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Violation of Ehrenfest's Theorem in Particle Dynamics of
Quantum Hall Systems

J. Riess
Centre de Recherches sur les Très Basses Températures,

C.N.R.S., B.P. 166X, 38042 Grenoble Cedex 9, France

Abstract. We investigate a large class of two-dimensional systems of electrons under quantum Hall
conditions. Scattering between the localized Landau functions leads to time-dependent single-particle wave
functions, which spread in the direction perpendicular to the macroscopic Hall field. The average velocity
of these states does not in general correspond to a classical orbit according to Ehrenfest's theorem. We find
that in addition to the usual classical term the Hall velocity contains a nonclassical part, which does not
contribute to the Lorentz force. This nonclassical velocity term (which has been shown to play a crucial role
for the integer quantum Hall effect in our systems) disappears, when the disorder potential is absent.

Introduction

We consider independent electrons on a two-dimensional strip of width Ly subject to a perpendicular strong
magnetic field (0,0,B), a Hall electric field (0,Ey,0) and a static disorder potential V(x,y), created by
homogeneously distributed impurities. We chose the gauge Ax 0, Ay =Bx -cEyt together with periodic

boundary conditions in y-direction and I \|i| 0 for large I x| .This model describes bulk states in a quantum
Hall system.

The solutions of the time-dependent Schroedinger equation can be expanded into Landau functions

\j/p(x,y,t) Ly"1/2exp(i2itpy)up(x,t), which are solutions in the absence of V(x,y). Here up(x,t) is the

product of a Hermit polynomial and a Gaussian centered at xp(t) chp/(qBLy) + cEyt/B. (We consider a

one-band approximation.)
The Hall velocity of a (normalized) state I j> \|/ J(x,y,t) £pCpi(t)\|/p(x,y,t) has the form

vxJ(t) d<jl xl j>/dt d[Sp| Cpi(f)| 2xp(t)]/dt cEy/B + SpXp(t)dl CpJ(t)l 2/dt. (1)

The first term cEy/B on the right hand side is the classical Hall velocity in the field Ey. The second term
£pXp(t)d| CpJ(t)l 2/dt is a nonclassical Hall velocity vnci, which originates from the time-dependent
scattering between the localized Landau functions. This process is induced by the disorder potential V(x,y)
and the Hall field Ey[l].

The Schroedinger solutions \)/J(x,y,t) ol our system have the following general properties [1]: At
sufficiently low Ey all states are adiabatic [2] solutions. These adiabatic solutions have a modulus
I \j/J(x,y,t)l, which is periodic in time with period x h/(qEyLy). Since x is very small (e.g. x 4xl0"12s

for EyLy= lmV), only time averages over At x arc relevant for macroscopic purposes (these averages will
be denoted by a bar 77 Adiabatic solutions in our system have the property, that vJx(t) vJy(t) 0. This

means that adiabatic states do not contribute to the macroscopic Hall current. They are insulating.
Conducting states occur at higher (non-infinitesimal) values of the Hall field Ey, when nonadiabatic

transitions between adiabatic states become possible. In general different adiabatic states become

conducting at different values (threshold fields) of Ey.

Violation of Ehrenfest's theorem

We consider now a conducting state I j>, which has developed according to the time-dependent
Schroedinger equation during a time much larger than x. We claim, that such a state violates Ehrenfest's
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theorem, which says, that the quantum mechanical mean values of the position and the velocity obey the

classical equations of motion (see e. g. chapter VI of ref. [2]). Indeed, if this theorem was true, we would
have

mdvJy(t)/dt q<j| Ey(x,y)l j > - (q/c)vJxB. (2)

(Here Ey(x,y) denotes the y-component of the total electric field Ey - 3V(x,y)/3y at (x,y).) This is

Ehrenfest's relation after a time average over the short period x. Now for times sufficiently longer than x the

wave function of a conducting state is spread in x-direction (delocalized) as a result of the time-dependent

process of non-adiabatic transitions, which leads to scattering into Landau functions localized at different
sites xp on the x-axis see [3] for explicit calculations Hence vJy(t) tends to zero for these states (the local
HaU velocities proportional to 9V(x,y)/8y are averaged out) and < jl Ey(x,y)| j > becomes just equal to the

homogeneous field component Ey (the average over the homogeneous disorder potential with respect to the

delocalized orbital vanishes). Therefore equation (2) becomes

0 qEy-(q/c)vJxB. (3)

According to (1) the velocity vJx(t) is composed of a constant, classical part cEy/B and of a nonclassical part

Vncl. i- C-. relation (3) is already fulfilled by the classical velocity part alone. There is no contradiction in
this result, since the Ehrenfest theorem is valid only if the fluctuations of position and momentum are

sufficiently small see e. g. chapter VI-2 of [2]), and this condition is not fulfiUed in our case.

Equations (2) and (3) formally define the y-component of the (average) Lorentz force (which is a

classical concept). These equations are identical with the corresponding classical equation of motion, i. e.,

they are valid only for those quantum mechanical velocities, which are associated with classical trajectories.

But this is not the case for the nonclassical velocity vncl. which vanishes in the classical limit. Since the

velocity dependent part of the Lorentz force (which cancels the average electric force qEy imposed on the

particle and therefore keeps it on its equilibrium position in y-direction) is created entirely by the classical

part cEy/B of the average particle velocity vJx, we therefore conclude, that the nonclassical part vnci of the

particle velocity does not give rise to a Lorentzforcel

Discussion

The nonclassical velocity parts represent the so-called compensating currents, which lead to integer
quantization of the Hall conductance [1]. Our results provide a microscopic picture for the IQHE, which
differs from arguments developed in the literature [4], according to which current compensation is thought
to originate from effective Hall fields Eeff, which are different for so-called localized and extended states,

and therefore lead to different Hall velocities for these states according to the classical formula cEeff/B, i.
e., the totality of each particle velocity is thought to create a Lorentz force, in opposition to our present
result.
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