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Some Vacua of the Heterotic String

Jean-Pierre Derendinger
Institut de Physique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland

Symmetric orbifolds, as examples of consistent vacua of the Es x Es heterotic string,
are described. After a summary of their construction and of the conditions for
the quantum consistency of the string theory, some phenomenologically relevant
vacua are briefly discussed. Finally, the low-energy effective theory and its quantum
symmetries are presented.

1 Introduction
Since the discovery [1] of the consistent supersymmetric solutions to the heterotic string
[2] equations of motion with gauge groups Es X Eg or 50(32) and ten-dimensional space-
time, the exploration of the vacuum structure of heterotic strings has vastly progressed. It
has been realized that, at the perturbative level, this vacuum is infinitely degenerate, with
solutions corresponding to many different space-time dimensions, gauge groups and particle
contents. The number of vacua increases fast when the space-time dimension decreases, and
the class of consistent four-dimensional superstrings [3-10] is infinite.

In perturbation theory, solutions to the classical equations of motion remain solutions to
arbitrary order if the vacuum symmetry includes N 1,2 or 4 space-time supersymmetry.
Supersymmetric vacua are then expected to be stable in perturbation theory. On the other
hand, consistent non-supersymmetric vacua are usually unstable: loop corrections develop
non-zero tadpole (dilaton) expectation values spoiling perturbative stability (as well as a

large cosmological constant). Even though a theorem has not been proven, one infers then
that consistent, realistic string models should have space-time supersymmetry, and possess

a mechanism for supersymmetry breaking at low energies.
The degeneracy of the vacuum offers the prospect of describing many different low-energy

physics, some of them being realistic or close to realistic, most others having very little to
do with expected particle phenomenology. On the other hand, perturbation theory cannot
tell what is the true, exact vacuum of the string theory, whether the degenacy is lifted. It is

actually unclear if this true vacuum has properties closely related to those of perturbative
solutions, or if it turns out to be completely different. If the second possibility is realized,
phenomenological studies of perturbative string vacua will only be crude approximations of
the correct ground state of the string theory. This difficulty is particularly apparent for
the problem of supersymmetry breaking in string theory. Perturbative stability certainly
prefers supersymmetric vacua. On the other hand, supersymmetry must be broken in any
realistic model. This requires a non-perturbative mechanism for spontaneous supersymmetry
breaking. The most plausible candidate seems to be the formation of condensates of gauginos
[11] in the hidden sector of the gauge group, which contains in general asymptotically-free
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forces which become strong at intermediate energies, Mmeak < Ahidden < M,tring, ~ MPlanck.

Non-perturbative studies of globally supersymmetric field theories have shown that this
mechanism is able to break supersymmetry under certain conditions [12]. In the case of
strings however, analogous non-perturbative studies are beyond present technical abilities
and gaugino condensation is presently more a model for supersymmetry breaking than a

rigorously supported mechanism.
In view of these limitations, works on four-dimensional superstrings have mainly

concentrated on two aspects. Firstly the construction of large classes of perturbative string
vacua, using for instance lattice [3, 4] or fermionic [5, 6] constructions, Calabi-Yau compact-
ifications [7], orbifolds [8] and generalizations [9, 10]. This category of work addresses the
classification problem, and also the derivation of efficient methods for explicit construction
of realistic vacua. Then, using the different formalisms for four-dimensional superstrings,
various realistic heterotic string vacua have been constructed and their phenomenology has
been studied in details. A class of such models, which will be briefly discussed later on uses
the flipped ££7(5) X £7(1) unified gauge group [13]. Such models have been considered in
Calabi-Yau compactifications [14, 15], in a fermionic construction [16] equivalent to a Z2 x Z2

orbifold, and in Z6 and Z12 orbifolds [17].
The purpose of this paper is to review some aspects of orbifold heterotic vacua (section 2),

and discuss some phenomenologically acceptable models constructed using simple symmetric
orbifolds (section 3). The discussion is kept at a general level. In the last section, the effective
low-energy field theory describing string massless states is briefly considered, including some
recent results on explicit computations of string one-loop corrections to the effective action
for the simplest (2, 2) orbifolds.

2 Some Orbifold Vacua
A very large class of string vacua, with very different gauge groups and particle contents, can
be described using orbifold compactifications of the heterotic string [8]. In addition, their
description is remarkably simple, and they can be studied exhaustively at the string level.

In general, strings on orbifolds can be completely and simply characterized by the set of
boundary conditions satisfied by all closed string coordinates in the model. For the heterotic
string, besides the space-time coordinates AM(r, cr), string coordinates include eleven complex

left-moving bosonic fields Z!(cr + r), I — 1,..., 11, three complex right-moving bosonic
fields Z (cr — r), k — 1,2,3 and four complex, right-moving (Green-Schwarz) Weyl fermions
Sa(ff — r), a 1,... ,4. Orbifolds are characterized by the appearance of twisted boundary
conditions for bosons, of the form

Z(ff ± r + it) e2iweZ(ff ± r) + A, (9 ^ 0). (1)

This means that the right-moving (— sign) or left-moving (+ sign) string Z is closed on a

circle (torus) with circumference A, up to a phase defined by the twist angle 9. The spectrum
of physical states is the collection of an untwisted, 0 0, sector and several twisted sectors.
The rules for constructing the spectrum are dictated by the consistency of the string theory.
Finiteness of loop amplitudes imposes conditions on the choice of all boundary conditions
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applied to all string coordinates in all sectors. It also determines the particle content in each

sector. For instance, the mode expansion corresponding to equation (1) is

Z(ff±r) Z, + W -J_an_,e-M<"-*>(^>, (2)
I ~r„ n — andZ

with
Zo(l - e2"9) A. (3)

This expansion does not contain any term linear in ff ± r: a twisted string has zero center
of mass momentum, it can only oscillate around each possible fixed point Z0. The oscillator
content of the state is as usual obtained by the action of the mode operators with non integer
frequencies an_# on a vacuum \Zq > related to each fixed point.

In the case of heterotic strings on orbifolds, there are two general classes. Symmetric
orbifolds [8] have twisted boundary conditions applied symmetrically on left- and right-movers.
They have a direct interpretation in terms of Kaluza-Klein compactified ten-dimensional
heterotic strings. Our discussion will concentrate on them. Asymmetric orbifolds [18] contain

different twisted boundary conditions for left- and right-movers and their interpretation
as a compactification as well as their construction are more obscure.

We will also concentrate on N 1 (space-time) supersymmetric orbifolds which are
known to be stable, consistent perturbative vacua of the heterotic strings, and also offer

some interesting phenomenological applications. When supplemented by a mechanism for

supersymmetry breaking, some classes of symmetric orbifolds lead to almost realistic models,
and reproduce correctly the standard model of strong and electroweak interactions.

The untwisted sector of a symmetric orbifold corresponds to a compactification on a

torus, with an additional GSO projection restricting physical untwisted states. Torus
compactification of bosonic string fields corresponds to the boundary conditions

Xk(ff + ir,T) Xk(ff,T) + irn4, (A)

where e* (k 1,..., d) is the fc-th component of the basis vector êî of a d-dimensional lattice
A. The winding numbers nt are integers and the point riiëi belongs to A. This boundary
condition leads to the mode expansion

Xk(ff, r) xk+ pkr + Lkff+-J2- (akne-2mA+r) + ^e-2in(.-r)\ _ (5)
2

n*0 n V

with
Lk ntek. (6)

Quantization implies that admissible momenta pk belong to the dual lattice, A: p m.iëi

with ekêk Sij and to* 6 Z. With torus boundary conditions only, N A space-time super-
symmetry would always remain unbroken. In the orbifold untwisted sector, the spectrum
of the torus compactification is truncated. This in particular reduces space-time supersymmetry.

In the context of string theory, this truncation of the space of physical states is a

Gliozzi-Scherk-Olive (GSO) projection.
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The introduction of a GSO projection, when applied to the untwisted sector only,
destroys however the consistency (finiteness) of the torus model, which is expressed in terms
of modular invariance of string amplitudes. In order to restore modular invariance, twisted
sectors specifically adapted to the orbifold GSO projection must be introduced.

From the point of view of Kaluza-Klein compactifications, six-dimensional orbifolds 06

play the role of the internal, compact space on which ten-dimensional heterotic strings are

compactified, leaving a four-dimensional Minkowski space-time, M4: Mw —* M4 x Oe.

Geometrically, the orbifold 06 is the space obtained by taking the quotient of a six-dimensional
torus by a discrete point group P acting with fixed points on the torus. Since the torus
is obtained by dividing the six-dimensional euclidean space R6 by the lattice A with basis

vectors e;, the orbifold can equivalently be viewed as the quotient of R6 by the space group
containing lattice translations and point group transformations. The action of the point
group on the lattice must be well defined, it must be a symmetry of A. If the point group
P does not possess fixed points of the torus, the resulting quotient is a manifold. On the
other hand, if P has fixed points, the quotient is an orbifold, with isolated singularities at
the fixed points.

A very simple example of a non-compact orbifold would be a cone with opening angle

2ir/N. It can be obtained by dividing the complex plane by the discrete group Zn '¦ z G

C —> e2t*<Nz. The origin is the unique fixed point of Zn- A closed string propagating on
the cone, which does not surround the singularity at the origin, corresponds to a curve with
z(ff + it) z(ff). It is untwisted and can have an arbitrary center of mass momentum. A
closed string around the singularity is such that z(cr + 7r) e2'*k/Nz(ff), k 1,. N — 1.

It is called 'twisted' and can only oscillate around the singularity. Since the cone is non
compact, it cannot be used as the internal space of a Kaluza-Klein theory: C should be

replaced by a torus, for instance.
In the simple case of a symmetric six-dimensional orbifold, with an abelian point group

P Zn, one can choose a complex basis on which P acts as a diagonal matrix:

P {gn}, n 0,1,... N-1, (7)

the generator being
2iirM fo\g e (8)

and

M diagli,iì2,i]3). (9)

The three angles j/j, i 1,2,3 define the action of P on the six (real) internal, compactified
bosonic string coordinates, denoted by z, in the complex basis. Consistency of the theory
requires that all possible sectors [n 0 (untwisted), 1,...,N — 1 (twisted sectors)] are

present in the spectrum of the orbifold. According to eq. (3), fixed points in twisted sector

n satisfy then
z-f gnz-f + rl, (10)

where I is a lattice vector. The angles 7/; cannot be chosen arbitrarily since the point group
must be a symmetry of the lattice. This is the so-called cristallographie condition. This
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turns out to be the case if the number of fixed points is integer: assuming t/,- / 0, i 1,2,3,

3

Y[\l - e2il""\2 integer. (11)
i=l

(in a three-dimensional space, with only one angle, this is the statement that the point
symmetry of a crystal has order 2, 3, 4 or 6). This condition allows to classify the possible

point groups and then to construct the appropriate space groups.
The spectrum of the untwisted sector corresponds to the torus spectrum, as obtained

from eqs. (5) and (6), truncated by the orbifold GSO projection. Torus states have oscillator

modes, winding numbers n, and discrete momenta mi. The GSO projection simply
specifies that only states left invariant by the action of the point group generator survive the
truncation. This eliminates states with non-zero winding and momenta from the orbifold
spectrum, and reduces space-time supersymmetry.

Altogether, the consistency of the orbifold is guaranteed in perturbation theory when
three kinds of conditions are met. Firstly, the boundary conditions must be chosen in such a

way that local world-sheet reparametrization invariance is accompanied by a fermionic local

symmetry which is either world-sheet supersymmetry when the fermionic degrees of freedom

are described using Neveu-Schwarz-Ramond fermions, or /«-symmetry when Green-Schwarz
fermions are used [19]. These two possibilities can be shown to lead to equivalent classes

of theories for arbitrary point groups [20]. This condition relates the twisted boundary
conditions applied to the fermions to the point group element acting on the bosonic string
coordinates. It is equivalent to the statement that the point group P should be a discrete

subgroup of 50(6), with Green-Schwarz fermions and bosons respectively in representations
4 and 6 of 50(6) [8, 10]. For N 1 orbifolds, one has P C SU(3), P <£ SU(2). The second
class of conditions is modular invariance of the one-loop, world-sheet torus, vacuum amplitude.

Modular invariance is equivalent to a set of 'level-matching' conditions [8], applied on
the set of boundary conditions for all heterotic string coordinates. They will for instance
specify the gauge group of the orbifold model as a function of the point group. Thirdly,
higher order modular invariance requires the existence of an orbifold GSO projection which
completely defines the spectrum of physical states of the theory. This GSO generalizes the
truncation applied in the untwisted sector to all twisted sectors, and completely defines (up
to possible choices of free GSO phases) the spectrum of twisted, physical states. All these

consistency conditions are directly related to the two-dimensional, world-sheet character of
the dynamics of the string theory. They only depend on the space-time properties in the fact
that a dimension of space-time is chosen: this tells us which string fields can have non-trivial,
compactified boundary conditions.

Since symmetric orbifolds can be equivalently constructed using either two-dimensional
consistency arguments only, as outlined above, or by following a Kaluza-Klein approach
(find perturbative solutions to the equations of motion of ten-dimensional heterotic strings
which reduce the space-time dimension to four), it is instructive to compare the origin of the
various consistency conditions arising in both approaches.

In the compactification picture, consistency is expressed by two conditions. Firstly, the

point group defining the twisted boundary conditions of the orbifold string states should be
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a symmetry of the lattice: the point group P should act cristallographically on the lattice.
This condition is simply necessary to define the orbifold:

Torus T Rd
Orbifold —- -, T —, 12

Foxnt group F A

A being a d-dimensional lattice. The second condition for consistency of the orbifold
compactification is the breakdown of the gauge group (from Eg X Ea or 50(32), in ten dimensions)
in specific ways, depending on the point group. The simplest category is (2,2) symmetric
orbifolds for which Eg x Eg breaks into

E6xH x Es,

H being either SU(3) or SU(2) x £7(1) or £/(l)2 depending on P.
These two conditions can be directly related to the consistency conditions found by solving

the conditions for finiteness of the two-dimensional field theory. As already mentioned,
finiteness corresponds to all order modular invariance of the orbifold partition function (the
vacuum amplitude on world-sheet Riemann surfaces of arbitrary genus). This is well known
to generate only three independent conditions (provided higher genus amplitudes factorize as

expected: this should still be proved). The conditions arising from one-loop modular invariance

can be reexpressed in the form of level-matching conditions, which in turn determine
the breaking of the gauge group, in complete agreement with the compactification picture.
The condition for two-loop and higher order modular invariance, leads to the existence of a

specific Gliozzi-Scherk-Olive (GSO) projection. It should then correspond to the condition
of cristallographie action of the orbifold point group. This equivalence is more subtle since
the GSO projection in untwisted and twisted sectors provides different informations. The
existence of a correctly normalized GSO projection implies first that the number of fixed
points must be an integer, as in eq. (11). The partition function in each twisted sector is

proportional to the quantity FJ?=i |1 ~ e2"">'|2. Because of one-loop modular invariance, this
quantity also appears in the partition function of the untwisted sector. If it would not be

an integer, the spectrum would not be defined at all (non integer number of states). This
tells us that P is a point group but does not indicate for which lattice. This last
information is contained in both the twisted and untwisted partition functions. In both cases,
the GSO projection, generated by the point group must be able to remove the untwisted
states with non-zero windings and lattice momenta, and also act on the various fixed point
vacua \Zo > in twisted sectors. This is only feasible if the structure of windings, momenta
and fixed points is tuned to the fixed point under consideration: this is the cristallographie
condition. To convincingly demonstrate this last statement, the explicit use of a complete
partition function, constructed in the two-dimensional picture by requiring all order modular
invariance (as for instance in ref. [10]), is necessary: this is beyond the scope of the present
discussion.

3 Some realistic orbifold vacua
To be considered as potentially realistic, a vacuum of the heterotic string must fulfil various
conditions. Some of them are simple to impose: they use well-controlled aspects of string
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model building. Others are more involved since they involve detailed knowledge of massless

state interactions, computed at the string level. The minimal conditions have to do with
the gauge group, the matter content and supersymmetry of the string vacuum. The gauge

group should be of the form:

G Gvi,il,le X £7(1)" X Ghidden, (13)

where Gvi,me contains and maybe unifies the standard-model gauge group Gsm 5E/(3)C x
SU(2)L x £7(l)y. By itself, this condition is straightforward to satisfy (Eg x Eg is already
of this form, with n 0 and Gvi,Me Eg). The matter content should include three

generations of quarks and leptons and the scalar multiplets for the spontaneous breaking
of GviaiUe- This visible matter transforms in non trivial representations of Gvi,n,ie D Gsm,

is invariant under Ghidden and allowed in general to have non zero U(l)n charges. In most

cases, matter also includes fermions with non trivial Ghidden and U(l)n quantum numbers,
but singlets with respect to the non-abelian part of GviaMe (hidden matter). This definition
of the visible and hidden parts of the matter content actually defines the hidden part of
the gauge group as the part of the non-abelian subgroup of the gauge group which does not
communicate with Gvi„iue through matter particles having both GvisMe and Ghidden quantum
numbers.

Since Ghidden is non-abelian and contains in general asymptotically-free components,
it gives rise to confining forces which have a characteristic energy scale Ahidden, the scale

at which Ghidden becomes strongly coupled (there can be several different scales if Ghidden

contains several asymptotically-free subgroups). Bound states with masses ~ Ahidden wm
then be present in the spectrum at lower energies. This confinement mechanism in the hidden
sector has two important consequences. Firstly gaugino condensates will form, providing a

possible source for dynamical supersymmetry breaking [11, 21]. Secondly, a generic feature
of realistic string vacua is the presence of fractionally charged massless and massive string
states [22, 23]. Hidden forces can provide a mechanism for confining these unwanted particles
into bound states with integer electric charges (this is for instance the case [24] for the flipped
SU(5) model of ref. [16]). Notice that the hidden sector would only be really hidden if all
its matter would have zero £7(1)" charges. In this case only, and for all energies below the
Planck scale, would the visible and hidden sectors only communicate through interactions of

gravitational strengths. Using however this criterion as a condition on realistic string vacua
is much too strong, at least in the context of orbifold or fermionic models [23, 25].

The visible part of the gauge group is either G3Tn SU(3)C x SU(2)L x £7(l)y itself
(for orbifold examples, see [26, 27]), or a larger, non-unified group like 5£7(3)c x SU(2)l x
SU(2)r x U(1)b-l, or a flipped, unified group [14, 15], the most attractive possibility being
'flipped 5£/(5)' [13, 16], Gvi3Me SU(5) x £7(1) (where 5£/(5) contains SU(3)C x SU(2)L but
not U(1)y)- Standard unification for which G3m C G C Gv,sMe, with G simple is however
excluded with four-dimensional strings. This observation, which was originally made for the
case of Calabi-Yau compactifications [14, 15], is related to the absence of massless scalar

multiplets in the adjoint representation of G. It is then impossible to spontaneously break
G into G3m, using the Higgs mechanism. The absence of massless adjoint scalar is a general
fact in potentially realistic heterotic vacua, even though this is not a theorem valid for
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all vacua [28]. Flipped G^w« are unified groups for which scalar multiplets in the same

representations as quark-lepton generations are sufficient for the breaking into G,m. The
simplest of them is SU(b) x £7(1).

The basic structure of flipped 5£/(5) x £7(1) models is as follows. Each quark-lepton
generation includes a right-handed neutrino and is as usual in the representation

10! + 5_3 + lB (14)

(the notation is R,, R being the SU(b) representation and q the £7(1) charge). 5£/(5) x £7(1)
is broken into Gsm by a scalar multiplet in representation 10r + 10_r. The weak hypercharge
is then a linear combination of £7(1) with charges q and another £7(1)' group appearing in the
subgroup 5E7(3)C x SU(2)L x £7(1)' of 5£7(5). In comparison with the Georgi-Glashow 5£7(5)
unified theory, the assignement of states in a generation exchanges the right-handed, charge
2/3 and 1/3 quarks, and also the right-handed charged lepton and neutrino. An important
property of (supersymmetric) string-based flipped SU(5) models is a natural doublet-triplet
mechanism [15], which follows from the absence of quadratic superpotential (mass terms).
An example of a flipped SU(5) heterotic vacuum has been constructed using the fermionic
formalism in ref. [16]. By boson-fermion equivalence, this model could also be viewed as

an orbifold with point group Z2 x Z2. Its full gauge group corresponds to eq. (13), with
Gvi,Me SU(b) x £7(1), Ghidden 50(10) x 50(6) and n 4. Visible matter has four
generations and one antigeneration, including the Higgses for 5£7(5) x £7(1) breaking, plus
4(5_2 + 52) giving rise to the Higgs doublets for the electroweak breaking, after automatic
doublet-triplet splitting. This model, which turns out to be remarkably attractive, has been

analysed in great details [16, 29]: it is probably the realistic heterotic vacuum which is at
present best understood at the string level.

This flipped model, constructed using Z2 x Z2 orbifolds, is by far not unique. Using Zq

or Zi2 orbifold (this choice was dictated by fixed point structures which favour obtaining
three generations of quarks and leptons), further models have recently been constructed and
studied [17]. The aim of this work is to compare various flipped models with the same visible

gauge group and chiral matter, to look for possible common features in the superpotential
or Yukawa couplings (the Kobayashi-Maskawa matrix). These common features would be

new string predictions, beyond the constraints only due to gauge invariance and general
properties of string flipped models (like the doublet-triplet splitting mechanism). The main
problem when trying to construct orbifold flipped 5£7(5) vacua is actually related to the Higgs
multiplets necessary for the breaking of 5£7(5) x £7(1). One representation 10j + 10_j is

needed, but the spectrum in general contains several complete (generation +antigeneration)
multiplets (one only for the model of ref. [16]). The main difficulty is then to avoid unwanted
massless or nearly massless charged, vector-like fermions, remnants of this Higgs structure.
Giving a mass to these dangerous multiplets is a delicate problem, which requires the use of
non-renormalizable contributions to the superpotential (terms up to order 6 were considered
in [17]). From this small class of flipped models, it seems that the superpotential does not

possess features which would be string predictions: different vacua lead to very different
superpotentials and Yukawa couplings. The number of examples is however too small to
draw strong conclusions and further work could be considered useful.
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Analogous studies could certainly be performed for other classes of gauge groups, or for
the vacua with Gvi,n,u G3m, which have up to now essentially been studied in the limited
context of Z3 orbifolds [26].

4 Low-energy effective field theory and string loop
corrections

To discuss low-energy, E <C Mpianck ~ 1019GeV, physics, only the massless part of the string
spectrum of physical states is relevant. In general, massless states of TV 1 supersymmetric
heterotic strings belong to three categories. Firstly, the gravitational sector of the theory,
which is universal in all four-dimensional models, contains the supergravity multiplet (gravi-
ton and gravitino) and one chiral supermultiplet, gauge singlet and containing a Majorana
spinor and a complex scalar 5. The real part of 5 is related to the dilaton degree of freedom

and Im S is obtained by a duality transformation applied on an antisymmetric tensor
fefji/ — 6„M. The second class of massless states has a geometrical origin. The equations of
motion of ten-dimensional heterotic strings do not determine the sizes of the compactification

space (i.e. the radii of the orbifold), but only its geometry [it should be a Ricci-fiat

space with holonomy group contained in 5£7(3)]. Any deformation of the compact space
which does not modify the topology generates a new solution. These deformations will then
also correspond to massless scalar states T (and their supersymmetric spin 1/2 partners),
called moduli. All expectation values < Re T > give vacua of the theory with degenerate

energies (the scalar potential is then flat in these directions), corresponding to the various
radii and dimensions of the compact space left undetermined by the perturbative equations
of motion. Fields in the third and last class are either charged under the gauge group (chiral
supermultiplets generically denoted by C) or belong to the Yang-Mills supermultiplet (gauge
fields and gauginos).

These three classes of states play specific roles in the effective field theory obtained
from the string by integrating out the massive string modes, as an expansion in powers of
E/Mpianck. This effective theory is specified by a local supergravity Lagrangian C(S,T,C)
which, at least in the case of symmetric orbifolds, is well established at string tree-level
(to all orders in the moduli T), and only very partially known at the level of string loop
corrections.

In the case of symmetric, N 1 orbifolds, the number of untwisted moduli is easily
determined from the point group P. In the complex basis (9), P acts with phases e2™ni on
the three complex planes. It is clear that for each complex plane, the overall radius of the
torus will be left undetermined, giving rise to one (1,1) modulus T. If however, two phases ?/;

are equal, there will be four (1,1) moduli corresponding to the freedom of a unitary rotation
of the orbifold planes. The unique case with three identical phases is the Z3 orbifold with
rji 1/3, t 1,..., 3: the number of (1,1) moduli is then nine. One can also have one (1,2)
modulus when some t/ is one-half (this is only possible on one plane for N 1 orbifolds),
corresponding to the fact that antiperiodic boundary conditions do not mix the real and

imaginary parts of a complex boson. One can then rotate the real part independently from
the imaginary part, hence the existence of a further modulus.
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For simplicity of the discussion, we will only consider here the case where all three twist
phases 77; defining the point group are different (and 77; / 1/2). This is only the case

for the Z7, Zs and Z[2 orbifolds [8]. The gauge group is then E6 x £7(1)2 x Ea, and the
massless spectrum contains three (1,1) moduli T;, three untwisted 27 generations d, zero

(1,2) modulus and untwisted antigeneration. In addition, the twisted sectors (indexed by k)
contain generations 27's and antigenerations 27's (except for Z7 which only possesses 27's)
denoted by 0£ for each twisted sector. (Possible twisted moduli which can at most have

£7(1) quantum numbers and singlets will be omitted).
Since the effective theory has local supersymmetry, it has the standard supergravity

form [30], with C expressed in terms of two functions and their derivatives: the real Kahler
function Ç, and the gauge kinetic function fa\„ analytic in the chiral scalars. At tree-level,
the Kahler function for the effective low-energy Lagrangian has the following form [31, 32]:

g(s,Ti,Ci,c£) -in(s + s)
-In [ïlLAT, + Ti- 2C,C,) - Ek CkTCkT UU(T, + Tty*] (15)

+ln\W\2,

where W is the superpotential. The gauge kinetic function is simply [21, 31]

fab SSab, (16)

indices a, b denoting the adjoint representation of the gauge group. This theory possesses

target space modular invariance (or target space duality) [33]: it is invariant under the
transformations

S -> s,
rn aT—ib
-1 tcT+d'

ç. ^ eia(a,b,c,d)\icT + i\-lCi, (17)
G\ ->eia,<-a<b^\icT + d\-2C£,

W -* \icT + d\~3W,

where a,b,c,d g Z and ad — be 1. The tree-level action is actually invariant under
the continuous modular transformations, a, b,c,d £ R, but only the discrete symmetry is

preserved by quantum, perturbative corrections. More precisely, the Kahler function (15)
has been checked to give the correct effective theory up to quadratic order in the charged
fields Ci and Cy, but to all orders in moduli T; [32]. The complete form (15) is deduced

using target space duality. The superpotential W is a cubic polynomial in the charged fields,
at tree-level.

The scalar potential in this effective theory exhibits the correct flat directions, leaving <
Re S > and < ReTi > undetermined. Supersymmetry is unbroken for all its minima. When
gaugino condensates are introduced, supersymmetry is broken provided the superpotential
can acquire a non-zero vacuum expectation value, < W >. But at tree-level at least, there
is no source for < W >^ 0. This problem with supersymmetry breaking is deeply related to
the particular dependence on 5 and Tt exhibited by the tree-level Q and /0(,. It is plausible
to expect that string loop corrections, which preserve target space duality, could modify
these functions in such a way that the minimum of the scalar potential, once the effect of
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gaugino condensates has been included, would break supersymmetry with determined and
finite < Re S > and < Re T{ >.

Recently, a string one-loop calculation of the moduli dependence of gauge kinetic terms
for (2,2) orbifolds [34] has provided new informations on this problem. An interpretation
compatible with supersymmetry of these results [35] shows that the one-loop effect at the

origin of the computed correction is a mixed gauge - sigma-model anomaly, which can
then be computed in the effective low-energy theory, as defined by eqs. (15) and (16). By
supersymmetry, a general gauge kinetic term of the form

-h(Ti,Ti)F^F^a, h h, (18)

is related to an anomaly term for two gauge fields Aß and one composite vector field Vv:

- \el"""V^u„, (19)

where QvfKr is the Chern-Simons form for the gauge group of the theory,

üu„ Tr (A[vFp<r] - l-A{vA„A^ (20)uVp<T

and

vß *HV« + c-c- (21)

is a gauge (holonomy) connection for the sigma-model defined by the Lagrangian of the
moduli fields T;. This connection can easily be computed from the tree-level effective Q.

The function h in eq. (18) is then obtained from the triangle anomaly diagram with two
external gauge fields and one external holonomy connection Vß, computed for all massless

fermions of the string theory. This approach has the important advantage that it only uses

the effective theory for the massless modes. The effect of massive string states is to promote
the function h in eq. (18) to a modular function, invariant under transformations (17).

In addition, since the one-loop, moduli-dependent correction to gauge kinetic terms is

due to a chiral anomaly, one can conjecture the existence of an Adler-Bardeen theorem
which would imply that perturbative corrections can be computed to all orders, and give
a new non-renormalization theorem for the low-energy effective field theory. Also, one can

expect to generalize the results obtained in ref. [34] to larger and more interesting classes of
string vacua. (2,2) orbifolds are phenomenologically irrelevant, but string loop computations
are relatively simple. Realistic string vacua would in general require much more complicated
one-loop string calculations to obtain similar results. The anomaly approach should be more
powerful since it only uses a triangle diagram in the effective theory and the knowledge of
the target space duality algebra corresponding to the string model, analogous to eq. (17).
Such generalizations will be important for future phenomenological studies, and for the
problem of obtaining a satisfactory scheme for supersymmetry breaking induced by gaugino
condensation in the hidden sector [11], compatible [36] with the quantum duality symmetries
of the string theory.
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