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Abstract. A natural mapping of paths in a curved space onto the paths in the corresponding
(tangent) flat space may be used to reduce the curved-space-time path integral to the flat-space-
time path integral. The dynamics of the particle in a curved space-time is expressed then in
terms of an integral over paths in the flat (Minkowski) space-time. This may be called quantum
equivalence principle. Contrary to the known DeWitt's definition of a curved-space path integral,
the present definition leads to the covariant equation of motion without a scalar curvature term.
The reduction of a curved-space path integral to the flat-space path integral may be expressed in
terms of a representation of the path group. With the help of this representation all the results

may be generalized to the case of an arbitrary external field.

1 Introduction

The motion of a free classical point particle is described by a direct line in the Minkowski
space-time. The evolution of a quantum point particle may be described by a path integral
in the Minkowski space. According to the Einstein's equivalence principle, a point classical
particle in a curved space-time moves along a geodesic line. The motion of a quantum
particle may be described by an integral over paths in the curved space-time, however the
definition of such an integral is ambiguous. The first definition given by B.DeWitt [1] and
some other definitions lead to the equations of motions differing by the coefficient in the
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term proportional to the scalar curvature R.

It will be pointed out in the present paper that the evolution of both classical and quantum

particles in a curved space-time may be naturally described in terms of the Minkowski
space-time. This description is based on the natural but non-holonomic mapping of curves
in the curved space-time onto the curves in the Minkowski space-time. This results in the
description of a classical particle moving in the curved space-time, by a direct line in the
Minkowski space. The description of a quantum particle is given by the integral over paths
in the Minkowski space, but with the corresponding operator in the integrand. This path-
depending operator may be shown to be a representation of the path group.

2 Mapping of curves and the equivalence principle

It is well known that there is no natural point-to-point mapping of a curved space onto
the Minkowski space. However a natural correspondence exists between the curves in the
Minkowski space and the curves in the curved space provided the starting point of these

curves and (local) reference frame in this point are fixed. To describe this correspondence,
let us identify the Minkowski space M with a tangent space Mx to the curved (pseudo-
Riemannian) space X in the starting point x of the curves, and the reference frame of the
Minkowski space with some orthonormal local frame n {na G Adx : a — 0,1,2,3} in
the specified point x. 1. Let [x] {x(r') € X : 0 < r' < r} be a curve in X starting
in x and ti(t') a result of parallel transport of n along the curve [x\. Then the curve
[Ç] — {£(r') € A4 : 0 < r' < t} in A4 (with £(0) coinciding with the origin of A4) may
be defined unambiguously by the condition that its tangent vector Ç(t'), being expanded
in respect to the reference frame of the Minkowski space, has the same coefficients as the

tangent vector x(t') expanded in respect to the local frame n(r').

As a result, the natural correspondence of curves in A4 (starting in the origin) with the
curves in X (starting in x) is established, provided the local frame n in the point x is given.
Instead of the curve in A4 with the fixed starting point, [Ç] may be understood as a class of
curves differing by general translation, [£] ~ [£'], if £'(t') £(r') + a.

Naturalness of the mapping defined in this way may be formulated as follows: If the
observer located in the space-time point x has to describe the path [x] (in the curved space-
time A) as a line in his "flat map" (with the geometry of the Minkowski space A4), he should
choose the curve [£]. Such a "flat modelling" is defined for an arbitrary curve [x] in X.

Geodesic lines [x] will be associated then with direct lines [£]. This gives a simple
formulation of the Einstein's equivalence principle [2] : local "flat models" for trajectories of a

point particle are direct lines.

2. By the described procedure, a class of curves [£] in A4 and an orthonormal local frame
n € M (M being a fiber bundle of all orthonormal local frames) determine one more local
frame n[£\ e Af by the rule: if n n(0), then n[f] n(r) in the notations introduced earlier.
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Therefore, each class of curves [£] determines a mapping of Af onto itself.

This mapping may be described in a more formal way [3] with the help of the concept
of the basis vector fields in the fiber bundle of local frames. To introduce this concept, it is

convenient to consider the fiber bundle B of all local frames over X. The coordinates xß of
the points in X and the components bß of the vectors of the local frame 6 in this point may
serve as coordinates of the manifold B. Then the basis vector fields Ba are following:

The vector fields Ba are horizontal in the fiber bundle B and their restrictions on the fiber
bundle A/" of orthonormal local frames are horizontal in Af. We shall need these restrictions
rather than the complete fields Ba. For simplicity, we shall denote them by the same letters.

The horizontal vector fields allow one to define, as an ordered exponential of an integral,
the following operator acting in the space of functions on Af:

V\i] PeIB^a lim eB<*A« eB^?. (2.2)
JV—»oo

The set of operators V[£] forms a representation of the path group [4] (generalizing translations).

In terms of these operators, the mapping n —> n[f] may be defined as follows:

(Vm)(n) *(»£]). (2.3)

3 Quantum equivalence principle

Evolution of a quantum particle is described by the propagator which may be expressed in
the form of a path integral. The path integral in a curved space-time may be reduced to the
path integral in the Minkowski space-time but with the operator V[£] in the integrand.

1. To do this, let us describe states of the particle by functions ^(n) on the fiber bundle
of (orthonormal) local frames instead of usual functions ip(x) on the space-time [3]. Both
functions are connected in a very simple way for the scalar particle:

\V(n) ip(x), x ir(n)

where the canonical projection 7r : Af —> X associates the point x with the local frame n in
this point. This definition may be naturally generalized onto the case of a spinning particle:

*(7iA) ^(A-1) \V(n), iP(x) W(a(n)), x ir(n).

Here a is an arbitrary section of the fiber bundle Af, and D a representation of the Lorentz
group describing spin of the particle.
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2.The evolution of a quantum particle may be described by a propagator U(x, x'), but
we shall use the corresponding operator U (for which the propagator is a kernel). In the
Minkowski space-time this operator may be expressed in the form of a path integral

U rdrt-irr?TUr, UT jd[Ç\t(-lli)^dTi"ia V[i] (3.1)

where V[£] is an operator of displacement along the path [£]:

(WHO M - AO. Ae £(r) - Ç(0).

The propagator in a curved space-time may be defined [3] by the same formulas (3.1)
but with the expression (2.2) for the operator V[£], The dynamics of the particle in a
curved space-time is expressed then in terms of the integral over paths in the flat space-time
(Minkowski space). This may be called quantum equivalence principle. The resulting definition

of the curved-space path integral differs from the known DeWitt's definition [1] in that
it leads to the covariant equation of motion with no term proportional to the scalar curvature.

An essentially equivalent though apparently different definition of the path integral in
a curved space has been given in [5].

The operator V[£] which maps flat-space paths onto the curved-space paths may be shown
to form a representation of the path group [4]. With the help of this representation all the
results may be generalized on the case of an arbitrary external field (gauge, gravitational or
gauge plus gravitational fields).

This work was supported in part by the Russian Foundation for Basic Research, grant
95-01-00111a.
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