qi+k gig* + qi-iPk-

Setting k — n — i, we see that we can rewrite (*) as

Qi-lQn-i _
1

g,gn_, + qi-iPn-i Qì/Qì-i 4- Pn-i/qn-i
1

— -, —: Tz— since g, g,-_i 4- gj_2
1 4- qi-2/qi-i A pn-i/qn-i

1

1 + [o,-_i,..., Oi] 4- [cti+i,..., o„]
1

> 3'
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so the assertion is proved D

The next step will be to show, using this lemma, that as /3 —^ oo the Gibbs state converges
to the point mass on the unique ground state configuration in a strong enough way to ensure that
the entropy of the Gibbs state goes to 0. We first need to recall the definition of entropy in the

present context. Let o denote a translation-invariant probability measure on {1,2,.. .}z, and let
h(o,o, ¦¦-, o-n-i) denote the p-probability of the configuration (o0,..., a„-i) in the finite subset

{0,..., n — 1} of the index set ("lattice") Z. We then define

Sn(p)= Y -ß(ao,...,an-i)\ogH(ao,...,an-i),
oo,...,a„-i

with, as usual, the convention OlogO 0. Then Sn is a subadditive function of n, so

lirrin-xx, ^Sn(ß) exists and is equal to inf„ -S„(h)', the common value is the entropy s(h) of o.
We can now formulate:

Proposition 7.3 Let ap denote the unique Gibbs state with inverse temperature /3. Thens(op) —7 0

when ß —» oo.

Proof. We are going to show that, in the notation of the preceding paragraph, Si(op) converges to
0 as ß -> oo; since

0 < s(ap) < ¦ ¦ ¦ < Sn(ap) < ¦ ¦ ¦ < S1(ap),

the assertion follows. We will need some notation related to Gibbs states. For A any subset of Z, we
denote by XA the set of configurations in A, i.e., of mappings A -> {1,2,...}. For A a finite subset

of Z, the interaction gives rise to a function \PA> defined on XA x XAc with the interpretation that

\£a(oa, oa<0 is the sum of the self-energy of the finite configuration oa and its energy of interaction
with the outside configuration oa= .5 A Gibbs state with inverse temperature ß is a probability measure

on Xz with the property that, for any finite A, the conditional probability of finding aA inside
A given that the configuration outside A is aAc is

exp(-ß^A(aA,aAc))
ZA(ß,aAc)

with
ZA(ß,aAc)= Y exp(-ß^A(a'A,aAc)).

a'AexA

It follows from the considerations of §3 that

^A(aA,aAc)-YÌ0S(ai)
ieA

is bounded (for fixed A.)

We apply these considerations in the very simple case A {0}. We define

V(a0, â) := *{0}(a0, â) - *{o}(l, â),

where â denotes a general configuration of Z \ {0}. Then

5Although these individual energies are not unambiguously defined, the sum is unambiguous, at least up to an
additive constant.
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- V(l,ô) 0

- V(ao, ô) > eg for a0 > 1, by Lemma 7.2

- V^Oo, ô) — log Oo is bounded.

We put
Z0(ß,a) := Y exp(-ßV(a0,ä)) 1 4- Y exp(-ßV(a0,ä)).

ao>l ao>l

By the preceding remarks, exp(—ßV(ao, a)) converges to zero for any fixed Oo > 1 and is furthermore

< oo ' (for example) for any sufficiently large a0, all uniformly in ô. Hence, in particular,
Z0(ß, a) —7 1 as ß —> oo. From the definition of Gibbs state, the conditional probability of finding
Oo at the origin given the configuration à away from the origin is

exp(-ßV(ao,a))
Zo(ßAa) '

which converges to 1 for ao 1 and to 0 for Oo > 1, and is bounded by Oq f°r all sufficiently
large ao, again uniformly in ô.

Now let Oß(a0) denote the probability, with respect to the unique Gibbs state aß of having a0 at
the origin. Since this probability is a convex combination of the above conditional probabilities, it
follows that

Oß(l) —t- 1, ap(a0) —7 0 for a0 > 1, as /3 —> oo,

and

ap(ao) < Oq for all sufficiently large a0.

Hence,

-op(ao)logop(a0)

converges to zero with ß —>• oo, for all a0, and furthermore is < aö for all sufficiently large a0

(since —t log t < t1!2 for t positive and sufficiently small.) From this it follows that

oo

si{°~ß) Y -<Jp(ao)\ogap(ao) —> 0 with ß —> oo.
fflo l

It remains to relate s(ap) to the microcanonical entropy. To avoid confusion, we will, for this
section, denote the microcanonical entropy by smc(e); s without subscript means the entropy of a

translation-invariant measure, as defined above.

- from Proposition 4.1,
p(ß) s(aß) - ßt(ß),

where t(ß) denotes the mean energy per lattice site in the Gibbs state ap.
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- from the theory of thermodynamic limits for partition functions and the Legendre transform,
we have

p(ß) smMß))-ße(ß),
where e(/3) is defined as the unique e for which smc(e) — ße takes on its supremum,

- and finally, from a standard argument using Propositions 4.1 and 5.3

m <ß),

Putting all this together, we see that

s(op) smc(t(ß)).

As ß —7 00, one the one hand s(op) —¥ 0 - by what was shown above - and on the other hand, e(/3)
is continuous and strictly decreasing, and converges to zm\n. This completes the proofof Proposition
7.1

8 Joint distribution of log q and the Farey depth

We consider here, in addition to Hn loggn(oi,..., an), the function

F„(oi,..., an) := 01 H \-an

on rf}.. As noted in the introduction, Fn has a number-theoretic significance: It is the level in the

Farey-tree representation of rational numbers at which [oi,..., o„] appears. We will accordingly
refer to Fn as the Farey depth. The sequence of functions Fn is trivially extensive; if interpreted
as an energy, it corresponds to a non-interacting system. We put the two quantities logg„ and Fn

together and regard them as components of a single E2-valued extensive quantity

gn(au ...,an)~ (loggn(oi,..., a„), Fn(au an)).

The theory of the microcanonical entropy of such vector-valued extensive quantities is developed
under technically favorable assumptions in Lanford (1973) and has been generalized to apply to the

present situation in Ruedin (1994). To formulate the results, we will use the following notation: For
J a subset of M2 and n 1,2,..., Vq^(n, J) will denote the number of configurations (oi,..., an),
of length n, with

g(ai,...,an) £J.

The main results are as follows:

Proposition 8.1 There exist:

- a (non-empty) convex open set T>qtp in M2 and
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- a non-negative concave function sqip on 2\f
such that:

- IfJ is an open convex subset o/E2 with J n Vqtp ^ 0, then

lim —log V„ f (n,J) sup sar?(x).
n-*°°n *'

xeJnvq,F

- ifJ is an open convex set whose distance from Vq>p is strictly positive, then Vq^(n, J)
vanishes for all sufficiently large n.

The intuitive meaning is: If (e, /) £ V^F C I2, then there exist, for arbitrarily large n,
configurations with - simultaneously - log qn « n t and Fn « n f; the number of such configurations
is furthermore « exp(nsqtF(e, /)). If, on the other hand, (e, /) is outside the closure of Vq,p, then
(n t, n f) is excluded as a value for (log qn, Fn) for large n. As in the single-observable case, this

proposition evades the potentially delicate question of the behavior of Vg,j?(n, J) when J has
distance zero from VqF but does not actually intersect it. Comparing the defining properties of sQ:f
with those of the single-observable s, we see that

s(e) sup s,>F (c,/).
/

Furthermore, sQif has the following interpretation: If / is any interval for which

supsq,F(e,f) <s(t),
fei

then, for large n, among configurations of length n with qn « exp(ne), only a vanishingly small
fraction have Fn/n £ I. Somewhat less precisely: For large n, among configurations with qn «
exp(ne), the values of Fn/n are strongly concentrated around values of / where s9;j?(e, /) is maximal.

The preceding proposition is a version of a result which holds with great generality. A first
special feature of the particular situation we are considering is

Proposition 8.2 Let (to, fo) £ 2\f> and let fi > f0. Then (e0,/i) £ T>^F, and sqtF(to, fi) >
Sq,F(i0, fo)-

Roughly: s,,i?(e, /) is non-decreasing in / for fixed e.

Proof. For purposes of this argument, we denote by Rs(e, f) the open square of side-length 26

centered at (e, /) £ E2. We are going to argue:

Claim. For sufficiently large n,

Vq,F(n A 1, R2s(eo, /i)) > V„,F(n, Rs(t0, fo))-
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Before proving the claim, we show how it implies the proposition. In the first place, it follows
at once that (e0,/i) must be in the closure of T)qy, otherwise, for small enough 6, Vq^(n 4-

1, R2ö(zq, fi)) would have to vanish for large n whereas Vq^(n, Rs(^o, fo)) is non-zero. By
applying the same argument, with eo moved a little, we see that a neighborhood of (to, /i) lies inside
the closure ofV^p. But VqiF is a convex open set, so this implies that (e0, /i) itself is in Vq>p. It
then follows that s9;F is continuous at (eo, /i) (as it is at (eo, fo))- Thus,

Sq,F(to, /i) inf hm —— logVq,F(n + 1, R2ö(eo, fi)),
ä>0 7l->oo n+1

but, on the other hand, applying the claim again,

lim —— logVq,F(n A 1, Ä2ä(eo, fi))

> lim ——rlogV,,F(n,Äd(eo,/o))
77-»00 fi -f- 1

sup{sqtF(t, f) : (e,/) £ Rs(eo,fo)}

> Sq,F(e0,fo),

so the proposition follows from the claim.

Proof of Claim: Let (oi,..., an) be a configuration with

-(loggn(oi,...,an),F„(oi,...,an)) £ Rs(t0,fo)-

We are going to make a configuration of length n 4-1 by adjoining a single large an and show that,
for sufficiently large n, the augmented configuration always has

(loggn+i(oi,..., an+i), Fn(oi,... an+l)) £ R2s(^o, /i);n4-l
this will establish the claim. We choose an+\ to be the smallest integer with ai +... 4- a„ + an+i >
(n 4- l)/i. Since oi 4-... + an « nf0, it is easy to find upper and lower bounds for a„+i both of
which go to infinity linearly with n (We need to assume here, as we may without loss of generality,
that 6 is chosen small enough so that /0 + o < /i.) Since

gn+l(ßl, ••• i Ö77+1) O-n+lQn 4" Çn-li

we get

On+lÇn < g?i+l < (an+l + IjÇn,

and hence - in view of the growth rate of the on's -
loggn+i loggra + O(\ogn).

Since

-loggn £ (eo-S,t0A6),
n
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it follows that, for n sufficiently large,

—— loggn+1 £ (e0 - 25, e0 A 25),

which completes the argument. D

This gives us at least a rough picture of Vq^F : We know from the outset that it lies to the right
of the vertical line {e emjn}, since smaller values of e are asymptotically excluded without any
condition on F. It also extends arbitrarily far to the right, since s(e) is defined for arbitrary large e.

In view of the preceding proposition, it is a union over e of semi-infinite vertical lines:

2\f {(e, /) : « > «min, / > /min(e)}.

The function /min(e) defined in the preceding formula is convex - since its epigraph T>qtp is - and
hence continuous. It is not difficult to see that /m;n (e) is monotone non-decreasing and not constant;
hence, by convexity, that it goes to oo with e. We will in fact determine /min(e) explicitly in §10;
somewhat surprisingly, it turns out to be piecewise linear.

We turn next to the canonical ensemble. We set

Zn(ß,l)-= Y exp(-ßHn(au...,an)-yFn(au...an)).
ai,...,an

In view of

Hn log Oi 4- h log an + bounded,

F„ - ai 4 Van,

it is easy to see that the sum converges for all ß, positive and negative, for 7 > 0; for /3 > 1 for
7 0- the case already studied - and not at all for 7 < 0. We refer to Ruedin 1994) for the proof
of the following result, which involves only straightforward generalizations of standard results:

Proposition 8.3 I. For 7 > 0,

lim -logZn(/3,7) =:p,,F(/3,7)
77—>00 ji

exists, and is given by the Legendre transform of s9,f-'

Pq,F(ß, 7) sup{s„,F(e, /) - ße - 7/ : (e, /) £ Vq,F-}

2. pq,F(ß, 7) is a real-analytic and strictly convexfunction of (ß, 7) in {7 > 0}.

By "Legendre duality," sqtF is the inverse Legendre transform of pQtF. To be precise:

For (t, f) £ VqtF,
SqAe, f) täPqAß, 7) 4- ße + 7/;

/3,7
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the infimum on the right-hand side is —oo for (e, f) outside the closure ofD^p.

(There are a number of versions of "Legendre duality." The preceding assertions follow from
Theorem 1.6.4 of Simon (1993) and the following observation: We have taken the definition domain
of sQtp to be open. If we extend sqtF to the closure of the domain by defining it at boundary points
to be the lim sup of values at nearby interior points, then the subgraph of the extended function is

convex and closed. Hence, except for a sign, the extended function and the closure of the original
domain form a Fenchel pair in the sense of Simon (1993).)

In particular, if we define

^(/3,7) := -^jf (0.7), /,,*¦(/?,7) := -^(0,7),
for7 > 0 and ß arbitrary, then p(ß,y) + ßeqtF(ßo, jo) +"ffq,F(ßo, lo) has vanishing gradient - and
therefore a minimum - at /3 /30, 7 70- Hence, by Legendre duality, (tqtF(ß0,70), /?,f(/3o, 7o))
is in the closure oiVqiF, and this holds for all (ß0, y0) with 70 > 0. By strict convexity of pqiF, the

mapping

(ß,j)^(e„Aß,j),f9Aß,j))
is open and injective. Its image must therefore lie in VqtF, not just in its closure, and we have

SqAtqAß, 7), fqAß, 7)) P(ß, 7) + ßttAß, j) + ifqAß, l)-

The right-hand side is a real-analytic function of (/3,7), and the inverse of

(ß,j)^(tqAßn),fqAßn))
is real-analytic by the inverse function theorem, so sq,F is real-analytic and, by a straightforward

computation, strictly concave on the image Vq°F of the upper halfplane {7 > 0} under

(ß,j)^(eQAß,j)JqAßn))-

Our next task is to determine the image domain Vq^F of the "analytic" Legendre transform. We
do this in a way which produces some extra information which we will need later.

Lemma 8.4 For any 7 > 0 and any e > emin, there is a unique ß with

eqAß'l) =€-

We will denote this /3 by ß(t, 7).

- ß is a real-analytic function of e, 7.

- /«,f(/3(£, 7), 7) is strictly decreasing in 7.

dsqF
^(e,/?,F(/3,7))=7.
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- For e > emjn, ß(e, 7) —7 /3(e) as 7 —7 0+; convergence is uniform on compact sets in
(«min, Oo).

i/min(e)
7 ->¦ OO

/(/3(e)) 7^0+,/3(e)>2
00, 7^0+,/3(e)<2.

Here, f(ß) means the means value of Fn/n in the Gibbs state with inverse temperature ß
(and 7 0.).

Proof. For fixed 7, eq<F(ß, 7) is a strictly decreasing real-analytic function of /3. We are going to
argue that it converges to emin as /3 —> 00 and 00 as ß —» —00; continuity then implies that it takes

on every intermediate value exactly once, i.e., that /3(e, 7) is defined. For this argument, we use the
fact that tqAß, 7) is equal to the mean value, in the unique Gibbs state for (ß, 7), of the function
-log([o0,Oi,...]).

- An easy extension of the arguments of §7 shows that, as ß -> 00 with fixed 7, the
corresponding Gibbs state converges to the point mass at 1,1,...), in a strong enough sense

to allow us to conclude that tqiF(ß, 7) —> — log([l, 1, •¦•]) emin.

- The difference between — log([a0,...]) and logoo is bounded, so it is enough to show that
the mean value of loga0 goes to 00 as /3 —> —00. By the arguments of §7, the Gibbs state

assigns a probability to a0 which can be written as

ci(/3) exp(-7o0 - ß(\oga0 A c2(ß, a0))

with c2(ß, Oo) uniformly bounded in ao, /3. From this form, it is clear that, as /3 —7 —00, the

probability distribution becomes concentrated on large values of Oo and hence that the mean
value of log a0 goes to 00.

Thus, the existence of /3(e, 7) is established; real analyticity follows from the inverse function
theorem (using the strict convexity of pqA ¦ )•) Strict positivity of the derivative of fq>F(ß(t, 7), 7)
with respect to 7 follows from the strict convexity of pqA ¦ DV a straightforward computation.
The formula

dsqtF,
qAß,l),fqAß,l)) =7df

holds for all (/3,7) by the elementary properties of the Legendre transform; inserting ß for ß and

remembering how /3 was defined gives

-(e,/,,F(/3,7) =7-
dsq,F.

df

As 7 —7 0 with ß fixed > 1, eqAß, l) -+• <-(ß) and the convergence is uniform for /3 is any
compact set in (1,00). Hence, for fixed e > emin and any ßi < ß(t) < ß2,

eq,F(ßi,j) > e(/3) > eq,F(ß2,7) for all sufficiently small 7.
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For 7 small enough so that these inequalities hold, ß\ < /3(e, 7) < /32; this shows that /3(e, 7)
converges for 7 —¥ 0+ to /3(e), and it is easy to see that the convergence is in fact uniform on
compact subintervals of (emin, 00). It is also easy to see that, for 7 —> 0, f(ß, 7) converges to f(ß)
for ß > 2 and to 00 for 1 < ß < 2; the convergence is uniform on compact subsets of (1,00).
Hence, also for 7—7-0, fq,F(ß(^,j),l) converges to /(/3(e)) for e < e* and to 00 for e > e*, as

asserted. G

Proposition 8.5 Vq% {(t,f) £ Vq,F : t > t* or f < /(/3(e)}. Fort > A, f h> stf{e,f)
is strictly increasing and real-analytic on (fmin(t), 00); for tm,n < e < e*, f 1-» sqiF(t, f) is
real-analytic and strictly increasing on (/min(e), /(/3(e))), Zwr constant - equal to s(t) -for f >
/(0W).

Proof. The image under the inverse Legendre transformation of the parametrized curve

71-4 (/3(e0,7),7)

is a vertical segment above e0 in the (t, f) plane which evidently lies T>q°fF. As 7 runs from 0

to 00, the segment is traversed downward. The /-coordinate of the upper end of the segment is

lim7_>0+ /«,F(/3(eo, 7), 7), which, by the preceding lemma is 00 for eo > e* and /(/3(e)) otherwise.
We temporarily denote the lower end of the segment by (e0, /oo)- /00 is evidently > /min(eo); we
want to show that equality actually holds. To see this, we note that / h-> sqAeo, f) is concave
and nondecreasing on (/min(eo), co)- At / fq,F(ß(eo),j), its derivative is equal to 7. Hence,
as / —»• /+, the derivative goes to 00. This is not compatible with concavity unless /«, /m;n.

Furthermore, in the case e0 < e\ the derivative approaches 0 as / —> /(/3(e0)); concavity and

monotonicity then imply that the function must be constant for/ > /. As a consequence: Ife0 < e*

and f > f, then (e0, /) cannot lie in the image Vq°^F of the analytic Legendre transform, i.e., the

set of points above e0 in Vq°fF are exactly those with /mi„(e0) < / < f(ß(t0)). Together with the

analyticity and strict monotonicity of the analytic Legendre transform onto T>q°'F, this proves all the
assertions of the proposition. D

Our intuition about statistical-mechanical systems suggests that fixing the energy - in the
absence of phase transitions - determines all other extensive quantities. In the present context, this

suggests that fixing log qn/n - within some appropriate thickened energy surface - ought to determine

Fn/n statistically. We will argue here, on the basis of the above results, that this is not the

case, if we allow the size of the system to fluctuate. What happens instead is that the typical values

of Fn/n go to infinity as the size of the system goes to infinity.

We consider a g - which will tend to 00 - and a fixed parameter y and denote by p(g, y) the

fraction of set of configurations - of whatever length - with qn < Q which also satisfy Fn < y log q.
Since configurations with qn < q nearly all have log qn « log q, this means roughly the set of
configurations with F„/ logqn < y. The kinds of arguments used in the proof of Proposition 5.5

show that
1 / \ SqAe,ey) s(e)

hm : logp(g, y) sup -^ sup
?->oo log g e e et
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provided that y is large enough so that the line f yt intersects VqtF- We are going to argue that
the right-hand side is < 0 for all values of y, i.e., the probability that Fn/ log qn is < y - given that

qn < q - becomes exponentially small at q —r oo for all y. The argument goes as follows: It is

always true that

SqAe>f) <s(e),
and it follows from Proposition 5.3 that s'(t) —» 1 for e —» oo and hence that s(t)/t —» 1 in the
same limit. Hence, if

sup£îZ(£iJ/£)
e t

is not taken on at a finite e, then it is < 1, whereas supe s(t)/t was shown earlier to be equal to 2.

Thus, the assertion is proved if the supremum is not taken on. Suppose now that the supremum is
taken on, at, say, t\. If ei ^ e*, then

sqAei<yeA < g(fl) s(e*).
— * '

ei ei e*

the last inequality is strict since s(e)/e takes on its supremum only at e*. Thus, the assertion is also

proved if the supremum is taken on at any e other than e*. Finally, if the supremum is taken on at

e*, then we have
sq,F(e*,yt*)

<
s(t*)

t* t* '

since / n-?- sqAe*, f) is strictly increasing on (/min(e*), oo) with asymptotic value s(e*). Thus, the
assertion is proved in this case too, so all cases are covered.

9 The continuum representation

We describe here a neat and convenient representation for the Ruelle transfer operator for our
system. We deviate here from Ruedin 1994), where the theory of the transfer operator is extended to a

general class of systems including the one we are treating. This extension turns out to be technical
and complicated. What we do here is to use the special features of our system to give a simple, if
limited, treatment.

We start from the observation that the mapping

(a0,Oi,...) i—Ï- [a0,ai,...]

sends the space of semi-infinite configurations

fi+:={l,2,...}N

bijectively onto the irrational numbers in [0,1]. We will use this mapping to transport various
objects from the configuration space to the unit interval, where they may be easier to work with. We

start by looking at

- the Gibbs state of the semi-infinite system (index set {0,1,...})
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- the Gibbs state for the two-sided infinite system (index set Z) projected onto the semi-infinite
configuration space.

These are both probability measures on f2+; the second of them is shift-invariant and the first
presumably not. However, as Ruelle observed, the Gibbs state for the semi-infinite system has the

advantage of satisfying a relatively simple equation. This comes about as follows: We can construct
the semi-infinite Gibbs state by

- Constructing the semi-infinite Gibbs state "with one fewer lattice site," i.e., on configurations
labeled by 1,2,3,... rather than 0,1,2,3,.... Because of uniqueness, this is the same as the

semi-infinite Gibbs state of tt+ shifted one place to the right.

- appending a new lattice site at the left-hand end,

- assigning weights proportional to exp(—^4(o0, Oi,...)) to the possible state a0 at the new lat¬

tice site, and

- normalizing.

In other words, the assertion is that

e~A(a°'ai'-i da0o+(dai,da2,...) \a+(da0,dai,da2,...). (*)

Here,

- a+ denotes the semi-infinite Gibbs state

- A(a0,a,i,...) denotes -/31og[a0,Oi,...] (or-/31og[a0,...] 4- 7a0, ifwe are talking about the

two-observable situation.)

- the doj's appearing inside a+ are "symbolic," but the da0 on the left stands for counting measure

on {1,2,...}.

- A - or perhaps its reciprocal - is the normalizing factor.

The left-hand side of (*) defines a linear operator C* from measures on fi+ to measures on Q,+;

(*) says that a+ is an eigenvector for C* with eigenvalue A. Iterating (*) n times corresponds to

adding n sites to the left. It is easy to see, using standard ideas from the theory of Gibbs states, that
the semi-infinite Gibbs state a+ is the unique probability measure satisfying (*), i.e., the unique
probability measure which is an eigenvector of £*. The same set of considerations shows that the

partition function Zn(ß, 7) admits upper and lower bounds of the form cAra, c a strictly positive
constant independent of n; hence, that

p(/3,7) logA.

We now transport this whole picture to the unit interval. We will generally use the same notation
for objects on the sequence space and the corresponding transported objects on the unit interval; for
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example, a+ will also denote the measure on the unit interval obtained by transporting the semi-
infinite Gibbs state. We recall that the left shift

(a0, Ol, 02, • •) I—> (Oi, 02,

carries over to the Gauss map

11—y fract(-).

The construction on the right-hand side of (*) translates into the following: Given a measure p
on [0,1] (assigning measure zero to the rational numbers), we construct a new measure Cp by
specifying that the £*u-measure of any set contained in one of the intervals (l/(a0 4-1), l/a0) is
the integral of e7a°/(a0-M)^ over the preimage of the set in question under t h-> l/(a0 At). Then

cr+ is characterized as the unique probability measure transformed into a multiple of itself by C*.

We now have:

Proposition 9.1 For /3 2 and 7 0,

- a+ is Lebesgue measure on [0,1], and

- The transported projected two-sided infinite Gibbs state a is the Gauss measure i0io 1 + t

12 log 2

Proof. a+ is uniquely characterized by the fact that it is transformed into a multiple of itself by the

operation of the preceding paragraph. To prove the first assertion, it is therefore enough to show that

Lebesgue measure is unchanged by this operation. Concretely, it is enough to show that Lebesgue
measure itself and the transform of Lebesgue measure assign the same measure to any interval J
contained in some one of the intervals (l/(oo 4-1), l/oo), Oo 1,2, In other words, we want to
show that the length of J is the integral of the function (ao + t) ~2 over the preimage of the interval
underi 1-4 l/(a0At), and this follows at once from the fact that the absolute value of the derivative
of 11-4 l/(a0 4-1) is (a0 A t)'2. Thus, the transform of the one-sided Gibbs state is identified with
Lebesgue measure, and the rescaling factor A is shown to be one.

We now turn to the determination of the image of the projected Gibbs measure for the doubly
infinite system under the mapping

(a0,oi,...) i-»- [a0,Oi,...].

We denote both the projected Gibbs state and the corresponding measure on [0,1] by a. From the

general theory of Gibbs states, we know that

- a+ and a are equivalent, i.e., have the same null sets.

- a is ergodic (with respect to the left shift respectively the Gauss map)
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From these facts it follows that a is the only invariant probability measure equivalent to a+. For
ß 2, in the unit interval representation, this means that a is the only probability measure on the
unit interval equivalent to Lebesgue measure and invariant under the Gauss map. But it is well
known - and in any case follows from an easy computation - that the Gauss measure is invariant
under the Gauss map; hence, the Gauss measure must coincide with a. Since e* is the mean value
of — log[oo, ai,...] with respect to the projected Gibbs state, we conclude that

1 Alogtdt1 f1 loi

1or2/o 1log2./o lAt 121og2

It is easy to see that the operator L* on measures described above is the adjoint of an operator
on continuous functions given by

°° p-700 1

(£/)(*) E 7TZ7v»/(;rb>-
ao=l («0 + W a0 A t

This operator - with 7 0- has been studied extensively in Mayer (1990). It is easy to see from
the preceding formula that this operator is compact when restricted to act on a Banach space of
functions bounded and analytic on an appropriate domain. A relatively elementary version of the

Perron-Frobenius theorem applies and says that the eigenvalue of largest modulus is positive and

simple. As might be expected, it can be shown that this eigenvalue is exactly A. Efficient numerical
methods are available for the computation of this principal eigenvalue; this provides an effective
method for the numerical computation of the thermodynamic functions of our system.

10 Determining Vq;F

We need the solution to the following elementary (finite!) optimization problem:

Given n and F, find the maximum ofqn(ai,... ,an) over all configurations with Oi 4 han F.

To formulate the answer, we need to introduce some notation. We write

F mn + r, with 0 < r < n;

in order that there be any configurations at all, it is necessary that m > 1, and this will always be

assumed in what follows.

Proposition 10.1 Ifr 0, there is only one maximizing configuration - the one with üj m for
1 < i < n. For r > 0, the configurations

ai m 4-1, a2 ¦ ¦ • a„_r+i m, an-r+2 • - - on m 4-1

is maximizing, as is its reversal, and there are no others. Thus, there is a unique maximizing
configurationfor r 0 and r 2, and exactly two maximizing configurationsfor each other value of
r.
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Although this fact must be known, we have seen no trace of it in the literature. The proof we have
found is relatively straightforward but neither short nor particularly enlightening, so we will not
give it here. We will nevertheless use the result to get a simple description of the right-hand boundary

of the domain VqtF of asymptotically allowed values for ((log qn)/n, Fn/n).

Corollary 10.2 Let rij —> oo and Fj —7 oo, with

Fj
— —7 p + a, with p 1, 2,... and 0 < a < 1,

Hj

and let Hj<max denote the maximum of\og(qn over all configurations of length rij with Oi 4 h

anj Fj. Then

J'max -> (1 - a) log7p 4- alog7P+i,

h'=^[PA \jp2 A4
where

"v_ :—

Proof. Let Mp denote the 2 x 2 matrix

Then, if q3 satisfies the recurrence

flj+i =pqj + qj-i for j n,..., n + m - 1,

we get

qn+m \ ]\z[m
qn+m-1 J P

A simple computation shows that the eigenvalues of M(p) are 7P (as defined above) and —7"1. We
let $p and ^p denote eigenvectors of Mp and its transpose respectively with eigenvalue jp; we can
take these vectors to have strictly positive entries and to be normalized so that their scalar product
is unity. (There is no particular difficulty in writing explicit formulas Then

M£ jZ%®% + 0(y;n) fornico.

The case a 0 requires a slightly special argument, and we treat first the contrary case a > 0.

Then, if we define rj by
Fj=pn3+rJ, (*)

we get rj —> oo and Uj — rj -^ oo. By Proposition 10.1, and denoting by e0 the 2-vector (1,0),

exp(H,-,max) qn(p + l,p,.. .p, p A 1,. ¦. ,p + 1)

rtj-Tj 7-j-l

(eo.M^M^'Mp+ieo)
%'+ilnP'~r,~1^ $p+i)(*p+i. $p)(*p. M7.+ieo) + o(l)
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Since the coefficient (e0, <3>p+i)(*p+ii *p)(*pj Afp+1e0) is non-zero, it follows that

-ff,\max rj log7P+i + (rij - rj) log7P + 0(1),

so, since rj/rij -> a,

—Hj,mM -> (1 - a) log7p + alog7P+i
n,

as asserted.

For a 0 we can still use (*) to define rj, but this time all we know is that rj/uj —> 0. By
passing to subsequences, we can reduce to the cases

- r3: -> oo, in which case the above argument works as it stands.

- rj —7 —oo, in which case a straightforward modification of the above argument - replacing
P,p4-1 byp — l,p-works.

- Tj=r independent of j, in which case we write

exp(Hj^x) (eo,Mp+1Mp^-rMpr;11e0)

and argue as before.

D

It follows easily from the preceding corollary that the intersection of Vq>F with the horizontal
line / p 4- a is the interval (emin, (1 — a) log7P 4- alog7P+i) In other words:

Proposition 10.3 The right-hand boundary ofVqtF is the polygonal arc consisting ofthe segments
joining (log7p,p) to (\ogjp+l,p 4- l),forp 1,2,....

References

Comfeld, I. P., Fomin, S. V., and Sinai, Y. G. (1982). Ergodic Theory. Springer-Verlag, New
York/Heidelberg/Berlin.

Dixon, J. D. (1970). The number ofsteps in the euclidean algorithm. J. Number Theory, 2,414-422.

Hardy, G. H. and Wright, E. M. (1960). An Introduction to the Theory ofNumbers. Clarendon
Press, Oxford, UK, fourth edition.

Kim, S. and Ostlund, S. (1989). Universal scaling in circle maps. Physica D, 39, 365-392.

Knuth, D. E. (1981). Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, second edition.



948 Lanford III and Ruedin

Lanford, O. E., Ill (1973). Entropy and equilibrium states in classical statistical mechanics. In
A. Lenard, editor, Statistical Mechanics and Mathematical Problems, Battelle Seattle 1971

Rencontres, volume 20 of Springer Lecture Notes in Physics, pages 1-113, Berlin/Heidelberg/New
York. Springer-Verlag.

Mayer, D. (1990). On the thermodynamic formalism for the Gauss map. Comm. Math. Phys., 130,
311-333.

Perron, O. (1954). Die Lehre von den Kettenbrücken, volume 1. B. G. Teubner, Stuttgart, third
edition.

Roberts, J. (1977). Elementary Number Theory: A Problem Oriented Approach. The MIT Press,

Cambridge, MA.

Ruedin, L. (1994). Statistical Mechanical Methods and Continued Fractions. Ph.D. thesis,
Mathematics Department, ETH-Ziirich.

Schrader, R. (1970). Ground states in classical lattice systems with hard core. Comm. Math. Phys.,
16, 247-264.

Simon, B. (1993). The Statistical Mechanics of Lattice Gases, volume 1. Princeton University
Press, Princeton, NJ, USA.


	Statistical mechanical methods and continued fractions

