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1. Introduction

In many physical problems, one has to minimize a G-invariant potential, i.e. a potential
invariant under the action of a symmetry group. In this case a powerful tool is offered by
a theorem of L. Michel [1] and generalizations thereof, see e.g. [2-11]. The purpose of this
note is to discuss just another such generalization, to gauge potentials.

After introducing the appropriate notation, we will briefly recall the content of Michel
theorem and the ingredients of its proof; we will then pass to discuss the infinite dimensional

case, and see that for gauge symmetries one can still use tools not too different from the
original Michel's ones.

Since results as strong as in the finite dimensional case hold only restricting to a subset of
sections (although a structurally stable one) and can be difficult to use to obtain directly
the required minima of a gauge functional, we will also look at Michel's theorem as an
heurhystical tool, allowing one to restrict to a simpler problem whose solutions are, gener-
ically, in correspondence with solution of the original problem (this will be done by means
of the "reduction lemma").

The scheme of the paper is as follows: the whole paper is divided into five parts, each one
composed of three sections (in studying gauge symmetry breaking, we felt obliged to give
some formal symmetry to the paper).

Part I recalls Michel's theorem for critical points of invariant potentials V : M Ç Rn —> R
and the appropriate mathematical tools and concepts (section 2), needed not only for the
proof but also for the statement of the theorem; a short proof of Michel's theorem is also
reported in section 3.

In part II we first extend Michel's theorem to sections and gauge orbits of sections of a
bundle on which a zero-th order gauge invariant functional is defined (section 4); this is

essentially accomplished by introducing an appropriate (and natural) metric in the space
of sections. We then discuss (section 5) in some detail this extension, and how this can be
used in the case of higher order gauge functionals (section 6).

Part III deals with the difficulties arising in the stratification of gauge orbit space: we first
recall some results for the stratification of orbit space for the finite-dimensional action of
a compact Lie group (section 7), then use these to study the gauge orbit space (section 8),
and point out that some restriction is needed in order for a stratification of this to make
sense. We propose such a restriction, to the set of transverse sections (defined there); this
is structurally stable and dense in the set of sections. Even with this, the stratification of
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gauge orbit space is by far too complex to be completely described; we will limit to study
the strata Michel's theorem is concerned with, i.e. maximal ones (section 9).

In Part IV (sections 10 - 12) we discuss how, similarly to the finite dimensional case,
Michel's theorem opens the way to a reduction of the problem of finding critical orbits,
connecting to results of Palais; and if a control parameter appears in the theory, to an
equivariant branching lemma, connecting to recent results of Cicogna.

Part V is different in spirit (which breaks the symmetry of the paper, after all). In facts
we first show how our approach can be extended to take into account base-space, or in
physical terms space-time, symmetries (section 13). At this point we renounce to obtain
rigorous results, and shortly discuss how this could provide a scenario for spontaneous
pattern formation and describe situations of phase coexistence.

Parts I-IV constitute a self contained paper, containing rigorous (and, at least for the
author, interesting) results, which are illustrated by repeatedly analyzing in detail a number
of examples, first introduced in section 7.

The original motivation of the paper was an attempt to understand Blue Phases; although
this is not pursued here, we believe this paper sets mathematical bases for an attempt to
study Blue Phases [12-14] in a rigorous and seemingly original way, along the lines of Part
V, and plan to pursue such an approach in the near future.

As recalled above, the paper connects to recent results of Cicogna [15] for the bifurcation
case; a discussion of equivariant bifurcation theorems general enough to accomodate the
case of gauge symmetries is given in [16,17]; in a related paper [18] we discuss at lenght
reduction and equivariant bifurcation lemma for such a general class of symmetries, and
in particular gauge functionals and nonlinear evolution PDEs.

As also recalled above, the paper re-obtains some results of Palais [19,20]. These were
unknown to the author, who thanks prof. Bourguignon for pointing them out to him
(unfortunately after they were re-obtained). The author believes anyway that the present
treatment of the connection between them and Michel's theorem is original.

Finally, I would like to thank a number of persons for interesting discussions, first of all
proff. Michel and Bourguignon; prof. Palais was so kind to give me some of his time
to discuss the present work during one of his visits in Paris; the mathematical part of
the paper was also discussed with proff. Gallot and Lascoux, while proff. Chakrabarti,
Collet, Doelman, B. Pansu, Peliti and Testa had the patience to listen to, and discuss, my
ideas about physical applications of it. I would also like to thank an unknown referee for
suggesting the remark in section 7 concerning reference [54].
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2. Strata in RN

Let us first consider a (smooth) potential V defined on an N- dimensional real space,

V : RN - RN (1)

which is invariant under a representation A {Ag / g £ G} of a Lie group G acting in R

A9:RN^ RN (2)

V(Agx) V(x) Vx£RN Vff € G (3)

We will be interested in the critical points of V,

W(xc) 0 (4)

Under the representation A, each point x £ RN has an isotropy subgroup Gx,

Gx {geG I Agx x) (5)

It is immediate to see that points on the same G-orbit, i.e. points y, x such that for some

g £ G it is y Agx, have isotropy subgroups conjugated in G:

y Agi =^Gy= gGzg'1 (6)

The set of points of RN having conjugated (in G) isotropy subgroup is called a stratum
[1,2,5] and will be denoted by Ex, with x any of its points,

S, {y £ RN I Gy gG.g-1 g £ G} (7)

We will denote by u(x) the G-orbit through x,

«(*) {y£RN / y A9x g£G} (8)

It follows from (6) that
w(i) Q Sx (9)

so that the stratification of R also induces a stratification of the orbit space il R /G
(the orbit u>(x) will be denoted as w, when thought as a point of f2), satisfying

XL, {J £ n / G„ ffGxff-1 ff £ G, x € eu, y £ J] (10)
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which actually does not depend on the choice of representative points x,y on w,w'.

It is immediate to check that belonging to the same stratum, denoted as x ~ y or w ~ w',
is an equivalence relation.

In the space H of strata of RN one can introduce a partial ordering by

Ex < E„ & Gy gHg-1 ; g £ G, H C Gx (11)

where H is a proper subgroup of Gx and again the relation does not depend on the choice
of the representatives x, y. Analogously, for the space Eq of strata of fì,

Ew < Ew. <£? Gy gHg-1 ; g £ G, x £ u>, y £ u', H C Gx (12)

A stratum in 0, is also called an orbit type.

It should be stressed that strata, both in RN and in Q,, are manifolds [2,5], although U, is

in general not a manifold.

All the above is still valid if instead of RN we consider a manifold M C RN which is
invariant under A:

Ag:M-+M Vy € G (13)

For more details on the material of this section, see [2,5]; other results concerning stratification

will be recalled in sect.7.

3. Michel's theorem

Let V be the set of C°° functions from RN to R invariant under A, i.e. such that V(Agx)
V(x) Vg £G,Vx£RN.

If there is a point x such that dV(x) 0, then necessarily dV(y) 0 Vy £ lo(x), so that
critical points o{V £V will came in G-orbits.

An orbit u> u>(xc) such that dV(xc) 0 VV G V is called a critical orbit for G [1].

To see that these exist, just consider N 1 and G Z-i {e,g}, with Ae : x —> x,
Ag : x —> —x. In other words, every (smooth) even potential has a critical point in the
origin. Analogously, for G SO(N) we have that any rotationally invariant smooth
potential has a critical point in the origin.

A less trivial example is obtained by considering M S2 C R3 and G SO(2) acting in
R3 as rotations around the z-axis,
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(coso
-sino 0\

sino coso 0 1 (1)
0 0 l/

Any invariant potential will have critical points at North and South poles of the sphere
(i.e. at (0,0, ±1)).

The orbit space is isomorphic to the segment [—1,1] (this can be thought as the z coordinate
of the orbit); all the points in the interior of this belong to the same stratum (Gx {e}),
and the extrema x ±1 form another stratum (Gx SO(2)).

The theorem of L. Michel [1] tells that

An orbit is critical for G if and only if it is isolated in its stratum

An orbit is, roughly speaking, isolated in its stratum if one can take a neighbourhood of
u) in Çl which does not contain points of Ew other than w itself.

In order to talk of neighbourhoods in S7, one has to provide it with a topology, which will
be taken to be the quotient topology: the distance of two orbits will be defined by means
of the distance in RN to be

d(üj,Lü') minxeuj.y€u,' d(x,y) (2)

where d(x, y) is the standard distance in RN (or the distance corresponding to the metric
defined on M C R if we deal with this case).

The minimum of (2), whose existence has to be proven, can be seen also as

d(u,Lü') uiiiiX£U,d(x,ui') (3)

where we have introduced the distance of a point from an orbit,

d(x,u') minyeurd(x,y) (4)

If the point y £ u>' for which d(x, y) d(x,uj') is unique (locally), it is called the retraction
of i on u and denoted pu'(x).

The function pu(-) is an equivariant one:

pu(Agx) Agpu(x) (5)

and is therefore also called the equivariant retraction [1,2,5,6,8,21].

Notice that if G is compact, lo, lo' are compact sets, and the minima of (2),(3),(4) do surely
exists, and therefore also the equivariant retraction does exist.
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We stress that for noncompact group orbits the equivariant retraction could very well not
exist, and therefore the concept of an orbit "isolated in its stratum" be ill-defined (that
is why we discussed the concept at some lenght). Besides this, the very existence of a
stratification is not granted for noncompact groups, as it will be discussed later.

Let us now sketch, without going to details [1,2,6,8], how Michel's theorem is proved (for
compact Lie groups).

At any point x £ M, one has a tangent and a normal space to u>(x), Txlj and Nxu>, with

Txu © Nxu TXM (6)

These are linear spaces; in Nxuj we can consider the invariant subspace Nxu Ç Nxu>;

N°xu> {££ Nxu I Ag( e Vy € Gx] (7)

Nxu is also called the slice through x, and Ar°u) the invariant slice through x [5,21] (for
nonlinear group actions the slices are manifolds, tangent in x to these linear spaces [21]).

It should be noted that the tangent space in î 6 w to the stratum Ex is simply, by the
definitions of E* and N2uj,

TXHX Txoj ® JV°w
'Xw!

Now, the gradient dV of an invariant function V has to be perpendicular to the orbit oj(x)
at x

dV(x) £ Nxw ; dV : x -* Nxu C TXM (8)

Moreover, dV must be tangent to E^ ini. To see this consider that for an equivariant
function / : M -? TM,

f(Agx) Agf(x) (9)

and
Gx C Gf{x) (10)

which also means

S/(l) < E, ; f(x) £ Ex (11)

(the equality holds in (10) and (11) if and only if / is one to one [1,2,5,6]), so that

dV(x) £ TxEx (12)

which gives immediately Michel's theorem.

By (8) and (12) we get [4,6]

dV(x) £ N°xu> (13)
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and conversely one can prove that, given an integrity basis [5,21,22,23] for A, Nxu> is

spanned by gradients of elements of the integrity basis [6]. Relation (13) will also be
fundamental in establishing the "equivariant branching lemma", as discussed in the following
(sect.10); see also [15,18].

4. Zero-th order gauge functionals

In gauge theories, one considers functions (gauge fields) defined on a manifold M Ç R"
with values in the Lie algebra G of a Lie group G (the gauge group); if the theory is not
a pure gauge one, one also considers functions (matter fields) from the same manifold M
to a space F in which a representation A of the group G is defined [24-26]. One is then
faced with the problem of minimizing a functional L (the lagrangian), usually expressed
in terms of a local density £,

L
Im
f C(x)dNx (1)

JM

This kind of problem is better set in terms of fiber bundles [26,27].

We should in particular introduce a fiber bundle of total space E, base M, projection
tc : E —? M, and fiber 7r_1(x) F, with structural group G. The matter fields will then
be (smooth) sections ip : M —* E, f(x) £ tc~1(x), of this bundle; the space of smooth
sections of E will be denoted by $,

$ {ip : M —> E / iap(x) x tp smooth}

We should also consider another fiber bundle of total space E, base M, projection tc : E —>

M, and fiber and structural group G, tc~1(x) G. The space of smooth sections of E will
be denoted by T,

T {7 : M —> É I îcy(x) x 7 smooth}

Let us first consider the unphysical case of a zero-th order density C, i.e. assume that the
functional C depends only on the matter fields <p(x),

ip:M-+FCRs (2)

but not on its derivatives, which will be meant by the notation

L= I C[ip)dx ; C:F -* R (3)
JM

and assume that M is compact.



930 Gaeta H.P.A.

To say that C, has a (local) gauge symmetry described by the representation A {A9} of
the group G, Ag : F —> F, means that for any smooth function 7 : M —? G,

C[Ay{x)<p(x)} C[tp(x)} (4)

In other words, we can consider the orbit space (under A) ft F/G. Then ip induces a

ipa : M —> ft, by u(tp(x)) tpn(x), and (4) tells that L can be thought as a functional on
the space $0, of the ipa- (One should anyway pay attention to smoothness problems, see

the remark in section 5).

This can also be seen as introducing a fiber bundle of total space E, with base M, projection
ff : Ë —s- M, and fiber 7f_1(x) ft F/G (notice that now G acts on the fiber as the
identity). Then $ is the space of sections of this bundle,

$ {tp : M —> È I îtip(x) x}

We should try to parallel the construction of sections 2-3 for the space <£, in order to get
an analogue of Michel's theorem in this case. Notice that now the space $ on which G
acts is infinite dimensional, and therefore not compact.

The T-orbit of a section a £ $, denoted ß(a), will be defined as

u>(a) {a' £ $ / a'(x) Ay(x)a(x) j(x) £ T} C $ (5)

where T is the space of smooth sections 7 : M —> E, re ¦ j(x) x of the principal fiber
bundle E introduced above.

The orbit space for sections will be denoted 0 $/T; the orbit i9(<r) will be denoted as

û„ when thought as a point of 0. Notice that 0 corresponds to $ defined above; an orbit
¦d can be seen as a section tp of the bundle E.

T is better seen as a subgroup of the group of fiber-preserving (or gauge) diffeomorphisms
of E,

GDiff(£) {f £ Diff(£) / / : ic~x(x) -» tc~1(x) Vx £ M) (6)

in particular when considering higher-order functionals (as in the following section). This
subgroup is simply given by

r ~ VE {/ £ GDiff(£) / /x /U-1(I) A7(x) 7 G H C GDiff(£)

where fx is the restriction of / to tc~1(x). In the same vein, T can be seen as coinciding
with GDiff(F).

Given a section a £ $, we can define its isotropy subgroup Ya as

r„ {7 £ r / 7 • ° *} C GDiff(£) (7)
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where 7 • a has to be meant as

7 • a a'(x) A7(x) • <y(x) (8)

If a' 7 • a, it is easy to see that

T,, 7T.7-1 (9)

We can therefore define as before a stratification of $, at least formally.

The reason for which this is only formal is that in the case of infinite dimensional groups
one can have a group conjugated to some of his proper subgroups, so that the order
relation could not be well defined. We will assume for the moment that a stratification
can be defined, and defer to a later section (sect. 8) the issue of how to actually do it, and
consideration of the difficulties this can present.

We have seen before that the proof of Michel's theorem relies mainly on purely geometrical
concepts, which are transferred with no harm to the present infinite dimensional setting.
The only exception, i.e. obstacle to an infinite dimensional extension, is represented by
giving a topology to the orbit space. In our case, anyway, we can take advantage of the
fibered structure of the problem, and define a distance between two sections a, a' £ $ as

***(*'a') Ï77Î / dp M*)'*'(*))dx (10)
\M\ JM

where \M\ JM 1 • dx, and dp(.,.) is a distance defined in F.

In order to define a distance in 0, 6 : 0 x 0 —> R+ (here R+ is the set of nonnegative
reals), we can make use of the distance do, defined in ft, see (3.2), i.e. of the equivariant1
retraction pu, by

A(*i,*a) ïir / dü(ßi(x),$2(x))dx
\M\ J M

where $; : M —> ft. In other words, we are defining a distance between sections of E along
the lines of what we have done for sections of E, i.e. by

M*,*a) ]W\JMda (*(*)'**(*))«'* W\LdQ (uj(ai(x)),Lj(o2(x))) dx

and use the isomorphism of 0 with $.

At this point, we can just repeat the proof of finite dimensional Michel's theorem to obtain
its extension to gauge functionals.

We will call a T-orbit w(<r) C $ a critical gauge orbit for F if for every T-invariant functional
L JMC[a]dx, L : $ —» R, oj(a) is a critical orbit for L. This means that Ver £
u(a), 8L[a] 0; or, C(a + tèa) C(a) + 0(e2).
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5. Discussion

We think it can be useful to present some remarks.

The first is that to a smooth section tp £ $ of E can correspond a nonsmooth tp £ $.
To see an example, consider a trivial bundle of base M S1 and fiber F R1; let
x be the coordinate on M and y the one on F; let the group G Z2 act on F as

y —> —y, so that ft R+. The section tp(x) cos(x) is smooth, but to it corresponds
tp(x) w(tp(x)) |cos(x)| which is not such. If wishing to consider continuous groups,
one can instead e.g. consider F R2 and G 50(2).

A little thinking shows also that singular points of sections tp £ $ lie in non-maximal (i.e.
nongeneric, see [2,5] or sect.7) strata of ft [5].

The second remark is quite closely related to this previous one: the careful reader will have
noticed that we defined a distance in the gauge orbit space 0 $/T without defining an
equivariant retraction in $. This is not only due to the fact that what we actually need is

a distance in 0, but actually to an impossibility, as we now shortly discuss.

Given a section tp £ $ and a gauge orbit tf £ 9, a distance of tp from -d can be defined
using the analogous finite dimensional (i.e. on F) concept, see eq. (3.4),

6(tp,d)=^jMd(tp(x),d(x))dx

which also reads, in terms of the equivariant retraction on F,

^V'*9) TTF\ I d(<P(x)>PiHx)Mx)))dx
\M\ JM

Now, an equivariant retraction of tp to d can be defined point-like at any point x £ M, i.e.

on any fiber tc~1(x), as

T$(tp,x) pd{x)(tp(x))

but the section ipr$ defined as

<Pt$(x) T#(<p,x)

can well fail to be smooth even if tp is.

In order to see an example, consider once again M S1, F R1, G Z2 as before. The
orbits in F are made of two points, u(y) {y, —y}, except the singular orbit u;(0) {0}.
Consider in 0 the gauge orbit dx represented by the section a(x) 1. The retraction is
simply

1 if tp(x) > 0
T*1(tp,x)=_l if ^)<0
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(notice that r^,(tp,x) is not defined if tp(x) £ u(0) so that for e.g. the section tp(x)
cos(x), the retraction would be

1 x < 7i72 x > 37I-/2

?'*.(*)-_! ^/2<x<37r/2
No smooth section a £ $ exists such that

6(tp,a) 6(ip,ßi) =raiiit,lc#1S(tp,(T')

Let us recall the main result obtained: the basics facts valid for finite dimensional compact
group action, i.e.

i) The gradients dV of invariant functions V(x) are in TxEx and orthogonal to u>(x) at x;
they lie therefore in N°u CTXT,X.

ii) One can define, by means of the distance defined in the x-space X, a distance in the
orbit space ft X/G; therefore the concept of neighbourhood of a point u £ ft in orbit
space is well defined, as well as that of an orbit isolated in its stratum.

iii) A G-orbit is critical if and only if it is isolated in its stratum (Michel's theorem; it
follows from i) and ii) above).

can be extended to gauge compact group action.

If T is the set (group) of smooth functions 7 : M —» G and $ the space of smooth sections

tp : M —> E, ip(x) £ 7T_1(x), a stratification of $ under the action of T through the
representation A is well defined, and we have for i) — iii) above, the corresponding:

i) The variations 6C of invariant functional densities C[tp] are in T^E^ and orthogonal to
¦â(tp) at tp; they lie therefore in JV°i9 C TVEV.

ii) One can define, by means of the distance defined on the finite dimensional fiber F,
a distance in the space of G-orbits in F, ft F/G; by means of this one can define a
distance in the gauge orbit space (T-orbits) 0 $/T. The concept of neighbourhood of a
point ß £ 0 in gauge orbit space is well defined, as well as that of an orbit isolated in its
stratum.

iii) A T-orbit is critical if and only if it is isolated in its stratum (Michel's theorem; it
follows from i) and ii) above).

It should be noticed that the deduction of iii) from i) and ii), once the concept of critical
orbit has been defined, is immediate.

Point i) is of geometrical nature, and once a stratification has been defined, it does not
make any difference if it refers to a finite or infinite dimensional space as far as this point
is concerned.
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Therefore, as remarked earlier, the extension of Michel's theorem actually consists only in
defining a distance in gauge orbit space; it should be stressed once again that we used in
a crucial way the gauge (fibered) structure of orbits.

6. First order gauge functionals

In most physical cases, one is faced with a first order gauge theory [25-27]; this means that
the functional L and its local density C depend not only on a(x), but on its first derivatives

as well, which is what is meant by the notation

L= f C[tp,dtp]dx= f C[tp(l))dx (2)
JM JM

Notice that under the transformation

a -> 7 • a A7(x)0-(x) (3)

the dßa do not transform covariantly (i.e. in the same way as a does): in facts,

d^a -> d„(7 • <r) (dui) ¦ ° + 7 • {ßpo) (d»A^x))a(x) + Al(x)(d^a(x)) (4)

One can introduce a covariant derivative V^ by

V„ a„ + AAil (5)

A„ : M - Q (6)

where the A^s are called gauge fields (in physical notation) or connection forms (in
mathematical one). Here Ç is the Lie algebra of the Lie group G, and A, the infinitesimal
generator corresponding to the element t] of g in the representation A.

One can check that if
A _» 7A7-1 + (a,7)7_1 (7)

(which means AA^x) -» A7(x)Ayl(i(I)A~(1l) + (9>1A7(x))A~(1l) then Va transforms as

Va -. 7 • (V<r) A7(x)(Va(x)) (8)

i.e. covariantly.
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Usually, in physical problems one starts from a density C(a, d^a) which is invariant under
a global (i.e. rigid, 7(x) 70 const.) gauge transformation A7o, and transform it into
a local gauge one (i.e. a density invariant under local gauge transformations) [25] by
considering C(a, Va, A) C(a, Va) + Ca(A), i.e. by substituting V^a' for d^a1 in £ and
adding the "pure gauge" density

Cg[A{1}] F^F"" (9)

F„„ d„Ay - d„A„ + [A„, A„] (10)

As already remarked, a gauge theory is better seen, in mathematical language, in terms of
fiber bundles [26,27].

To this purpose, we introduce a new fiber bundle of total space E, with base M, projection
7? : E —» M and fiber 7?_1(x) g (this is a vector bundle since a Lie algebra is a vector
space). The gauge fields will then be (smooth) sections AM : M —? E, Ap(x) £ Ç, of this
bundle; the space of smooth sections of E will be denoted as

A= {A: M ^ Ê / tcA(x) x A smooth}

T can be seen as a subgroup of GDiff(F),

T ~ Tg {/ £ GDiff(F) / /x • A(x) 1(x)A(x)7-1(x) + (d^x))^ (x)}

where fx f\ç-irx\ and we have used the notation of (7). We can also define the isotropy
subgroup of A £ A as

TA {7£T /g-A A}

The setting discussed above requires then to consider (sections of) a sum bundle E+
E $ E, with base M, fiber F © Ç and projection ic © 7? (and structural group G).

For our purposes, it is actually more convenient to consider the bundle

E» E(1) ©F(1) E{+]

with base M, fiber F* JF © JÇ and projection ir» 7r(1) © t?(1) die © die. Here JU
is the (first) jet space of U [28,33]; therefore the bundle E» is naturally equipped with a
contact structure [28-32].

The space of smooth sections \* '¦ M —» E*, x*(x) G ^Zl(x)-> OI F* compatible with the
contact structure of F* will be denoted $„.

The sections \ (a,A) : M -+ E+ of E+ induce sections x(1) (<r(1),A(1)) of E»
obtained by prolongation [28,33]; conversely any section x* of F» compatible with the
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contact structure defined in E» is the prolongation of a section x °f F+, x* — X ¦>
and

therefore the sections x* £ $* allow to recover the corresponding sections x é $ x «4 [33].

The group GDiff(F©F) extends (actually, is isomorphic) to the group GDiff(1)(FffiF) C

GDiff(F») of prolongations [28,33] of elements of GDiff(F©F); this can also be seen as the
subgroup of GDiff(F„) which preserves the contact structure of F«, as it will be discussed

in the following.

In terms of explicit formulas, this setting gives back the previous ones: if7 £ T C GDiff(£ffi
Ê) transforms a into a1 7er, then the prolongation 7(1) £ T(1) C GDiff(1)(F © Ê)
transforms a, Va, da, A as

a —» a — 7 • a A7(x)<j(x)

Va - (Va)' 7 ¦ V<7 A7(l)(V<r(x))

A -y A' 7^7_1 + (dj)j
da —> da' f(da) + (^7)17

The advantage of the present setting lies in that L is a zero-th order functional of sections
of Er,, so that we recover the situation of the previous section.

We would like to stress that when considering the variations 6C/Sx, only variations Sx
preserving the contact structure should be allowed. This is satisfied if (and only if) 6x
(SaW^fW), with ScrW^fW prolongations of 8a, Sj [33,34] (see also [48]).

We can now define the isotropy subgroup of a section of E, and therefore of one of E © E.
Let T be the group of smooth functions from M into G:

r {7:M-»G} (13)

which will be seen as a subgroup of GDiff(F © E), by

T ~ rE+ {7+ : ofaO -> A7(I)CT A^iAy-1+(dj)-/-1}cG-Diff(E®E) (14)

(using again the notation of (7))

For a section (a, A) of F © E, we define

IW) {7er/7-a <7, 7A7-1 + (o>7)7-1 A} ranrA (15)

(where the meaning of T„ and TA is obvious).

It is immediate to check that, if

a' a-a ; A' aAa'1 + (da)^1 (16)
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then
T(rr',A') ar(<T,.4)a-1 (17)

In facts, let V TAr; T TA. By definition,

TAT'1 + (dT)T^ A (18)

and one has

(aTa^^'aT^a'1 + [d^Ta'1)}^-1^1
=ar^r-fa_1 +aTa-1(da)T-1a-1 +(öa)a~1 +a(9r)r_1a_1 - aTa'^da^a-1
=a[TAT-1 + (dT)^1^-1 + (da)cfa aAa'1 + (da)a'1 A'

(19)

where we have used (16), (18) and the identity

da-1 -a"1(9a)a-1 (20)

It is trivial that
rCT< 7T.7-1 (21)

so that (17) is satisfied.

One can therefore define a stratification in ($ x A), and any stratum will be the union
of T-orbits. By this, a stratification will also be defined in the space of T orbits 0+
(4/r x AIT).

It is also possible to define a distance in 0+ in the same way (and with the same remarks)
as done for 0: we just have to define, given x — fa> A), x' — (fa A'),

8(x,x') 6(<T,a') + 6(A,Ä)

and similarly for gauge orbits ,d+,,d'+ £ 0+, #+ d x d (the ê are orbits in the gauge
orbit space A/T) we define

6(d+,ô'+) 6{d,#) + 6(6,$)

With this, a distance is defined in ©+. It is clear that we can proceed in the same way for
an n-sum vector bundle.

We have, anyway, to deal with sections x* € $* of F»; to this purpose we will take
advantage of the contact structure in E„.

In order to deal with sections of F«, we just use the fact that JU U © J7[i] (where U^
can be seen as the space of first derivatives of functions f(x) : M —> U [28,33]; if M is



93 8 Gaeta H.P.A.

one dimensional the jet space JU is nothing else than the familiar tangent bundle TU), so

that F* is a 4-sum bundle equipped with an additional structure (the contact structure).

Any section x* X*1' (a^,A^) £ $» can be decomposed as x* (a, Ver, A, dA),
with a(x) : M -? F, (Vr)(x) : M -? F(1], A(x) : M -> Q, (dA)(x) : M -? ^jj. Since

F[i],ö[i] are themselves vector spaces [28,33], we can proceed as before in order to define
the distance 6(x*, X«) °f two sections in $«: with an obvious notation, this will be

6(X; xi) %, *') + *(Vc, Va') + ä(X, A') + tf(0A, SA')

When considering the action of T on $*, we should use the fact that only sections of F*
which are compatible with the contact structure are allowed; this means that 7 £ T acts

on $„ by its (first) prolongation 7^' [28,33].

The subgroup of GDiff(F«) which preserves, in addition to the fibered structure, the
contact structure of F» will be denoted CGDiff(F«); it is clear that

CGDiff(F») {/W / / e GDiff(F+)} GDiff(1)(F+)

(where as usual the superscript denotes first prolongation); we know by this that [33]

CGDiff(F,) ~ GDiff(F+)

T can be seen as a subgroup of CGDiff(F„), by

r ~ r. {/i1» C GDiff(F.) / /. / © / G TE © T~ TE+}

We can now define the isotropy subgroup of prolonged sections in the natural way:

IV) {7 £ T I 7(1) • cfa> cfa>} ; rA(l) {7 £ T / 7(1) • A™ A^}

rx(i) rCT(i) n rA(i)

It should be noticed that the action of 7 both on Va and dA depends on the action of 7
on A.

Clearly, Tx(i) Ç Tx, as 7'1) • x'1^ x'1^ requires in particular 7 • x X [33], but it is
also true that if a function is not changed, its derivatives are neither, so that T^i) Ta,
rA(i) TA and

rx(D rx

We stress that in general Tvo- 7^ T^i), since Va da + Aa, so that T^i) CìT„ =T(rC\TA
Ifa
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Finally, the above discussion allows to reconduce the stratification of $, under T (acting
via A) to that of $ x A. As usual, a stratum in $* will be the union of T-orbits, so that a
stratification in the T-orbit space 0* is defined as well.

We still have to define a distance in 0», but in order to do this we can just proceed as for
0+; with obvious notation,

0.(X.) #(*) x 6(1\Va) x 6(A) x 6(1\dA)

and the distance is defined as

6(6„6'm) 6(6,6') + 6(6W,6W') + 6(6,6') + 6(6(1),6W')

With this, we have defined a distance in the T-orbit space 0» of interest for first order gauge
theories, which we see as zero order theories with an assignement of a contact structure.

The discussion of sections 4 and 5 does therefore apply, and in particular points i) — iii) of
section 5 continue to hold; quite clearly, we could in the same way deal with gauge theories
of any given finite order. This means that Michel theorem for gauge orbits holds as well
for first order gauge theories, as those of physical interest.

We will consider some detailed examples in the following sections.

7. Geometry and stratification of ft

In order to understand the stratification of the space $ of sections of E under the action
of T, one should first get a better knowledge of the stratification of F and ft F/G under
the action of G.

This is actually a classical subject [2,5,21,22], but we will now recall some relevant facts
for the convenience of the reader, following [5]. We remind that F is a finite dimensional
manifold, and G a compact (actually, in physical applications an orthogonal or unitary)
Lie group acting on F by a linear representation A. (It should actually be remarked that
most of these results could be extended to the case of smooth action of noncompact Lie
groups provided they have compact stabilizers, see [54]).

A theorem by Hilbert [5,22] states that there is a finite set of invariant polynomials
{60(x),6i(x),... ,0k(x)} (here x £ F, and we take 00(x) 1), 0t(Agx) 6,(x) Vy £ G,
such that any invariant polynomial P(Agx) P(x) Vg £ G can be written as a polynomial
in the 0's, P(x) P(9(x)). The {Oi(x)} form an integrity basis.

This theorem was also extended to smooth functions [23,37]: any smooth invariant function
f(Agx) f(x) Vy € G can be written as a smooth function in the #'s, P(x) P(9(x)).
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Now, invariant functions separate orbits, i.e. given two distinct orbits w,w' £ ft, there
is at least one function / (invariant, i.e. f(Agx) f(x) such that f(x) ¦£ f(y) for
x £ uj, y £ uj'.

Weierstrass approximation theorem tells that any C°° function can be locally written as

the limit of a uniformly converging series of polynomials.

These two facts tell that the integrity basis separates orbits; in other words we have that
ft is a semialgebraic variety in Rk (a subset of Rk defined by equalities and inequalities
of polynomials); Rk can be thought as the space of values assumed by the polynomials
61(x),...,6k(x).

A semialgebraic variety ft in Rk has a natural primary stratification [37], i.e. can be seen

as the disjoint union of open manifolds of dimensions from k down to 0 (as an example,
a square S is the union of interior points Si and of border dS; the latter is the union of
points on edges F; and border of edges dEi, which are the vertices Vi), so that

ft Uaj!F<a) dimF<a) a (1)

where U denotes disjoint union, and

Ef £ dEf ß<a (2)

The latter relation introduces a partial order in the set {Ef} of primary strata, i.e.
bordering.

It can be proven that the stratification defined in sect. 2, i.e. based on symmetry of orbits
u> £ ft under G (those strata will sometimes be called isotropy strata) follows this primary
stratification, in the sense that connected components of isotropy strata correspond to
union of primary strata, i.e. Ew Ua€A;i6/Ff, for some index sets A, I.

From this it follow in particular two consequences: first, that only orbits in primary strata
of dimension 0 can be isolated in their stratum; second, that nearly all the w £ ft belong to
the maximal dimensional primary stratum, and therefore to the principal stratum (some
care should be taken if ft is not connected).

It can also be seen that more peripheral primary strata have higher symmetry; i.e., the
partial ordering given by the bordering relation coincides with the partial ordering given
by symmetry relations (see sect. 2).

Let us now consider some examples of stratification in orbit spaces (these same examples
will be considered again in the following to illustrate next steps).

Example 1: F R1, with coordinate u £ R1; G Z2 {e,y} acting by e : u —> u ;

y : u —> —u. Then we have u>(u) {u, —u}, and

u>(u) ~ Z2 for u ^ 0 ; w(u) {0} ~ {e} for u 0



Vol. 65, 1992 Gaeta 941

Gu {e} for u ^ 0 ; G„ Z2 for u 0

(clearly, it must be w(u) G/Gu)- The orbit space is ft R+ {u > 0} and we have
two strata:

ftj {ß > 0} ; fto {0} Sfti

Example 2: F R2, G 50(2) acting by the standard representation. We have w(w)
{«' / \u'\ \u\}, so that

w(w) ~ 50(2) for w / 0 ; w(0) {0} ~ {e}

G» {e} for u ^ 0 ; Go 50(2)

The orbit space is ft R+, with strata

Sii {6 > 0} ; fto {0} Sfti

ExampJe 3: F R3, G 50(2) acting as rotations around the third axis, generated
/0 -1 0\

by r j 1 0 0 j. Then, with coordinates {111,112,113} and p(u) uf + «|, we have

\0 0 0/
u>(u) {u' I p(u') p(u) W3 U3}. i.e. a minimal integrity basis (MIB) is given by
61 u\ + u\ 62 U3. We also have

w(«)~ 50(2) for t?i(u)^0 ; w(u) {u} for i?i(u) 0

G„ {e} for t?i(u) / 0 ; Gu 50(2) for t?i(u) 0

The orbit space is ft {61,62 /61 > 0} C R2; there are two strata,

«i {61,62 /6i>0} ; ft0 {tfi,tf2 / 61 0} Sftj

Example A: F S2 C R3 G 50(2) acting as before. Then choose coordinates (a,u3),
a £ [0,2tt], w3 G [0,1], (a,±l) (0,±1) Va. Then w(«) {u' / U3 «3} (a minimal
integrity basis is given by u3 alone);

w(u) ~ 51 50(2) for «3 ^ ±1 ; w(u) {u} for «3 ±1

The orbit space is ft [—1,1] C R1; there are two strata,

ft1 {tf^±l} ; ft0 { +1,-1} Sfti

Notice that here there are two orbits isolated in their stratum, while in example 3 there
are none.
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Example 5: F R3, G 50(2) x Z2, where 50(2) acts as in examples 3 and 4, and Z2

/1 0 0\
by /i I 0 1 0 I ; a MIB is given by {ßi u\ + u\ tf2 «!}• The orbit space is

\o 0 1/
(i {6i,ß2 /ßi >0, î92 >0} Ä+.xÄ+;w(tt) {«7*i(u') *i(«). 62(u') ß2(u)},
so that

w(u) ~ 51 x Z2 for i?i + 0; i?2 ^ 0

w(u) ~ Z2 for »?! 0; i?2 7^ 0

w(u) ~ 50(2) for t9i ^ 0; 62 0

w(u) ~ {e} for i?i 0; <92 0 (u 0)

Correspondingly, the isotropy subgroup is, in the four cases,

Gu {e} ; Gu 50(2) ; Gu Z2 ; Gu G

We have therefore four strata:

fto {6l ± 0; ß2 + 0} F?

ft! {ßx =0; ß2r0}= E1

ft2 {ßi ï 0; tf2 0} Fj
fts {ßi =0; 02 0} E\

One can check that actually

Sfto fti U ft2 U ft3 ; Sfti

Notice that to these relations, also written

fti
fa \fts «0

\ fa
ft2

in terms of bordering relations, correspond the inclusion relations among isotropy
subgroups

50(2)
fa \{e} 50(2) x Z2

\ /Z2

so that the diagram of bordering relations can also be seen as relative to symmetry relations
among strata.
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Example 6: F S2 C R3; G 50(2) x Z2 acting as in example 5. Choosing as coordinates
(a,u3), a £ [0,27r], «3 £ [-1,1], («,±1) (0,±1) Va, a MIB is given by ßi uj, so that
ft {6i} [0,1] C R1. as for orbits, we have

u(u) ~ 50(2) x Z2 for 6i^0,6i^=l
w(u) ~ 50(2) for i?i=0
w(u) ~ Z2 for 0i 1

and correspondingly for isotropy subgroups

Gu {e} ; GU Z2 ; G„ 50(2)

There are three strata,
n0 {ß ^0,6^1} f2
ft! {0 0} E1

ft2 {0 1} F°

8. Stratification of gauge orbit space

We can now discuss the stratification of the space $ and of the T-orbit space 0 $/T;
from now on, subgroups of G conjugated in G will simply be identified.

We will actually discuss a subclass <&t C $ of sections of F, that of transversal ones (this
name will be defined and explained in a moment). Given a section er(x) : M —* F, we can
consider the set of values it takes in F,

Fa {a(x) x £ M} C F (1)

and in an obvious way
ft, K(x) x £ M} C ft (2)

Now, let us consider the primary stratification of ft,

ft U.F? dimFa a (3)

introduced in the previous section. The primary index a(cr) of the section a is the greater
a for which there is an Ef with

ft, n Ff + {0} (4)

A section is transversal if it meets primary strata of dimension ß strictly less than its
primary index transversally.
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We do also define, for the sake of completeness, the set of accessible strata for a, \E\a:

[F]„ {Ff/ft, nF?#0} (5)

Clearly,
Fff U.F? Ef£[E]a (6)

is a semialgebraic variety; the locus of points u),^), x £ M determines a curve e(a) in Ea;
it is immediate to see that for a smooth section a, e(a) is smooth at points belonging to
strata of dimension a(a); it is also immediate to see that for transversal sections, e(a) is

singular (C but not C1) at points on strata of dimension strictly less than a(a).

It should be remarked that transversality is a structurally stable property, and that
transversal sections are dense in $; we stress that this follows from the results recalled
in the previous section about the geometry of ft.

This restriction to transverse sections could seem quite misterious, so let us discuss it.

As briefly remarked in sect. 4 above, due to the fact that the gauge group is infinite
dimensional, the very concept of stratification is quite delicate. Let us show by a simple
example the kind of troubles one is faced with.

In the setting of example 2 of section 7, let the base space be I [0,1], and consider two
sections given by, with v0 a given unit vector in F,

a,(x) e~ l\x-xi) Vo i x < X; ; <7;(x) 0 x > x; ; i 1,2

Clearly, the isotropy subgroups Ti C T of these are

Ti {7 £ T / 7(x) {e} x > Xi) {7 : [0,x,] - 50(2) / 7(Xi) 0}

Now, Ti and T2 are isomorphic but if, say, x2 > x\, then Ti is a proper subgroup of T2.

It is quite clear that this "patology" does not occurr when restricting to transversal
sections. It seems to us that this restriction is sufficent for a stratification to be properly
defined, but we stress that this is not being proved. We will anyway see that in our
examples this restriction does actually suffice to properly define a stratification.

Actually, to the best of author's knowledge, very little is known about the geometry of
orbit space for infinite dimensional, e.g. gauge, groups (see e.g. the problem of Gribov
ambiguity; even the proof that the Gribov region contains representatives of every gauge
orbit is very recent [49]). We will formalize our reasonable guess into the

Assumption: In the space $r C $ of transversal sections, and therefore in &t $t/T, a
stratification is properly defined.
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Actually, we will mainly use only the

Weairer assumption: For the action of T on <3?t, there is a set (possibly infinite or even
continuous) of subgroups Tu which are: i) isotropy subgroups for some a £ <&t; ii) not

contained in any other subgroup satisfying i); iii) such that no proper subgroup T)?' C TM

is conjugated to any T^i In other words, the concept of maximal isotropy subgroup of T
is properly defined.

In the following we will consider only $t; since no confusion will be possible, we will write
- for ease of notation - $ for $t and 0 for ©7-. Should our assumptions be wrong, our
discussion would be purely formal; we believe that anyway it would remain of eurysthical
value, as will be seen in the following. Moreover, as already remarked, they apply at least
to the examples considered here.

Let us first consider a section a such that

\E]a Ef (7)

i.e. such that er(x) belongs to one and the same stratum for all x £ M; then, if Gf is the
isotropy subgroup corresponding to this stratum Ef, T, is the set of functions

r<r {7(x): MyGa}ÇT (8)

(we recall this is a group by (71 • j2)(x) 71(1) • 72(2) )¦

Let us now consider a a such that

a(x) £Ef x £ Di ; a(x) e£° x £ D2 (9)

for Di and D2 domains of M, dim(Z?i) dim(D2) dim(M), with border dDi dD2
B, dimß < dinxDj. Then, called Gi and G2 the isotropy subgroups relative to the two
strata Ef and Ff, we have

Ta C r; {7 : M - G / 7 : Dx -> Gì ; 7 : D2 -? G2} C T (10)

One still has to impose boundary conditions on B; smoothness of 7 requires that

7:B^(GinG2) (11)

(the above intersection is not empty since it contains at least {e}).

Notice that, a priori, the section a(x) maps B to more peripherica! strata, so that one
could think to have 7(x) £ Gßk for x £ B, a(x) £ El, since Eßk £ dEf, El £ dEf and
given the discussion of the previous section; on the other side, dim5 < dimD; amounts to
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the transversality condition, and this together with continuity of 7 gives (11). Finally, for
such a er we get

T„ {7 : M -> G / 7 : Di -y Gì ; 7 : D2 -> G2 ; 7 : B -» Gy n G2} (12)

Remark that for Gy G2 Ga, this amounts to (8); in other words, the transversality
condition implies that "only higher dimensional strata in [E]„ matter", in the sense that
the isotropy subgroup Ta does not depend on the strata of lower dimension, i.e. is insensible
to the values taken by er(x) on the lower dimensional set B C M.

With the previous discussion in mind, it is easy to understand the general situation for
transversal sections. We will discuss the case of compact connected M and connected orbit
space ft, of interest here.

Given a transversal section a(x) of primary index a(a) a, let {Ef i 1,... ,k} be the
set of a-dimensional strata in [E]„, that is, such that

3x £ M I a(x) £ Ef (13)

Then, let Di be the anti-image of Ef by a,

Di {x£M I a(x) £ Ef} (14)

The transversality condition implies that

B M\{Dy U U Dk} dDy U U dDk (15)

and therefore
dimß < dim-D, dimM (16)

Then, if G; is the isotropy subgroup of Ef, we have

Ta {7 : M -» G / 7 : D, -» G,} C T (17)

where the smoothness of 7 implies

7 : (dDi) n {dDi) -> Gi fl Gj (18)

It should be stressed that Ta does depend in a crucial way on the geometry of the ZVs, as
this does fix the "boundary conditions" (i.e. the conditions on B) which the 7 £ Ta have
to satisfy.
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As an example of this, consider the setting of example 5 in the previous section.

Let M 5\ and ay(x) (0,0,sin(x)). Then a(a) 1, [F]s {El,E%}; as for Dy, this
is Dy {(0,tt) U (7T,27r)}, B {0,2tt}. We have therefore

Ti s Tai {7 : 51 - 50(2) / 7(0) 7(0 e} (19)

(since 50(2) fl Z2 {e} in this setting), so that Gi is parametrized by pairs of functions
(71,72) from the interval / to 50(2) which satisfy boundary conditions 'Ji(dl) e.

Let us now consider the section a2 (0,0,sin(2x)). Now 01(a) and [E]a are as before, but
Dy {(0,7r/2)U(7r/2,7r)U(7r,37r/2)U (371-/2,2tt)}, B {0,ic/2,tc,3tc/2}, and

¦ 2 J- o2 {7 : 51 - 50(2) / 7(0) 7(t/2) 7« 7(3tt/2) e} (20)

so that T2 is parametrized by quadruples (71,72,73,74) of functions from the interval /
to 50(2) which satisfy boundary conditions 'ji(dl) e. Therefore, a priori (i.e. without
considering the requirement of smoothness of 7), we have Ti Ç T2.

Notice also that there is a "basis space" 51 symmetry associated to this problem; this is
broken to Z2 for eri and to Z\ for a2; basis space symmetry will be shortly discussed in
the last part of this paper.

By looking at this setting, with M an higher dimensional manifold, one gets easily
convinced that an explicit stratification of 0 <S?/T is extremely complicate and difficult to
describe. We will not attempt such a description here, but will instead concentrate on
the description of most singular strata, i.e. those corresponding to maximal isotropy
subgroups. These are also the strata on which the extension of Michel's theorem given above

can be applied.

It should be stressed that maximal isotropy subgroups are not always the only ones
corresponding to most singular strata: the hypotheses that they indeed are is known as the
maximal isotropy subgroup conjecture, and is now known to be in general not true. A
complete discussion of it, including identification of the cases (i.e. of the groups) in which
it holds true, has been given recently by Field and Richardson for compact Lie groups
[50-53].

9. Maximal strata in gauge orbit space

Let us consider again the action of G on F by the representation A {Ag g £ G}. Under
this action, G will have a number of maximal isotropy subgroups (MIS) GM, p. 1,... ,s,
i.e. of subgroups GM Ç G such that 3z £ F / Agz z Vy £ G^, and there is no subgroup
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G* CG such that G,, C G* and G* is an isotropy subgroup. (We stress that the concept
of MIS depends on both F and A, for given G).

The set ft,, {u £ ft / Agz z Vz £ w, Vy £ G,,} will correspond to a maximal (i.e.
minimal dimensional) stratum.

A section a such that a(x) £ ft,, Vx £ M (i.e. ftff Ç ft,,) will admit as symmetry group

r„ {T:M^G„} (1)

The groups TM C T, for G,, a MIS of G, are MIS of T. In facts, to have T,, C T', T' must
contain 7's such that for some x € M, f(x) £ G\G^, But we know that every y such that
3z I AgZ z must belong to some G,,, /z 1,..., s. Therefore 7 £ T can belong to the
isotropy group of some section only if

7(x) £ U„=i SG„ (2)

Suppose now that for x £ M f(x) belongs to at least two different GM's, 7(x;) £ Gi,
Gi 7^ Gj for i f/f j, and let Mi {x £ M j j(x) 6 Gi). Then necessarily there are points
x £ Mi fl Mj; due to smoothness of 7, in these 7(x) £ Gi fl Gj.

Now, the functions 7 : M —» G / 7 : Mi —» Gì can be seen as n-ples of functions 7;
defined on Mi with vales in G,, each of them subject to appropriate boundary conditions:
on Mij Mi fl Mj £ dMi, 7 : Mij —» Gi fl Gj. Clearly for no distincts i, j one can have

Gi C Gi fl Gj, for the G,, are MIS. This also means that it is not possible to find an
isotropy group T' C T such that T,, C T'.

We stress that the above argument shows that all the T,, of the form (1), with G,, a MIS
of G, are maximal isotropy subgroups of T, but in general not all the MIS (even on the set
of transverse sections) need to be of the form (1).

In the same way, one can see that given a stratum Ew C ft, with isotropy subgroup Go,
the sections a such that

«»(«) € Sw Vx G M (3)

have isotropy subgroup
r0 {7€r/7:M-+Go} (4)

Let us go back to MIS: if in the stratification of ft by G EL ft,» is a maximal stratum
(i.e. minimal dimensional, corresponding to a MIS), we have just seen that

$„ {a £ $ / a : M -» ft„} (5)

form a maximal stratum with isotropy T,,. In other words,

0, $far (6)
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is a maximal stratum in the stratification of 0 by T. (Remark that actually 0M

$M/(T/T^), as Tß is the identity on <$,,).

Now, let us assume that u> £ ft is isolated in its stratum; it is immediate that 0 G 0, where
0 is the gauge orbit of sections a / a(x) £uVi€ M, is isolated in its stratum (recall that
0 is equipped with the topology induced by the topology of ft). This gives a constructive

way for determining some (not all, in general of the critical gauge orbits.

We will summarize our discussion as follows:

Theorem: Let Gi Ç G be a MIS for the action of G on F by the representation A, and
let ft F/G. Then

i) Tj {7 : M -? Gi} is a MIS of T;

ii) The set Gy {6 / ui ¦ a(x) : M -> fti Vx £ M Vct £ 0}, where fti {w / Agz zVz £
u> Vy £ Gi}, is a maximal stratum of 0;

iii) If ojo is isolated in its stratum ftj, then 0O, the gauge orbit such that any section a(x) £
Wo Vx G M belongs to 0o, is isolated in its stratum ©i;

iv) As a consequence of iii), for every critical orbit lo0 £ ft there is a critical gauge orbit
0o G ©.

Let us now consider some examples, following (also in the numérotation) those given in
sect. 4.

Example 1: The section a0(x) 0 constitutes a stratum Eo C 0, with isotropy subgroup
To {7 : M —> G} T (notice that, due to the discreteness of G, these are actually
constant functions). All the other transverse sections form the principal stratum Ei C 0,
with isotropy Ti {7(x) e}.

Example 2: As in example 1, ero(x) 0 is the only section in the stratum Eo, with
isotropy To T; all the other transverse sections are in the principal stratum Ei with
isotropy Ti {7(1) e}.

Example 3: The section a(x) : M -» ft0 have isotropy T0 T - {7 : M -> 50(2)}; these
form a stratum Eo C $, to which corresponds Eg C 0, isomorphic to {0 : M —> R} ~ Eo-
The other transverse section have a(a) 2 and form the generic stratum Ei with isotropy
Ti {7(x) s e}. Notice that for a £ Eo, a(a) 1 and in facts there are no sections
isolated in their stratum.

Example 4: The sections a±(x) (0,0, ±1) form a stratum Eo with isotropy To T
{7 : M —» G}. AU the other transverse sections belong to the principal stratum Ei with
isotropy Ti {7(x) e}. Notice that now a± have a(a) 0, and are indeed isolated in
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their stratum.

Example 5: The section a<y(x) (0,0,0) form a stratum Eo with isotropy To T {7 :

M —> G 50(2) y. ZA}; notice that a(ao) 0 and ao is in facts isolated in its stratum.

The transverse sections with a(a) 2, i.e. such that Fj G [E]„, have isotropy T2

{-y(x) e).

There are two one-dimensional strata, Ej and E\, in ft; therefore we have several possibilities

for a's with a(a) 1. Two strata E|, E2 are made of sections such that only one of the

Ej is in [E]a; they have isotropy T\ {-y(x) : M -> Z2} and Tj {y(x) : M -> 50(2)}.

As for the sections such that both E\ and F2 are in [E]„, notice that since 50(2)flZ2 {e},
necessarily on the domain Di C M, Di {x / ui(a(x)) £ E{} we have 7(x) e V7 £ To-,

so that if D2 {x / u>(a(x)) £ E\} C M is the disjoint union of subdomains D2, k

1,... ,K, Ta is made up of Üf-ples of functions 7* : Dk —> 50(2) with boundary conditions

7* : dD\ -» {e}.

Example 6: Here, the sections a± (0,0, ±1) form a stratum Ej with isotropy T\
{7 : M —* 50(2)}. The sections a(x) (z(x),w(x),0) form a stratum E2 with isotropy
Tq {7 : M —» Z2}; the other transverse sections form a stratum Ei with isotropy
Ti {j(x) e}.

10. The equivariant branching lemma

One of the most fruitful applications of Michel's theorem in finite dimensional case is to
symmetric bifurcation theory [38,8,10,11]; this is done by means of the so called equivariant
branching lemma (EBL), first proved for bifurcation of stationary solutions [9,39] and
extended later to other types of bifurcations [40,41,11,15,17]. We will consider it only in
the stationary and variational settings. A related full discussion is given in [18]

We have seen before (sect.3) that

VV(x) £ N°u(x) (1)

If we denote by Wx the space on which Gx acts trivially,

Wx {y G M / A9y y Vy € Gx} Ker Gx Ç M (2)

we have immediately
W(x) £ TXWX Vx € M (3)

Notice also that for linear representations the linearity of A implies that if M is embedded
in Rm, Wx is the intersection with M of a linear subspace om Rm, Wx Rd^ D M.
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When considering gradient dynamical systems, i.e. of the form (V an invariant potential)

x< F-(x) ^M XG.R" (4)

x F(x) W(x)
equation (3) means that Wx is invariant under the flow of (4), that is

x(t) € WZo Vt > U x(t0) x0 (5)

This is therefore called the reduction lemma (RL):

Reduction lemma: The solutions of (4) with initial datum xo are also solutions of the
restriction of (4) to the linear subspace Wo WXo.

In other words, one is authorized to study the reduced system x F(x), x £ Wo

Rd d<N, where F F|w0.

In the variational setting, the reduction lemma is most concisely expressed by eq. (3); in
other words, one has the

Reduction lemma (variational case): The point xo G M is critical for the invariant potential
V(x) if and only if the projection of VV(xo) on Wo vanishes; equivalently, if and only if
(y, VV(x)) 0 Vy £ TXW0, where is the scalar product in Rm.

From the RL, it follows at once the EBL; in this case, the variational formulation is - in a
sense which will be clear in the following - much more powerful than the general evolution
one.

In the generic case, we will consider

x=F(£,x) x£M Rm (6)

where £ is a parameter, £ £ R, and F : R x M —> TM is an equivariant vector field (i.e.
F(£,Agx) AgF(£,x) Vy £ G), smooth in both arguments. F will also assumed to be

confining, i.e. it exists a compact B of the same dimension as M such that, if n(x) £
TXM x G dB is the unit tangent vector pointing outward of B, then (n(x),F(£, x)) <
0 Vx G dB W. We have then

Equivariant bifurcation lemma: Let G admit an isotropy subgroup Go with dimFix(Go)
1 where Fix(Go) Wo {x G M / Asx x Vx G Go}. Then, it exists a smooth family
of stationary points x0(^) £ Wo under (6).

Remark that the assumption about (x,F(£,x)) on dB could be replaced by an analogous
assumption on points x_,x+ on dl, with I a nonempty interval in Wo-
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Remark also that we assumed M Rm in order to conform to the usual bifurcation-
theoretic setting: there (6) represents the bifurcation equation, living by construction in
(a neighbourhood of the origin in) Rm. One could as well consider M a general manifold;
in this case, anyway, a one-dimensional Wo could be diffeomorphic to 51 rather than to
R1, and no stationary solution exist. In this case, it is opportune to drop the confining
condition, and use instead an analogue of the above mentioned one: i.e. we ask that the
one dimensional submanifold Wo C M contains an invariant (under x F(£, x)) interval
/o C Wo.

Let us now discuss the variational case; i.e., we look for critical points of the invariant
potential V:

VxV(£,x) 0 x£M (7)

or, equivalently, stationary solutions of

x F(£,x) VxV(£,x) (8)

Here again £ £ R1 is a real parameter, V is assumed to be smooth in both arguments, and
invariance means

V(£,Agx) V(e,x) VyeG (9)

We can now allow M to be of infinite (but numerable) dimension. We have then that:

Equivariant bifurcation lemma (variational case): Let G admit an isotropy subgroup Go

such that dimWo d < oo where W0 Fix(G0) {x £ M / Agx x Vx G G0}. Then,
if it exists a d-dimensional compact set B C Wo (topologically, a ball), such that VV(£, x)
points outward of B for all x G dB, W, then it exists a smooth family of critical G-orbits
ui(£) C B C Wo for the potential V; each point x G w is a minimum for V.

Obviously, we could as well consider VV pointing inward on dB, and grant the existence
of a maximum.

The proof of the lemma is immediate: the reduction lemma allows to reduce to Wo, but
now we can further reduce to B; this is a compact set in a finite dimensional space, and
F is a confining potential for B (due to the assumption VV points outward of B on dB).
Therefore V has a minimum in B.

Remark that the restriction V of V to Wo will exhibit some invariance: in particular, it
will be symmetric under N(G0) {y G G / gGog'1 Go} {y G G / A3 : W0 -> W0}
(see e.g. [11]), the normalizer of Go in G. Actually, Go acts trivially in Wo, and is normal
by definition in JV(Go), so that the symmetry of V inherited by the G-invariance of V
corresponds to the group

D0 D(Go) N(G0)/G0 (10)

Therefore, critical points of V appear in D0-orbits, and that is why in the statement of the
lemma we have a critical set - which is actually a Do-orbit - rather than a critical point.
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Remark also that V could possess other symmetries beside those described by Do, as a
result of the reduction process. For a discussion of this matter, we refer the reader to
[10,11,17,42].

11. A reduction lemma for gauge invariant functionals

The EBL has recently been generalized by Cicogna [15] (see also [43]) to the case of
symmetry under general (i.e. not necessarily linear) diffeomorphism groups; his approach
can be readily applied to the case ay hand, i.e. to gauge symmetries.

We stress that the gauge group G is assumed to be a compact finite dimensional Lie group,
the fiber F to be finite dimensional and the action of G on F to be linear; we will not repeat
this caveat in our statements, but these statements are false if we drop these conditions,
i.e. if extended to more general cases (see also [19,20]).

Let {uy, ...,un} be a basis of F, and {xi, ...,xm} coordinates in M Ç Rm. One can consider
the Lie algebra Ç of G; let {Ly,..., Lk} be a basis of Ç: the Li can be represented as linear
differential operators of the form

i(0

A% and

L, A(;\u)dj (1)

where dj d/du} and A' (u) is linear in the u; i.e. A^ can be represented by a matrix

Li (A$xfc) dj (2)

An arbitrary element rf oî Ç can be written as a linear combination of the Lf.

r) akLk ak £ R (3)

Now, an arbitrary function / : M —> g can also be written as a vector function tp : M —» Rk,
by

k

f(x) ]C Vj(x)Li <p(x) ¦L (4)

i=i

The above representation shows that T is a module [44] (over the ring of functions on M),
and is generated by the constant functions fi(x) Li, i 1,..., k.

In facts, we have just seen that a(x)?yi + ß(x)r}2 £ T if 771, rj2 £ T, and that any 7 £ T can
be written as 7 tp1 ¦ Li. Moreover,

[71,72] WlLt,^Lj] (^(xW(x))[L„L3] ^(x)^(x)cljLk Xk(x)Lk (5)
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where the fa are the structure constants of the algebra Ç.

Now we will consider a function C(x, u), C : M x F —+ R, such that

7-£ 0 Vyer (6)

This means that at fixed x, C(x0,u) is invariant under G, i.e. C(x0,Agu) C(x0,u)
Vy G G, Vx G M.

We recognize the setting of the previous section: x can be thought as a multidimensional
parameter and (6) just reflects the G-invariance of the "potential" C. One just has to remark
that the discussion of the previous section survives the extension from one-dimensional to
m-dimensional parameter space; then we conclude it holds the

Reduction lemma (variational gauge case): Let L[tp] JM C[tp(x)]dx be a gauge invariant
functional with gauge group G. Let the group G admit a Lie subgroup Go with Wo

Fix(Go) {uGF/A9u uVyGGo}. Let $0 C $ be the set of sections such that
cr(x) G Wo Ç F Vx G M, and let L0[tp] JM Co[tp(x)]dx be the restriction of L : $ —> R
to $o- Then, a section a G $o is critical for Co if and only if it is critical for L.

It also follows immediately the generalization of the EBL:

Corollary (existence lemma): Let L, C, G, Go, Wo, F be as above, dimWo d < oo,
and let Wo contain a nonempty compact subset B C Wo of dimension d such that the
vector VuC(x,u) points outward of B on dB Vx G M. Then there is a local section

a : M —> F, a(x) £ Fx (Fx is the fiber through x) which is entirely contained in Wo, i.e.

cr(x) G Wo C Fx Vx G M, and which is critical for the functional L : $ —» R.

We remark that the section whose existence is ensured by this corollary could happen to
be trivial, a(x) 0. If the trivial section is a local maximum for L, the same reasoning
leads to affirm the existence of a local section ao(x) £ Wo which is a minimum.

We stress that the existence of global nonzero sections (and a fortiori of global sections if
the fiber is not a linear space, e.g. if the fiber is the group itself) cannot, quite obviously,
be granted on purely algebraic terms and would require a topological discussion, out of
the scope of this paper.

We remark also that one could introduce in C(x,u) a dependence on a control parameter
£ and consider bifurcations of critical sections of Li[tp] JM Ct(x, tp(x))dx, but this is

beyond the scope of the present paper; the problem will be dealt with in [18].

12. Some examples of reduction

We would now like to briefly see some examples of applications of the above reduction
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lemma for some of the group actions already considered in sections 7 and 9; we will follow
the notation and numérotation employed there.

For physical reasons, one is mainly interested in the case C Co + £y, where

AM i(vv)2 |j3(vv,)(vVi) (i)
i

and Co is a polynomial of degree < 4 in the <^>i's, and independent of x G M; we also
denote Co[tp] by V(tp). We will always tacitely assume that Co[tp] —> oo for \tp\ —> oo.

Example 1: Here tp(x) £ F R1; the invariance of C under G — Z2 implies V V(tp2).
The space Wo invariant under Go G is Wo {0}, so that the RL and its corollary just
say that tp(x) 0 is a critical section.

Exampie 2: Here tp(x) £ F R2; the invariance of £ under G 50(2) implies V V(tp2).
The space Wo for the MIS Go G is again Wo {0}, and tp(x) 0 is a critical section.

Example 3: Here tp(x) £ F R3; invariance under G 50(2) implies that, with obvious
notation, V V(p2,tp3), where p2 tp2 + tp2. The space Wo for Go G is W0

{(0,0,(^3)}, and it is easy to see that on Wo indeed VV(x) £ TxWo. We can therefore
consider the restrictions Vo(tp3) V(0,tp3), C (l/2)(Vtp3)2 + V0(tp3) and Lo[v>3]

JM C[tp3]dx, whose critical points are also critical points of L; conversely, critical sections

ip of C such that tp(x) £ Wq Vx £ M are clearly also critical sections of C.

Example^: Here tp(x) £ F R3; now there is a relation among tp3 and p2, i.e. tp\-\-p2 1.

Now for Go G 50(2), we have W0 {(0,0, ±1)}, and the RL tells that the sections
a±(x) (0,0, ±1) are critical.

Example 5: Here tp(x) £ F R3; invariance under G 50(2) x Z2 implies that V(tp)
V(0y,02) (see sect. 9); apart from G0 G with W0 {(0,0,0)}, the MIS are Gi 50(2)
and G2 Z2. These have Wi {(0,0,tp3)}, to which it corresponds 6y 0, and W2

{(<f>i>¥>2,0)}, to which it corresponds #2 0. We stress that, a priori, the critical sections
eri(x) G Wi Vx G M whose existence is ensured by the RL could be trivial, ai(x) 0, since
Wy C Wo, W2 C W0.

We will consider this example in some lenght. Let us consider the general density C

satisfying the constraints stated in the beginning of this section, i.e.

C[tp}=Cy[tp} + Co[tp] (2)

with

cM \J2iS^)2 (3)
1=1

!,„„ „ 1

^o W\ - ^ (£0i +p62) + ^(a02y+b0l+ cOy 62 (4)
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where a > 0, b > 0, e2 < 4ab.

A section tp £ Wi satisfies tp3 Vtp3 0, and we get

2

A !DVV')J-^i + ia*? (4)
!=1

while for tp £ W2, ipi tp2 0 and

C2 \(Vtp3)2 - l-w\ + l-hp\ (5)

The Euler-Lagrange equations

give then in the two cases

dtpi d(Vatpi)

Atpy =-£tp1 + a(tpj + tp\)ipy

Atp2 -£tp2 + a(tp\ + tp\)tp2
(7)

and
Atp3 -\xtp3 + btpl (8)

where A (Va • Va) is the Laplacian.

The existence of nontrivial solutions to (7), (8) depends on the base space M and on
boundary conditions (i.e. on the global structure of the bundle F of base M and fiber F),
but it is easy to imagine M's such that these exist (e.g. M S1, S2, T2,...).

Example 6: Here tp(x) £ F R3; now there is a relation among 9y and ö2, i.e. 6i+92 1.

With the notations of the previous example, Wo is now empty (i.e. Go G is not an
isotropy subgroup), Wi {(0,0,±1)}, W2 — {(tpi,tp2,0) ; tp\ + tp2 1}, so that when
applied to Gi 50(2) the RL just tells that the sections tp± (0,0, ±1) are critical;
applied to G2 Z2, the RL ensures the existence of a local critical section lying entirely
on the 51 circle W2.

We stress once again that what the RL tells is just that if a critical section exists for the
restriction Ci of C to Wi, then it is also a critical section for C. The global existence
of sections depends on the global structure of the fiber bundle, and infacts the corollary
of the RL just ensures the existence of local critical sections. When the space Wi has
the structure of a linear space the local existence can be extended to global one (but the
section will not be nonzero, in general), but this depends on this additional structure.
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13. Base space symmetries

Up to now, we have considered pure gauge symmetries; anyway, other kind of symmetries
can be present for the functional L[ip] fM C[tp(x)]dx, i.e. base space symmetries. In
physical gauge theories, these are typically space-time symmetries. Also, motivated by
physical considerations, we will limit to consider the semidirect product of base space
symmetries by gauge ones (i.e., the transformation of space time does not depend on the
values of the fields tp).

We have briefly dealt with the representation of the Lie algebra of the gauge group as an
algebra of differential operators ; in this language, if x are coordinates on the base space
M and u are coordinates along the fiber F, and

Li=£f(u)^=£f(u)dj (1)

are the generators of the gauge group G, then the pure gauge transformations can be
written as

7 2jai(x)Li &j(x,u)dj (2)

The infinitesimal base space symmetries can be written as

X *.(«)£ (3)

and if the Lie algebra of (the group R of) base space symmetries of our functional is X
with generators

Xi V)(x)±- (4)

we can rewrite (3) as

x=Y:ß^=ß^—=ß3(x)— (5)
i j J

The semidirect sum X ffi_ L will be made of vectors fields of the form

r) Ç(x)dx + C(x, u)du (6)

where we have used the shortcut notation

' i
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Vector fields of the form (6), and the corresponding algebras, are for obvious reasons also
called projectable [33].

A typical case of occurrence of base space symmetries is that of a density C of the functional

L[tp}= f C[tp(x),x)dx f C[<p(x)]dx (8)
JM JM

which does not depend explicitely on x (we also say that the base manifold M is homogeneous:

all its points are equivalent). In this case, the group of rigid transformations of M
leaves L invariant; notice that a general - i.e. not rigid - diffeomorphism of M does not
leave L invariant: even in the case C depends only on tp and not on its derivatives Vip,
such a transformation would modify the integration measure.

In this paper we always assume that C does not depend explicitely on x (this is also

expressed by saying that C is autonomous).

When M Rm, the group of corresponding rigid transformations is the group E(m)
Rm x 0(m) of euclidean transformations, with Lie algebra generated by the ra traslations
d/dxi,..., d/dxm and by the Lie algebra of rotations in Rm, so(m) (whose generators are
of the form Xid/dxj — Xjd/dxi ); for M 5<m_1' C Rm, we just have the group 0(ra)
(with Lie algebra so(m)) of rotations in Rm.

If now we consider also these base space symmetries, the full symmetry group of the
functional L is

T B®^T (9)

where T is, as before, the group of gauge diffeomorphism, T {~f : M ^ G}. Clearly, B
acts on T but T does not act on B.

In the analysis of symmetries of sections a £ $, one should now consider T rather than
T. On one side, this leads to consider the orbit space 0 $/T rather than 0 $/T,
which means that sections differing only by a rotation and/or a change in the origin of
the coordinate system in M are identified; this is indeed quite a reasonable and desirable
feature.

On the other side, base space symmetries will also enter in the isotropy group of the
sections a G $ and of the gauge orbits 0 £ 0; this feature is capable, as we will readily
discuss, to favour pattern formation or, in other words, the selection of sections with some
spatial (in the sense of the base space M; it can well be a spatiotemporal one in physical
terms) regularity.

We would like to stress that the (structurally stable) set of transversal sections is also
invariant under rigid transformations of M.

We will now specifically discuss the case of M Sm C Rm+1 or M Rm; in the last
case we will also consider two compactifications (we recall that in sects. 4-9 we needed to
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assume M compact): one is the one-point compactification to Sm, which is the natural one
if we ask our sections to vanish sufficently quickly at infinity and which comes back to the
previous case; the other amounts to ask periodicity to the sections, a(x) a(x + K - Ao),
where K £ Zm and Ao G Rm represents the basis vectors of a lattice in Rm, so that Rm
is compactified to the (standard) ra-torus Tm (51) ; in this case we can still discuss in
the full Rm setting, but integration will be over a compact region M corresponding to a

(simple, or finite) covering of Tm or, in physical terminology, to a unit cell of the lattice
generated by Ao-

For M compact, also the group B of rigid diffeomorphisms of M is a compact Lie group;
we stress anyway that its action on the infinite dimensional space $ (or even 0) gives an
infinite dimensional representation.

In the case M 5m, B is actually the rotation group in (m+l) dimensions, R 0(ra+l),
X so(m + 1), and the situation is well known, amounting to an analysis in spherical
harmonics.

In the case M Rm, i.e. M Tm; B is the euclidean group F(m) (modulo the compactification

Rm —*• Tm); this is generated by rotations, i.e. 0(m) again, and by m traslations,
i.e. Rm. With the torus compactification, the latter becomes just rotations along the m
fundamental cycles of the torus, i.e. (50(2))m; we are therefore in a familiar situation,
corresponding to multidimensional Fourier analysis.

We stress that we could have chosen different compact manifolds M, giving again familiar
situations: e.g., if M is (flat) space-time, M Rd x R, we can pretend sections to go fast
enough to zero at spatial infinity and consider only time periodic sections. This amount
to one-point compactification of Rd, and torus compactification of R, i.e. to considering
M S x S1; this is again a well known situation.

14. A scenario for pattern formation

If we now consider the full symmetry algebra of the functional

L[tp] / C(tp)dx (1)
JM

i.e., as discussed in the previous section,

f X (B- T (2)

(the symbol ©_> denotes semidirect sum) the maximal subalgebras of T will be of the form

fo X0 ©_ T or f0 X0T0 (3)
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with Xo a maximal subalgebra of X, To a maximal subalgebra of T.

Our aim would be to obtain informations about the existence of solutions (or bifurcating
solutions) with maximal symmetry. Clearly, the section a 0 has the full To symmetry,
so we will consider only nontrivial solutions (we notice explicitely that these could vanish
at some points; anyway, they will not be identically zero).

Notice that, since X generates the rigid transformations of M (and we want to consider
M 5n or M Tn) the only sections having the full X symmetry are constant ones,
a(x) tp0. In this case we have

L[a]= f C(<po)dx C(tpo) ¦ it (4)
JM

where p. JM dx is the volume of the manifold M, and we reduce to the finite dimensional
problem of finding minima of C : F —> R, i.e. to the problem solved by Michel's theorem.
In particular, there will be solutions corresponding to maximal To, as discussed in sect.9.

Let us now consider non constant sections. It follows from the above discussion that for
these, the symmetry algebra is of the form

f CT Xo ®- To X0CX ; ToÇT (5)

Now we have to distinguish two cases: either there are nonzero tp £ F such that gv
either not. In the first case, one can have sections a such that

a(x) G Wo f„ X0 x T (6)

where Wo {tp £ F j rjip 0 Wrj £ Ç} ~ Rs Ç F, s > 1. In the second case this is
impossible, since the only section having the whole Ç and therefore T symmetry is the
trivial one. Therefore, in this case

a £ 0 => fo Xo ©^ T0 ; X0 C X, T0 C T (7)

In both cases, what we want to stress is that the symmetry X is broken to Xo (or, at
group level, B is broken to B0); the discussion given in previous parts of this paper shows

that, under some additional conditions in order to precise the setting, maximal isotropy
subgroups (MIS) are favoured if the trivial solution ao becomes unstable and bifurcates to
a new solution erj(x).

The facts that MISs of Rn (except those containing traslations) correspond to regular
lattices (with the same holding for Tn, Sn) suggests that this could be a mechanism
implied in pattern formation [45,46].

Notice that, if Fix(G) {0}, in such a bifurcation both the X and T symmetries must
break, and the maximal symmetries of nontrivial solutions correspond to both a pattern
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formation, i.e. a breaking of the symmetry B to a regular lattice, and a gauge-symmetry
breaking.

More precisely, given a MIS fo Bo X— To C B x To f, we restrict L : $ —? R (recall
$ is the space of sections of M x F) to the subspace $o of sections invariant under To,
and get the functional L0 : $o —? R- As we have proved before, sections eri £ $0 which
are critical for L0 are also critical for L.

Consider now the case that C, and through it L, depend (smoothly) on a real parameter
£, and for £ < £0 the trivial section ao is a minimum for L, while at £ £o it loses stability
(for precise conditions of this losing of stability, see e.g. [10,11,47]), and let us look for
minima of L for £ > £0.

We can go over the set of MISs B, C B, Ta Q T, and study critical sections for Lha :

$i,a —> R, where $i>a C $ is the set of sections admitting l\a Bi x^ Ta as symmetry.
The minima for LiiCt are also critical sections (not necessarily minima for L. This gives
a constructive algorithm: we first determine sections Oi>a £ $iiQ which are minima for
LijQ, and then check their stability against general perturbations.

15. A scenario for phase coexistence

In previous parts of this paper we pointed out that our results concerning stratification
and critical gauge orbits need, to be rigorous, to restrict to the set of transverse sections,
defined in sect.8. It was also remarked that in some special cases a transverse section could
connect different strata of the G-orbit space ft. In physical terms, this suggests that such
solutions correspond to phase coexistence

Again, we could consider a bifurcation from the trivial solution; it was pointed out in
sect.9 that the isotropy group T0 of the solution connecting strata corresponding to non-
conjugated subgroups Gi,G2 C G is not a subgroup of Ty, neither of T2, where Ti {g :

X —> Gì}. This means in particular that for Gi,G2 MISs of G, and therefore Ti,r2 MISs
of T (for transverse sections), also T0 would be a MIS of T. By the same argument as
in the case of "pattern formation" dealt with in the previous section, one can explain the
appearance of these "phase-coexistence" solutions.

We remark that in our qualitative discussion pattern formation is an independent
phenomenon, but phase coexistence seems to be intimately tied with pattern formation, as it
is indeed the case in a number of experimental observations.



962 Gaeta H.P.A.

References

[1] L. Michel: "Points critiques des fonctions invariants sur une G-variete'"; C.R. Acad.

Sci. Paris A272 (1971), 433

[2] L. Michel: "Nonlinear group action. Smooth action of compact Lie groups on manifolds".
In: "Statistical Mechanics and Field Theory", R.N.Sen and C.Weil eds., Israel University
Press, Jerusalem 1971

[3] L. Michel and L. Radicati: "Properties of the breaking of hadronic internal symmetry",
Ann. Phys. 66 (1971), 758; and "The geometry of the octet", Ann. Inst. Henri
Poincaré' 18 (1973), 185

[4] L. Michel; preprint CERN TH 2716 (1979)

[5] M. Abud and G. Sartori: "The geometry of spontaneous symmetry breaking", Ann.
Phys. 150 (1983), 307

[6] G. Sartori; J. Math. Phys. 24 (1983), 765

[7] M. Abud and G. Sartori; Phys. Lett. B 104 (1981), 147

[8] D.H. Sattinger: "Branching in the Presence of Symmetry", S.I.A.M., Philadelphia 1984

[9] G. Cicogna: "Symmetry breakdown from bifurcation", Lett. Nuovo Cimento 31 (1981),
600

[10] M. Golubitsky, D. Schaeffer and I. Stewart: "Singularities and groups in bifurcation
theory", Springer, New York 1988

[11] G. Gaeta: "Bifurcation and symmetry breaking", Phys. Rep. 189(1990), 1

[12] D.C. Wright and N.D. Mermin; Rev. Mod. Phys. 61 (1989), 385

[13] T. Seideman; Rep. Prog. Phys. 53 (1990), 659

[14] B. Pansu and E. Dubois-Violette; J. de Phys. 51 (1990), C7-281

[15] G. Cicogna: "A nonlinear version of the equivariant bifurcation lemma"; J. Phys. A 23
(1990), L1339

[16] G. Gaeta: "Bifurcations and nonlinear symmetries", Nonlinear Analysis 17 (1991), 825

[17] G. Cicogna and G. Gaeta: "Lie-point symmetries in bifurcation problems"; preprint
CRT. Ecole Polytechnique A994.0890 (1990), to appear in Ann. Inst. H. Poincaré'

[18] G. Gaeta: "Reduction and equivariant branching lemma: Dynamical systems, evolution
equations, and gauge theories", Preprint C.P.T. Ecole Polytechnique A075.0891 (1991),
to appear in Acta Appi. Math.



Vol. 65, 1992 Gaeta 963

[19] R.S.Palais: "The principle of symmetric criticality", Comm. Math. Phys. 69(1979),
19

[20] R.S. Palais: "Applications of the symmetric criticality principle in mathematical physics
and differential geometry", in "Proceedings of the 1981 Shangai symposium on differential

geometry and differential equations", Gu Chaohao ed., Science Press (Beijing)
1984

[21] R.S. Palais; Mem. Am. Math. Soc. 22 (1957)

[22] G. Bredon: "Compact Transformation Groups", Academic Press (N.Y.) 1972

[23] G. Schwarz: "Smooth functions invariant under a compact Lie group", Topology 14

(1975), 63

[24] T. Eguchi, P.B. Gilkey and A.J. Hanson: "Gravitation, gauge theories, and differential
geometry", Phys. Rep. 66 (1980), 213

[25] Abers and Lee: "Gauge theories", Phys. Rep. 9 (1973), 1

[26] Dubrovin, S.P. Novikov and A. Fomenko: "Modern Geometry I & II", Springer 1984;
"Geometrie Contemporaine I, II & III", Mir, Moscow, 1982 & 1987

[27] Daniel and Viallet: "The geometrical setting of gauge theories of Yang-Mills type", Rev.
Mod. Phys. 52 (1980), 175

[28] C. Ehresmann: "Les prolongements d'une varieté' differentiable", I-V; C. R. Acad. Sci.

Paris: 233 (1951), 598; 233 (1951), 777; 233 (1951), 1081; 234 (1952), 1028; 234
(1952), 1424; and also C. R. Acad. Sci. Paris: 234 (1952), 587; 239 (1954), 1762; 240
(1955), 397; 240 (1955), 1755; see also "Les prolongements d'une varieté' differentiable",
Atti del TV congresso dell'Unione Matematica Italiana (1951)

[29] V.l. Arnold and S.P. Novikov eds.: "Dynamical Systems IV", Encyclopaedia of Mathe¬
matical Sciences, Springer (Berlin) 1990

[30] V.l. Arnold: "Mathematical Methods of Classical Mechanics"; Springer, Berlin, 1978,
1989

[31] V.l. Arnold: "Geometrical Methods in the Theory of Ordinary Differential Equations";
Springer, Berlin, 1983; "Equations Différentielles Ordinaires - II ed.", Mir, Moscow, 1990

[32] V.l. Arnold: "Contact geometry and wave propagation", Editions de L'Enseignement
Mathématique (Geneva) 1990

[33] P.J. Olver: "Applications of Lie groups to differential equations"; Springer, N.Y., 1986

[34] GW. Bluman and S. Kumei: "Symmetries and differential equations"; Springer (Berlin)
1989

[35] H. Stephani: "Differential equations. Their solution using symmetries", Cambridge 1989

[36] G. Gaeta: "Symmetries of nonlinear equations and physics"; volume in preparation



964 Gaeta H.P.A.

[37] G. Schwartz: "Lifting smooth homotopies of orbit spaces", Pubi Math. I.H.E.S. 51
(1980), 37

[38] D. Ruelle: "Bifurcations in the presence of a symmetry group"; Arch. Rat. Mech. Anal.
51 (1973), 136

[39] A. Vanderbauwhede: "Local bifurcation and symmetry"; Pitman (Boston) 1982

[40] M. Golubitsky and I. Stewart: "Hopf bifurcation in the presence of symmetry"; Arch.
Rat. Mech. Anal. 87 (1985), 107

[41] G. Cicogna - G. Gaeta, "Spontaneous linearization and periodic solutions in Hopf and

symmetric bifurcations", Phys. Lett. A 116 (1986), 303

[42] M. Golubitsky, J.E. Marsden and D.G. Schaeffer: "Bifurcation problems with hidden
symmetries", in "Partial Differential Equations and Dynamical Systems", W.E. Fitzgib-
bon, ed., RNM 101, Pitman, Boston (1984), p. 181

[43] G.Gaeta: "Autonomous dynamical systems, Lie-point time-independent symmetries,
topology of trajectories, and periodic solutions"; Preprint C.P.Th. Ecole Polytechnique
(1991), to appear in Int. J. Theor. Phys.

[44] G. Birkhoff and S. MacLane: "Elements of modern algebra", Macmillan (New York)
1941

[45] P. Collet and J.P. Eckmann: "Instabilities and fronts in extended systems", Princeton
1990

[46] A. Doelman: "On the nonlinear evolution of patterns"; Ph. D. Thesis, University of
Utrecht, 1990

[47] S.N. Chow and J. Hale: "Methods of bifurcation theory" Springer (New York) 1982

[48] V.V. Lychagin: "Contact geometry and non-linear second order differential equations";
Russ. Math. Surv. 34 (1979), 181

[49] G. Dell'Antonio and D. Zwanziger: Comm. Math. Phys. 138 (1991), 291

[50] M. Field and R. Richardson: Arch. Rat. Mech. Anal. 105 (1989), 61

[51] M. Field and R. Richardson: Bull. A.M.S. 22 (1990), 79

[52] M. Field and R. Richardson: Symmetry breaking and branching patterns in equivariant
bifurcation theory, Preprint Dept. of Pure Math., University of Sidney, 1990

[53] M. Field: J. Dyn. Diff. Eqs. 1 (1989), 369

[54] R.S. Palais: Ann. Math. 73 (1961), 295


	Michel's theorem and critical sections of gauge functionals

