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Abstract
We consider the standard model for an interacting system of screened electrons and

phonons in dimension d > 2. A localization operator L acting on the effective potential Q is

introduced. It is proven that (1 — L)<? is irrelevant. The relevant part liQ is analyzed by a

renormalization group flow. It is shown that, when perturbation theory is truncated at any
finite order and the particle number symmetry is broken, to exclude the Goldstone boson,
the flow converges to a nontrivial fixed point determined by a BCS gap equation.
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I. Introduction and Overview

In this paper we consider the standard model for an interacting system of screened

electrons and phonons in dimension d > 2 given by the Hamiltonian

/ddk r l
j—^ e (k) [a+^1 + a+xakij

fa
+ /(SrpMq)h+C, + 5

+1 e /n4ry(2^(ki+k2-k3-k4)^(k3-ki)<.^.^k^ak-°
«,/3e{T,i},y »'=fa ;

r E /i0(0(^)"!«<--»M)*,..»-h+cî,i
(t.i)

Here, 6 (k) ^ is the dispersion relation for a free electron gas, o>(q) is the jellium phonon

dispersion relation and U is the two body electron-electron potential. The last term represents

the electron-phonon interaction, in which 6(w) 1,0 < u> < |,= 0,u> > 2, smoothly restricts

the interaction to phonons with frequency u;(q) less than the Debye frequency u>d-

The d and d + 1 dimensional Fourier transforms are defined by

£>(k)= j ddxeikxU(x)

and

i>(k)= /*<ÌT(idxei<A:'(T'x)>-V'(T,x)

withfc (fco,k)eRd+1

(&,(t,x))_ -fc0T + k-x

respectively. We will frequently omit " and " when their presence is clearly indicated by the

context.

The model above is also formally characterized by the effective potential for the

external fields i/>e,ipe and 7re

g(r,$%*e) \og^ j e-U^+r>*'+*°<*+^dßc(i>,$)di>D(ir). (/.2a)
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where the interaction

U(i>,$,ir) \Y< fd?xdTd?yda$(T,X,a)rl>(T,x,a)6(T-cr)U(x-y)$(<r,y,ß)i>(<r,y,ß)
o,ße{hiY

+ 7 YI ddxdT$(T,x,a)4>(T,x,a)ri(-iVx)Tr(T,x.)

(7.26)

and H is the pseudodifferential operator given by

¦j fry

(^)-(q) (^S)) 0(UD - «(q))*(î).

Here, d(ic(ij>,''j>) is the fermionic Gaussian measure in the Grassmann variables

{V-(£)fa(£)l£ (T>x,o-),r £ R,x e Rd,a e {1,1}} with covariance

c(6,6) {*«i)*(6))
/• g*+*fc e«*.*i-fr>- (1.3)

- *"i.»* y (27r)d+i ifco - e(k)

where

e(k) ^-M. C4)

For (ti — t2) 7^ 0 the integral (1.3) is conditionally convergent. The special case t\—t2 0 is

defined as the limit T\ — r2 —> 0 with Tx—t2 < 0. The chemical potential fi in e(k) =6 (k) —/i

determines the electron density of the model. Also, dvo is the Gaussian measure (for the free

phonons) with covariance

Ul'"; y (27r)d+!(2t)^ ?o2 + ^(q)2'

We now integrate out the phonon field, set h 1 and suppress the external phonon

field 7Te, which plays no role here. One obtains

Q(r,r) =log± J e-xvW>WUnc(i>,$)\x=u (1.5a)

i ,_, r JL ^+iu.vm) 2 E /IItI^t^)<+i*(*i+*«-*»-*4)*^,*-^4
o,-6{t,l},/ i=l '

(k1,k2\V\k3,ki)f(ki,ax)^(k2,a2)^(ki,a4)tp(ki,a3) (I.5b)
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(kxMv^M) t>(k3 - ko -y2e(u,D -«(k, - k0)a(fci_^()g,+"tiy^)52_ki)a (7-5c)

Note that the second term, due to the phonon-electron interaction, is attractive.

We shall consider a general two-body interaction (fci ,&2|V|fc3, ^4) such that, on the

support of S(kx + k2 — ki — k4),

S1"
(*i,*2|V|*,,fct)B=(-ib,,Jbj|y|-Jbi,*4>

(*l,-*t|V|*,,-*2>

(-k3,-k4\V\-kx,-k2)

(k2,kx IVI*.,*,)

(_fc1_A!2|V|-*3-*4)

(*S,*4|V|*l,fc2)

52. (*i,*2|V|*3, k4) is real

53. (Äfc1)Äfc2|V|Äfc3,i?fe4) (fci,fc2|V|fc3,fc4) ,where i? is any element of O(d) acting

on spatial components

54. (r*i,r*2|V|rfcs,T'*4) (fci,*2|V|*s,fc4), where T is time reversal i.e. T(k0,k)

(-fco.k)

(7.6)

The interaction of (1.5) has all these symmetries for any real even rotation invariant

two-body potential U and phonon dispersion relation u. Later we will make a further

assumption that ensures that V is sufficiently attractive in the zero angular momentum sector.

See, Theorem 1.3.

Our long term goal is to construct the effective potential Q for the class of interactions

V described above. In this paper we consider the small field part of the construction.

Specifically, we define a localization operator L (1.99) and prove in Theorem Ll that (1—L)S is

irrelevant. The relevant part LÇ/ is analyzed by a renormalization group flow (1.102), (I.124a).

The content of Theorem 1.2 is that, excluding the Goldstone boson (1.82), the flow converges

to a nontrivial superconducting fixed point determined by the (non-perturbative) BCS gap

equation (1.75), (1.80).
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The rest of the introduction is divided into two parts. The first motivates the

definition of L and discusses the associated flow near the "normal" ground state. The second

introduces a superconducting formalism, discusses the flow near the superconducting fixed

point and gives statements of our main results.

Ia. Background and Motivation

We will ultimately do perturbation theory around a covariance that reflects

properties of the superconducting ground state. However, to motivate the definitions and

constructions of Section Ib, we begin by analyzing the effective potential (1.5). This is done by

decomposing if>(k),ij>(k) into scales that reflect the distance of the vector momentum k from

the Fermi surface

{k||k| *F} (/.7a)

where

Namely,

kF y/2mp.. (/.76)

o

C= ]T C0) (/.8a)

whene

- <- / lrik^-^f(M-e(m { 2*m> i > l
(7.86)

for j > 0 and

^(o-^/ffiClw^^- (I-8c)

Here
-l

l h(r)+ J2 f(M-2jr) (I.U)
j=-ao

for all r > 0. Roughly speaking /(Af-2je(k)2) forces ||k| — kp\ m MK For the precise

definitions of h and / see (ILI) and the figure following (II.2). There is a corresponding

decomposition
o

dnc(Ì>,$)= n dßc(l)(^\^). (7.9)
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The decomposition (1.8) differs from that of [FT§2] in that ko is not localized near

zero. This has the advantage that C^ retains physical positivity (Osterwalder-Schrader

positivity).

Let us define the effective interaction at scale h, —1 > h > —oo, by

gW(^)) -.= log i- J e-^°> n dßouM™) (IAO)
j>h

where

*<**> (*• + $><*>,*• + £*«) (/.ii)
i<h j<h

and the constant Z^ is chosen so that Çh(0) 0. We have

0(fc-i>(^(Sk-i>) Jog /«p0(k)(^k))dMc(M(^k)) + log-^ (/.12)
J t>K-\

for /i < 0 and
0<o>(0(<o)) _AV(^°>).

0<-~>(^) Ç7(^c).

As expected the coefficients in the formal expansion of Q^h' in powers of A diverge as h tends

to —oo. (See [FT§1].) A well-defined expansion is generated by a A-dependent chemical

potential, which we now explain.

The two-point function G2, defined by

G(4?) j dixdi2G2(ti2, Ì2)$'(ÌxW(Ì2) + 0((4>e)4) (/.13a)

where

fd(:= fddxdr Y, '

is the connected, amputated 2-point Green's function and is related to the two point Schwinger

function by

S2=C + CG2C [ik0-e(k)-T,}-1 (7.136)

and to the proper self-energy S by

oo

G2 S[l + E(C*£)n]. (7.13c)
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In perturbation theory, G2 is the sum of all connected two-legged Feynman diagrams, except

the trivial —>—, whose external free propagators are amputated and S is the sum of all

two-legged, one-particle irreducible (with respect to electron lines) diagrams.

The renormalized effective potential, which by abuse of notation we continue to call

Q, is defined by replacing the interaction —AV of (1.5) by —AV + SV where

6V(rl>,î>) 6p(\,n) j di$(()i,(i)

to obtain

g(r,V) log Ì Jexp[(-AV + SV)(j> + r,î> + r)]dßc(i>A) (/-14)

Here Sß(\,p,) is a formal power series in A, uniquely determined by the condition that to all

orders in perturbation theory

S(*,M,A)Uo=0,|k|=v^ 0 (7.15)

Hence the bare chemical potential fio, which determines the position of the free Fermi surface,

has been rewritten as ßo P + 6(i(\,(i) where Sp,, which determines the position of the

interacting Fermi surface, has been placed in the interaction. Now the coefficients in the

expansion of the renormalized Q^h> converge as h tends to —oo. This is the content of [FT,

Theorem VII.4]. We will not refer to the unrenormalized effective potential again.

We now view (1.12) as defining a map from Q^ to Ç(.h~1'> whose iterates flow in

the space of effective potentials. The renormalization condition (1.15) becomes a boundary

condition at h —oo for this flow.

The map (1.12) may be rewritten as a difference equation

£(fc-D^(<fc-i)) gWy(<h-i)) + £<A)(0<k))(^<fc-i)) + log -lA- (/.16)
Zh-i

where

£<*>(W) : logj exp U(4>W + ^')dnoW(4>W) ~ U(4>e)

J'u(+™ + 4>e)d^(<t>W) -u(P)

+ E ^4h)(u)(4>n
(7.17a)

n!
n=2

E -Ak)(v)W)nn=l
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where

e[h\v)(4>') J U(4>w + 4>e)dficw(<t>w) - u(4>e) (/-176)

and, for n > 2,

Sih\U) £ih\U,...,U), (/.17c)

£ih\Ux,...,Un)(^) ^L-log f exp[Y,W<j>W + 4>e)}dßc(>>)(4>e)\x<=o

is the usual truncated expectation value. Our boundary value problem may be solved by

converting (1.16) into an "integral" equation in which (1.15) appears explicitly.

To do this we introduce a localization operator £. It is a projection defined for

monomials by

ij dixdi2K(ix -6)^(6^(6) K(k0 0,|k| yßw) J àtiKiMi)

lJdb...dtnK(tlt...,tn)$(tl)..#{tn) 0 for n > 2

£ const const

and extended by linearity to all formal power series in i/>,i\>. We ought to define £ to be

an orthogonal projection by Wick ordering the monomials i> ((x) ¦ ¦-^ (Cn) ¦ For pedagogical

purposes we delay doing so until Section III. In terms of £ the final value condition (1.15) is

0= lim £Q(h\r) lim £ f d^d^G^dx - 6)<?e(6)V>e(6)
ft—+ — oo ft—+—oo J

lim G{2h)(ko 0,|k| yßZÖ) fr(iW(î)di
\ (7.19)

lim ËW(fc0 0,|k|= fa^M) H>e(ÌW(Z)d£
h-r-oa J

S(fc0 o,|k| yß^ft J' r(iw(i)di

since C(-ft)(fc0 0, |k| y/2mp) ^ Cw)(*0 0, |k| -J2mfi) 0 by construction.
j>h

The corresponding "integral" equation is

ç(h\<t>') -\V(tf) - Y^t£{i)(G(i)(4>(i) + 4>')) + E(1 - t-)£{i)(G{i)(<t>(i) + tf))
t<ft i>ft

+ ^£,(i)(ö(i)(^(i))) (/.20)
i<h
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Any solution of (1.20) obeys the difference equation (1.16). Furthermore, the boundary

conditions (1.19) and

g(°\F) -xv(^) + sß(\, fi)jdtrwtt), (/.21a)

where Sp.(\, ß) is defined by

Sß(\,fi) fdtf<(t)P(t) -£/£<*">(0w(*w + tf)). (/.216)
J t<0

are satisfied.

The integral equation (1.20) is solved to order n in A by iterating n times beginning

with g(h\tf) —\V(<f>e) for all h. At the same time (I.21b) yields a closed expression for

the coefficient of A™ in the formal power series expansion of Sß(X,ß).

To elaborate, a single iteration of (1.20) produces terms in Q(h\<j>e) of, for example,

the form

£(i--0£(0(e(i)(<£w + o
Y2(l - £)£(i) j -AV(<£(i) + <j>e) - Yjt£U)(9U)) + E^ - l)£U\GU)) + const
i>h \ j<i j>i J

+ 5^(1 - /)i Y, £4] (-AV(^(i) + tf), -££<*>(0<*>), -££^\gUA)t
l>ft Jl<*

il>i (/-22)

(i-£)£(i3)(a°'3))) +

+ £(l-/)jj Y £? (-AV,-^2(Jl)(-AV,-AV),-^2)(-AV,-AV),
i>ft Ji^i

J2<*
J3>i

i(l - *)£«»>(-AV, -AV, -AV, -AV(^»> + </>(i) + ^)) +
4!

The multilinearity of £n '(Ux,..., Un) is used in the third and fourth lines. Repeated interation

of (1.20) produces terms of arbitrary depth (that is, £'s within £'s within £'s but with an

obvious tree structure, that is conveniently expressed by introducing the following notation.

Define
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Ux U2

i 11
-(1 - £)x(i > h)££\Ux(tf» + tf),..., Un(4>& + tf)) (7.23a)

Ux U2 Un

c yi
¦= h{-£)x(i < h)£«\Ux(<j>W + tf),..., Un(*W + tf)) (7.236)

U

¦= X(0 > h)U(<f) (7.23c)

In this notation the explicit term in (1.22) becomes

-AV -AV -AV -AV -AV -AV -AV -AV -AV

E

r i
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The solution Ç?(fc) of the integral equation (1.20) is just the sum over all planar trees (including

the trivial tree (I.23c)) constructed from the r and c forks given above, with root scale h and

"leaves" - AV. Similarly, Sß(X,ß) is the coefficient of / d^(()ìf>(Ì) in the sum of all trees

whose lowest fork is of type (I.23b) with h 0.

It is shown in [FT§7] that (I.21b) is a well-defined formal powers series in A, that is,

all the coefficients are finite. With this choice of Sß(X,ß) the terms in the expansion of QSh>

converge as h tends to —oo. More precisely, if

oo oo 2p

GW(tf) E E TtV" Il( / dîktf(îk))G%n(tx,..,Î2P) (/.24a)
p=l n=l ^P>- k=l J

then there exist constants Kp and a such that

l|G^n(6,...,6P)||i,oo < Kpannl (/.246)

where Kp is independent of n and h and a is independent of p, h and n. Here

ll^«!,...,«»)!!!,« :=Bup{yde1...d£,lD-J,(f1 €,)/i«i)."/i-(e»)l : ll/*IU» < l.ll/*IU- < 1}-

The limit of G2pn as h —> —oo exists and obeys the same bound. We shall give a simplified

self-contained derivation of this result in Section III.
We wish to construct G2p := GA as a tempered distribution, not only as a formal

power series in A. The n! in (1.24) prevents us from directly controlling the sum over n. It is

therefore necessary to investigate exactly how this factor arises. There are two sources.

First, we did not, in our proof of (1.24), attempt to exploit the cancellations between

the roughly (2n)! Feynman graphs contributing to G2 n. Indeed, due to the Grassmann

nature of the measure dßc, each graph is one term in a 2n x 2ra determinant. We have grossly

overestimated the determinant by taking the absolute value of each term. To eliminate this

problem one exploits the antisymmetry of the determinant to estimate it as a whole.

The second, more subtle, source already appears in the simple graph
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5/2

(l><D
g/2

whose value, for small transfer momentum q, has the logarithmic singularity log{ q + %° }.

Similarly, for small q, the (electron-electron) ladder

q/2

« -<- ¦* * 4 * 4 * *

— 9/2

(7.25)

grows like [log{|q| + 2Jf^ }]"> where n is the number of momentum loops. So, the value of

a single graph containing a ladder is of order re! due to the integral over q.

Somewhat surprisingly, however, the (electron-hole) ladder

(7.26)

is exponentially bounded. The example above is discussed in more detail in [FT§5]. In this

paper we show how to isolate and then remove the logarithmic singularity responsible for

anomously large graphs.
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We start by introducing a more refined localization process that acts nontrivially

on quartic monomials. The quartic part of ÇA '

E
kW

scale ix scale

scale i2 scale «4

scale h + 1

v f dd+H dd+lS dd+lq ih) (i2) (it) (i3)
Zf<h J (27r)<*+l (27r)d+l (27r)rf+l ^+|.^-*+f/-»+I.A+!,«

a,0,A,n6{T,-l}

ì[fc(^(<,S,g)^,jSAA,M-fc(^(-i,5,g)^^ (7.27)

has external fields of scale at most h and a kernel Afa) produced by integrating out internal

fields of scale at least h + 1. Here, t, s and 2q are three independent momenta and the kernel

has been written in an explicitly antisymmetric, spin independent form where, necessarily,

fcW(t,S,g) fcW(-<,-S,g).

The localization process takes into account the separation between the scale h of the kernel

and the scales ix, ...,ii of the external legs.

Let

/ dd+H dfi+iq 1
[k(t,s,q)Scc<ßSx<il. - k(-t, s, q)Sa,flSx,ß]

(2w)d+1 (27r)d+12t

ì5(Ìl) é^h) t/>(i4) rÄ(*'s)
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— «/2 —
ß,ix —•—-^—sr—*— &A3

0(Q£
/i,l2 «-—*¦ >*- *— A,Î4

(7.28)

g/2

be a general quartic monomial. We define IS ',h < 0, by

— g/2 —
ß,ix —•—^>—ST—•— Ct,l3ix —¦ y v. —•— Oi,

LW t\ k jU> (/.29)

/i,?2 •—-^ ^- <— A,î4

— 9/2 —

- f d + t d+ s d + g .(ìaìM-iH'+hUrXh) r(i2) .«.) Ai,)~ J (2v)*+i (2*)d+* (27r)d+lPUq| >***¦** *-*+** *-•+! ,A *H-| ,*(27r)d+1 (27r)d+1 (27r)d+1

1

|[*((t', 5', 0)Sa,ßSx,ß - *(-*', ê'Wa^Sxf

vhere

and

i* max(i1,i2,Ì3,i4)

p(r) 1 — /i(r)

i' (0, -j!Tfc.F) projection of t onto the Fermi surface.

The localization operator evaluates the kernel k at zero transfer momentum and so

isolates the logarithmic singularity discussed above.

As before, set

i(fe)const const (7.296)
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L^ j dixdhKttx -6)^(il)(6)V>(i3)(6) e J dtxdt2K(tx -6)^(il)(6)^(ia)(6)

K(0, |k| yf2^Tß) J difth\0^\t) (/-29c)

/fa> J dix...dtnmx, ...,£n)$(UVi) • ¦ • $M{U) 0 for re > 6 (/.29eQ

and extend by hnearity to all formal power series in ij),^. Observe that

LwL(h>) Lw.

Once again, we ought to define JA*1' to be an orthogonal projection by a scale dependent

Wick ordering of the monomials $ (£i) • • • $ (In)- This is done in Section III.

The local part of a quartic monomial is not as complicated as it looks. Observe that

the function p restricts the transfer momentum to a ball of radius ~ Mi*-1 + ' that shrinks

to zero in the infrared limit h —> —oo thus effectively localizing q at zero. For technical

convenience we have cut q off at the scale midway between that of the kernel and the highest

field. This is somewhat arbitrary.

Let q° (g0,0). If we approximate

lA(Ìl) ?Â('2) »A(*4) l/,(<3) tw 7A(Ìl) 7Ä('2) l/fa4) 7Ì('3)
Vt+q/2 V-t+q/2 ^-s+q/2 V.+q/2 W Vt+q°/2 V-i+q<>/2 ^-H-?°/2 V,+q"/2

the local part becomes

£ vit(Cyl(££»\w,>')sa,ßK»-F(-t;s')sa„sXß]

,ä(*0 J.CA J,^A é(ia)
™t+qal2,ß r-i+q°/2,fi ^-,+q°/2,X Vs+q°/2,ct

V=[/^(|q|M^*-))]_1
F(t',s') k(t',s',0).

As we will later explain, the most important case is ix i2 Ì3 ii h. Then the last

expression reduces to

^ 1 f dg0 dd+H dd+1s 7(fc) T(h) (fc) w^ V 2t: (2^Y+1 (2-KY+1
^ ,S ' ß '^t+^0l2ß -t+q°l2'^ a+q°l2'x 3+q°'2'a

a,ß,X,p J V ' V '
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V constM-d\

The local part of a quartic may be regarded as [(-1) a reduced interaction]. The discussion

above demonstrates that it is the analog in the functional integral setting of the usual BCS

reduced Hamiltonian (See [S], p. 37,(2-17))

E e(k)ak,»ak.» + E <k2.-k2l^lki.-ki)ak2Ta-ic2Ìa-kitakiÌ-
k,5 ki,k2

To this point we have not discussed spin pairing.

The kernel F(t',s') defines an operator on i2(fcj?5d_1). By (1.6, S3) the operator F

commutes with the action of SO(d). Therefore the eigenspaces of F coincide with the SO(d)

irreducible invariant subspaces of L2(kpSd~l). Recall that the space 77™ of homogeneous

harmonic polynomials of degree n is an SO(d) irreducible invariant subspace and that

L2(kFSd-1) ®n>0Hn.

It follows that

F(*V) £*„*„(*»,«')
n>0

where 7rn is the orthogonal projection onto 77™ and An,re > 0 is the spectrum of F. For

example when d 3,7rn(f',.s') (2n + l)kp2~nPn((t', s')) where Pn is the Legendre polynomial

of degree re. Substituting we obtain

dqo dd+H dd+1s
¦7T„IZ „Ä \C~. raO\ ..W ' „ W V) ' '

u T u

1 V^ V"* \ / ^o dd+1t dd+1s T(/l) T(h) (ft) (A)vÇ E KJ 27(2»)*" (2>)^'"(* '* ^^AU^-^J-'^AU.
n>0 a,ß,X,ß

r *
27(27)S+i (2ÄfA ""V " ^V^t^ t+^^..,+ ^^.+^T

V E >» /£ (2^1 (^^ ''> (^T^^-^/Ut
v E A™y ^r(2^Ti(2^Ti*»(*»«H+^/_¦ ¦ «°> ;.*°fa

n even " \ / \ / ¦<

rfg0 tf^ ^ _/j( _,N f (k) (k) (k) w

W^fa-t+^l + V^fa^ìXfa^jfa^ +^-s+^.fafa'}
(7.30)

»„(-<',*') (-!)"*»(<V)
and *„(<',-*') (-l)"irB(iV).
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The eigenvalue A„ is the coupling constant for the interaction in the reth angular

momentum sector. In this paper we will ultimately consider a class of interactions, including

(1.5c), in which A0 > 0,A0 > |A„|, n > 1. See Theorem 1.3, for the precise condition. Then

the, dominant, angular momentum zero contribution to the interaction is

/ ,\o^ f dio dd+1t dd+1s T(fc) T(A) (fc) (h) /ro-n(_1)2 V J 27 (2^ (2^ ^+to/2T^-t+,o/2^L.V,o/2^s+8o/2r (/.31)

As h approaches minus infinity particles of scale h have their momenta restricted to a shell

about the Fermi surface and "see" a spatial volume V ~ M~dh since their covariance

|C(fc)(z,y)| < const[l+Af'l|a: —j/|]_;v. Thus, the local part of the interaction is effectively the

familiar BCS interaction (See [FW], p. 333, (37,43)). The factor ^ should not be interpreted

as a small coupling constant even though it tends to zero as h —> —oo. Rather, it maintains

the power counting neutrality, i.e. dimensionlessness, of the interaction (1.31). Operationally

it compensates for the lack of decay between x and y in

dqo dd+1t dd+1s ?w ,(fc) (A) W
2-K (2n)d+1 (2tt)<ì+1 ^-«"m^-t+^/H^-l-jVn^+sVn/

y"dry^x^A)(x,r,T)^Ä)(x,r,|)y"^y^(fc)(y,T,|)^'l)(y!r,T)

As usual we have omitted the symbol for the Fourier transform on Vfa.o/2t e*c.

We have seen that the solution çW of the difference equation (1.16)

g(h-i) gW + £W(ç(.h))+ log.
Zh

Zh-l

obeying the final value condition (1.19)

Em «W 0
h—*—oo

may be constructed as the sum of all trees built from the r, e forks (I.23a,b). It is clear that

the construction above is unchanged when £ is replaced everywhere by Tfa'. Doing so however

does not quite yield the desired model. The quadratic part of ç(h' will satisfy the final value

condition lim £Ç(h> 0, as required. But the quartic part of ÇW wiU also satisfy a final
h—> — oo

condition rather than the initial value condition

s(0)(^)quartic -£ £ /n 7^S+r(2*)d+1*(*i + h-h- h)Saua3sa2,at
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(kx,k2\V\ks,ki)i>(kx, otx)i/>(k2, a2)i/>(ki, ai)r/>(k3,a3) (7.32)

This defect is easily eliminated by changing the integral equation (1.20) to

g(h\<j,<) _ xLwv(tf) - X^(i)(ö(i)(<^(i) + tf)) + X)(i(i_1) - £)£{i)(g{i)(<t>(i) + tf))
i<ft i>ft

- A(l - L<-°))V(<j>e) + ^(1 - L^-^)£^(g^(^ + <t>e)) +YJ£{i){G(i\<t>{i)))
i>h i<h

(7.33)

Any solution of (1.33) obeys the difference equation (1.16), the initial condition (1.32) and the

final condition (1.19). Equation (1.33) is obtained from (1.20) by adding and subtracting the

quartic effective interaction at scale h

Y^i^-^-t^is^^ + tf)),
i>h

thus leaving ÇW unchanged.

Let

Ux U2

RYi := ±(1 - L(i-1})x(i > h)£P(Ux(<t>{i) + tf),...,Un(^ + f)) (7.34a)

Ux U2

:= -t[-*x{i <h) + (L«-V - £)X(i > h))£^(Ux,...,Un)) (7.346)



Vol. 64, 1991 Feldman and Trubowitz 231

U

x(0 > h)L^U(tf) (7.34c)

U

R

X(0>h)(l-L^)U(tf) (7.34d)

The solution ÇW 0f the integral equation (1.33) is the sum of all planar trees (including the

trivial trees (I.34c,d)) constructed from the R and C forks with root scale h and "leaves" —AV.

The new and old trees differ only in that an effective interaction X/j>i(Z' — £)£^3'(Q^3')

at scale i is added and subtracted at each fork.

The operator L^ isolates the logarithmic singularity that produces anomolously

large values (of order re!) for graphs containing ladders in the G forks of trees. To make

this precise let g^h'(<f>e) be the sum of all planar trees (including the trivial trees (I.34c,d))

constructed from R (I.34a) and c ((I.34b) forks with root scale h and "leaves" —AV. We

remark that the functional gW(<f>e) is the solution of the integral equation

gW(p) -XV(tf) - £«(0(*(fc)(*(0 + tf))
i<h

+ X)(i - tf'-^o^w + 4,')) +J2£{i)(9{i)(<t>(i)))
i>ft t<ft

obtained from (1.33) by discarding the term ^(i(i_1) - £)£{i\g{i)). Write

(7.35)

i>h
2p

9{h\tf) E E 7^VA" T[( dtktf(ïk))g{£n((x,...,Î2V). (/.36)
p=i „=i v r>' k=\ J
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The idea is that, in contrast to G2p'n, (1.24), every graph contributing to g2pn should be

exponentially bound in re.

We now recall how a tree is expressed as a sum of graphs. Consider a tree T

contributing to g2pn. Such a tree has re "leaves" — AV. Introduce a vertex

ax.kx < r < «3,^3

/ Saiic3Sa2taiS(kx + k2 — ki - ki)
a2,k2 «

2 ai:ki
(kx,k2\V\h,ki) (7.37a)

for each leaf. Then, form graphs by connecting outgoing legs»—>— to incoming legs»—<—

pairwise in all possible ways leaving p outgoing and p incoming external legs

•—>—* $e(k)
(7.376)

•—<—* itf(k)

To simplify the combinatorics regard all legs as distinguishable so that the graphs above are

distinct.

Next, we assign scales to the internal lines of a graph G consistent with the structure

of T. Let

s(T) {if\f a fork of T} (7.38)

and 7 a map from the internal lines of G to s(T) such that, for each fork f £ T, the subgraph

Gf {lines £ £ G and connecting vertices \I(£) if,f > /} (7.39)

is connected. We denote the graph G with scale assignments 7 by G The set of subgraphs

GA when ordered by inclusion, form a tree isomorphic to T. The set of all consistently

labelled graphs G is denoted T2p(T).

The value Val^G^) of the labelled graph G1 in momentum space is computed by the

following rules.



Vol. 64, 1991 Feldman and Trubowitz 233

(i) To each internal line £ assign the covariance

C(-il\k) (/.37c)
I(£) it

of scale i(. Assign vertices and external legs the values given in (I.37a,b). (7.40i)

(ii) For each c,r,C,R fork / we respectively apply the operator

-r,x(if>i*u))(1-i)nf.

~{x(if < Uf)){-t) + (i(i'-1} - t)x(if > M/))}
re/.

-LFX(V>M/))(1-/(Ì'-1))
n/,*v-, - -*(/)

to the subgraph Gi. Here 7r(/) is the fork immediately below / in the tree and re/

is the upward branching number of /. Of course trees contributing to g2 n do not

contain r, C forks. (7.40Ü)

dkt(iii) Integrate f ,2A+, for all internal lines £ and multiply by

/ -i \number of fermion loops

(740in)

These rules are derived and discussed in greater detail in [FT§VI]. Finally

$!»= E E Val(Gj)- (L41)
trees T with n leaves r2j>(7")

We now indicate why a graph contributing to g2pn should be exponentially bounded.

It follows from (I.29a) that

(l-LW)fT f dd+H dd+ls dd+lq ïXh) ^ /i4) !>^ L KjLfJ (27r)d+! (27r)d+! (2*)d+i **+!**-**U*-+i•**

;[*(*,s,q)6a<ß6x,p - k(-t,s,q)Sa<liSx,ß}}

ct,ßX,p

1

2
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- V f dd+H dd+1* dd+lq t?(il) *<« rb(U) ^- Zu J (2n)d+1 (27r)^+i (2ir)'+1 Vt+iJ»V-«+f**—+*<xV'+i•¦
a,/3,A,/i

5 [/(k)(*.-,«)*«.,»**„. - /(Ä)(-<,S)g)5a,^Al/3] (/.41a)

where

/<*>(«,,, g) *(*,., g)[l - p(|q|Af-*['*+&l)] (/.416)

+ lk(t,s,q)-k(t,s,0)}p(\q\M-Ki'+hi) (/.41c)

+[*(*, *,0) - k(t',s',0)]p(\q\M-^'+hl). (IAld)

We shall see that when at least one of (±t + |)0, (±s + §)0 is bigger than M^l*+h^

the corresponding field i/>, tp acts as if it were of scale ^[i* + h] rather than ij to produce an

extra factor

So consider |<o|, \so\, \qo\ < M^"+h\ Then the last term is small since || ± t + q/2| — *f|,
||±s + q/2|-fcF| < 0(Ml") and |q| < 0(M^+hi) imply \t - t'\, \s - s'\ < 0(M^" + ^).

Estimating the difference by |Vtfc||t —1'\ + \Vak\\s — s'\, the gradients produce an M~h which

combines with Mît* +fcl to yield the exponentially small M-'l*'~* 1. Just as in the discussion

following (1.31), p(|q[M_2[' +h>), does not produce an additional small factor even though it
severely restricts the domain of integration for q. That the term (1.41c) is small is also seen

by Taylor expanding.

The first term (I.41b) is more subtle. By construction ±t + q/2 and ±s + q/2 lie

in a shell of thickness 0(M* about the Fermi surface. However, 1 — p(|q|M_2f* +h') forces

the transfer momentum q to be relatively large with the result that s and t are constrained

to small regions of momentum space. Precisely, it is shown in Lemma IV.2 that

vol{t € Rd : || ± t + q/2| - kF\ < 0(M{')}

< 0(Affa[ft-r])vol{t. G Rd : ||t| - kF\ < 0(M{'')}

when |q| > 0(M^h+i'1).
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To give a physical interpretation to the last estimate consider a pair of particles (or

holes) with momenta ki and k2. As a composite particle the pair has momentum q ki +k2.

In the physically interesting case ki and k2 are in a thin shell about the Fermi surface and

the estimate is a quantitative statement that q is usually small, or equivalently k2 « —ki.
In other words the composite particle is a Cooper pair.

The intuition above is exploited in the superconducting context and formalized as

Theorem Ll below. Thus, the mechanism responsible for anomolously large graphs is localized

in the quartic contributions to the C forks of trees, which, incidentally justifies approximating

the full interaction by the BCS reduced interaction

£) (k2,-k2\V\ki,-kx)SaißSx,„a+2iaa+2tXa_kußakliß.
ki,k2

a,ß,X,fjL

Thus g (1.35) should now be constructed nonperturbatively by exploiting cancellations arising

from the Grassman antisymmetry. The quartic contributions to the C forks are treated by

means of a renormalization group flow.

Our discussion of 1 — L^k) is finished for the moment. We now treat the quartic

contributions to the C forks by means of a flow that nonperturbatively resums anomolously

large graphs to an exponentially bounded effective interaction. Set

i<ft i<h

4^. ^ 4 y (2^+1 (2*)d+i (2tt)<*+i PK™ '
*1 j*2 t*3»*4^ft

ai,û:2,a3,a4e{T,i.}

[F<hHt',s')Saua3Saiiai - F<h\-f,s')Sai,at6at,a3]

i5(il) t5(*2) i/.(Ì4) tA('3) C7 42ÌVi+q/2,a,V-t+q/2,a,r -,+q/2,aAPs+q/2,cr3- K1-^)

In particular

édA
+q/2,at^a+q/2,a3

^°> --T (£(0) -£)( dd+ls dd+H dd+lq ^ ^ ^4 Z-/V *¦> J (27r),i+1 (2ir)d+1 (2-K)d+1 F*+«/2,ai^-t+j/2,<»,^-.
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V-, X f dd+1s dd+H dd+1q ,,-ij.,.E -4 V (27FH- (27P+T (27)^î-
p(lq|JWf * }

Ûi*2 i*3 1*4^0

{(t',-t'\v\s',-s')saiia3sa2ta4 - H,,f|v|«,,-*,)*ail.4*0„0,}

^/2,ai^l?/2,a2^(-U,/2,c,4^/2,a3- (J"43)

Note that
F<k>(*V) .F(k)(-i\-â')

Fw(Rt',Rs') Fw(t',s') for all .R e 50(d) (7.44)

^(fVH-^Vfa)
The first two parts of (1.44) follow immediately from antisymmetry and rotation invariance.

The third is proven following (1.95).

Apply Tfa-1) - £ to (1.16) to obtain

jAh-l) (£(fc-l) _ £)jr(.h) + (£(fc-l) _ ^£-(A) (jc-W + (1 _ X(fc) + ^C0) (/.45)

(2,(fc-i) _ £)gW (£(*-!) _ £)(L^ - £)ç(h\

It follows that F^h> is the solution of the difference (flow) equation

pih-i) _ FW + _^ ,,„,..,,. ,^ [antisymmetric kernel of
p(\q\M-il2^'+h-1)) l

(7fa-i) _ £)£W(gW) evaluated at ai a3 =],a2 a4 =JJ (7.46a)

with initial value

F<°\t',s') -X(t',-t'\V\s',-s'}. (7.466)

We remark that (L^h~^ —£)£(h\ç(h>) has a unique kernel antisymmetric under the exchange

fil\ »2 \ /h\ /h\
I ai 1 «-» I a2 1 and under the exchange I a3 I <-> I 0:4 I

\tj \-tJ W \ — J
Substituting

(T^-1) _ £)£^)'= jAi-D _ (£('-l) _ ^)jr(*
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into (1.33) and telescoping the sum

o

-A7fa>V+ J2 (£(i_1) - £)£(i)

0

t=fc+i

_Ai(°)v + J*h) + J2 (/fa> - IV-1))!** - (i(0) - £)TW

jAh.)+ J2 (£<*'> - lV-»)^
i=h+l

we obtain the coupled system

gW _ jKk) + £(j(0 - I^-1))^*) - £««(0«) - A(l - I<°))V

+ V(l - L('-D)f«(0«) + log %tl (7.47a)

J-C1-1) (L^-1) - £)J*h) + (L(k-^ - ^)£(k>(e(k)). (/.476)

with boundary conditions

(projection onto nonquadratic part of Ç^ ') — AV (7.48a)

**»(*', s') -X(t', -t'\V\s', -s') (7.486)

lim £g(h) 0 (7.48c)
h—>—oo

Equation (I.47a) is a decomposition of Ç(h' into a quadratic piece (— \.^£ )> a

i<h

quartic effective interaction (jF(A) + Y](LU) - L<-3'~1))7<3>) and, by the discussion of 1 - L^k>

j>h

above,an "irrelevant" piece \ -A(l - i(0))V + V(l - 7(i-i))£(0 + log _£±i I. The term
I ti Zh

2^(L — L^3-1')^3' arises from the scale dependent nature of our localization process and

j>h
does not appear in standard field theory models. It may be helpful to visualize



238 Feldman and Trubowitz H.P.A.

jAh) + ST(LU) _ LU-D)jAJ)
3>h

- V 1 f dd+1s dd+H d^g (,-,) (,-,)- 2^ 4 y (2^+! (27r)d+! (2^+! ^+î,oiV-*+f.o»^-«+î.a«^»+l.<»3
/,(Ü) ,/,(*)

a,e{î,i}

|p(|q|Jtf-*ir+*])[f,(k)(*,,*')*«1^,*«,^-Jî,(fc)(-<',-,)*ai|a4*ai,ai]

j=fc+i
J

where Pfc(q) p(|q|M~*/2) — p(|q|M~(*!_1)''2), as a spy-glass.

(7.49)

3=0

i h

When h is decreased by one the outside shell of />(|q|Af Al' + h))[F^k\t',s')...} detaches, is
o

added to N and stops flowing. Iterating, we obtain an infinitely extended spy-glass.

j=h+l
The structure of the coupled system (L47) allows us to express Ç^k' as a formal

power series in the infinitely many variables (running coupling "constants") J^k\h < 0.

Precisely, Ç(k> is the sum of all trees of root scale h constructed from the forks
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Ux U2 Un

~.(-i)x(i < h)£^(Ux(<j>{i) + tf), ...,Z4(^) + tf)) (7.50a)
71!

Ux U2

RYi
:= 1(1 -LV-V)x(i > h)£^(Ux(4>(i) + tf),...,Un(^ + tf)) (7.506)

R

:=-x(h<0)(l-L^)XV(tf) (7.50c)

T

:= x(h < 0)[J*h)(tf) + ^(£(i) - iC-l))^r(0(^e (I.50d)

One expects to prove that g(X,jA^,i < 0) lim^-oo ÇW(X,T^,..., J*k)) is holomorphic

on a suitable infinite polydisc. Here, by abuse of notation (X,J-^a' ,jA1\...) is any vector in

the polydisc - not necessarily the solution of (I.47b). If (I.47b) has a solution (X,fiF) in the

polydisc, then the effective potential is Ç(X,J-).
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We now investigate the solvability of (I.47b), or equivalently (I.46a). To second

order

(£<*-!> _ £)£W(gW) (£(*-« - £)[4k\gW) + jt£ih)(gw,gw)}.

Taking Wick ordering into account £{ '(ÇW} 0. To evaluate the second term observe that

[the quartic part of —^£[h)(gW,gW)\

'HH -Tgrjgr

[gW gw gwgw

(7.51)

where | (Ç(-k>\ is the antisymmetric kernel of the quartic part of Ç^k\ In Section IV we

show (again using Lemma IV.2) that the last three diagrams are irrelevant for all kernels that

are suitably smooth and uniformly bounded in h. For this reason we begin by considering

the ladder approximation and retain only the first diagram.

All quartic terms on the right hand side of (I.47a) other than the first vanish for

g 0 so that
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—""fa *\—*~~f ^\~*—
antisymmetric kernel of | i< V gW J gW )\s'

—*^s^ y * ^— ^s* <—

antisymmetric kernel of | f' \[ fW jC) Jfs'

\f ¦^^iFW(t''P')Flh)(P''3'^^S-^ -FW(~t',P)PW(p'^')^,aJa2,a3]

[C^k\p)C^k\-p) - <7<<k)(|>)C(<k)(-p)]. (/.52)

Here Ct^C«'1)) denotes V C0). The effect of Wick ordering on the evaluation of

j<h
U<h)

the electron lines is to replace C(-k^(p)C(-k\—p) by the last bracket. Thus, in the ladder

approximation, (I.46a) becomes

F^\t',s') FW(f,s,) + J ^^FW(t',p')F^(p',s')[\C^k\p)\2 - \C^(P)\2}

F^k\t',s1) + ßW jdp'F^k\t',p')F^k\p',s')

where

R(h) _ f dppd\p\
P J (2tt)«+i

fa*W jpi
kp

JPI

kp
d-1

[|C^>(P)|2-|C«%)|2]

^ [p2 (M-«Wetf))-f (M~2ke(p2))]

(7.53)

(7.54a)

is nonnegative, independentof p', and approaches the limit

^(äfe/ dy1-[P2(M-V)-Ay2)} (7-546)
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as h —* —oo.

By (1.44) F^ is a self-adjoint rotation invariant operator and may be decomposed

into spherical harmonics

FW(t>,S>)=Y,X<nh)*n(t'>S')
n>0

with real eigenvalues A„ ,re > 0. Recall that TTn(t',s') is the projection in L2(kpSd~1) onto

the space 77™ of homogeneous harmonic polynomials of degree re. This decomposition converts

(1.53) into the equivalent decoupled system

A(fc-D XW +/3W(AW)2,re > o (7.55)

with initial data determined by

£a£V(<V) -*<*'>-*'I*V>-A
n>0

If A„ > 0 the iterates An ,/i < 0, generated by (1.55) diverge to infinity faster

than An (1 + ßn )'fa This paper is devoted to a class of models in which Ajj > 0 but

Aq > sup |A^°)|, for example (1.5c) with i,üid large enough. They are driven by the full flow
n>0

(1.47b) to a nontrivial superconducting fixed point.

On the other hand if A„ < 0 then the iterates

Al")
Ao)
An

1 + X^ßh + 0(£n\,

converge to zero as h —? — oo. In particular, the vector (An re > 0) tends to zero as h —* —oo

when (<', —f'|V|a', —s) is the kernel of a positive definite operator on L2(kpSd~1). However,

for a smooth kernel An 0(n~N) for all N > 0, which can be a source of instability

Coupling a higher order term to (1.53) may cause some An with re very large, to change sign

after a few iterations. In that event the leading term takes over and drives A„ to infinity.

This effect may be seen by starting (1.55) from the effective interaction
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-4 *—

-X(t',-t'\V\s',-s')+ t

—« * *-

DQ<fadÀ<fafaX<?
g 0

Ib) Superconducting formalism and statement of results.

The rest of the introduction concerns the superconducting state. It is useful,

following Nambu [N], to make the change of variables from {'fki,'^ki,'<l'ki,i'ki,k G R +1} to

** *fc,2 4>-ki

*k [**,!> **,2] [Ì>k},Ì>-k{\

A o
a1 - 0 1

«T2-
0 —i

<r3
1 0

L° 1\ [l oj I 0 J [u -Ij
Let

be the Pauli matrices. We have

**o-°*fc ^k-fPkf - $-kl$-kl

^k^^k tfkirf-ki + ip-H^kt

*fc«r2*fc -*[$*t$-*4. - V'-JuV'fcî]

&ka3&k V'fcfV'ifet + 'f-kiip-ki

The covariance G [i&o — e(k)]-1 correspond to the quadratic form

dd+1k

(7.56a)

(7.566)

(7.57)

(7.58)

/ (2%)d+1

dd+1k

[iko - e(k)]fo!>A.TV>jfcT + V'fcJ.V'fe

*fc[ifcol-e(k)<r3]*fc
(2ir),,+1

so that, in the new variables, the Grassman Gaussian measure becomes dßc0(^f,^f) with

covariance matrix

Co«i,6) <««i)*(6)>
dd+1Jb-I

-I d^k
(2T?)d+ï

'

e«*.f»-^>-[tJfe0l_e(k)<T3]-1

ifc0l -|-e(k)<T3

(7.59)

,i{k,d-U)- (-1)-
*2 + e(k)2
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and (*(£i)*(£2)) (*(6)*(6)) °- °nce again the special case Tj -t2 0 is defined by

a limit, namely, tx — t2 —+ 0— for (Co)i,i and Tx — r2 —? 0+ for (Co)2,2.

The interaction becomes

<ne{î,ifa

dd+lt dd+ls dd+-lq q q q

(^j3TT J^d+Ï (^5+r(* + 2' -* + 2IV]S +r~S+ 2>5—5—

Ì>t+q/2,ai'<l>-t+q/2,a2Ì>-s+q/2,ai'<l>»+q/2,a3

1 f dd+H dd+1s dd+1q ,- w v

(*_1+g/2<T3*_J+g/2)

and the (renormalized) effective potential (1.14)

S(*e, *e) log Ì / exp[(-AV + *V)(¥ + *',* + *e)]^c„(*, *)

where

SV=Sß(X,ß)fdd+1i9(0'r3m)-

The particle number symmetry

V> -* eieV

(7.60a)

(7.606)

(7.60c)

(7.61a)

or equivalently

*
¥->#

e" 0

0 e-ie

e-s 0

0 eie *e tdtr3
(7.616)

that forces (Co)i2 (Co)2i 0 is broken in the superconducting state. Therefore we attempt

to construct a superconducting model by perturbing about the Grassman Gaussian measure

with covariance
C CA [i'M - e(k)<r3 - Aio-1 - Azo-2]-1

ikol + e(k)(T3 + Aio-1 + A2o-2

where A Aj + iA2 and

k2 + E(k)2

E(k)2 e(k)2 + |A|2

(7.62a)

(7.626)
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The corresponding quadratic form

dd+1k
/dd+1h±-JL*(k)[iko - e(k)as - Axa1 - A2a2]*(k)

is the mean field approximation to (minus) the action of the BCS model (see (1.31))

dd+1kI
_2f/Ì7 (iö^r {i^**+*T*-«.»itf-.+?iiW-

Ao f dq0 dd+1s dd+1i

Observe that

(eiô<T3**e-ieCT3)A (**)e2i9A. (7.63)

In other words the 17(1) symmetry (1.61) moves us around a circle of equivalent states. We

may therefore assume, without loss of generality that A is real i.e. A2 0 and positive.

The effective potential (I.60b) is expressed in terms of Ca by

G( *%#*) log i /expK-AV + £V)(* + *% * + *c)]d>c

dd+1k
log I J exp [(-AV + SV)(9 + *e, * + *e) - A J JL-£*(k)arlilf(h)

exp A'/
logÌJ exp [(-AV + SV)(9 + *% * + *e) - A /

It is more convenient to use the effective potential

5(*c, *e) log 1 / exp
I

(-AV + «V)(* + *e, * + *e)

dd+1k ^

dd+1k

^i*«"1^*)
(2k)d+l ^(k)al^(h)

dßc0

dßC* (7.64)

-A/ dd+1k „(* + Ve)a1(V + *e dßc (7.65)
(27rd+!

'

By abuse of notation, we drop the ' on Z and continue to call the effective potential Q.

Expanding (I.60b) in powers of *&* ,$c generates the connected Green's functions amputated

by Co. Expanding (1.65) generates the same connected Green's functions but now amputated

by CA.
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To understand perturbation theory about dßc^ we begin by considering the model

whose effective potential is

log i J exp[-AV + SV]dßC*. (/.66)

The perturbation expansion in powers of A is well-defined since [iko — e(k)a3 — Act1]-1

O (4; when ko 0 and |k| kp. However, each terms diverges as A tends to zero. This is

unsatisfactory because A must ultimately be chosen nonperturbatively small.

To produce an expansion that is uniform in A we must renormalize. Let

SV Sß(X, ß, A) / d&(t)a*¥(() (/.67a)

V D(X,ß,A)Jd&(i)a1*(0. (/.676)

Also let

S ($;ki€{i,2> (»*) (/-68a)

and

S C^1 - S'1 (7.686)

be, respectively, the two point Schwinger function and proper self-energy for the, possibly

non-physical, effective potential

W(*e, ¥e) log Ì J exp[(-AV + SV + £>)(* + *',* + *e)]a>cA (*, *)¦ (7-69)

The proper self-energy is a linear combination

t(k) r0(fc)l + rx(k)ax + r2(k)a2 + r3(k)a3 (7.70)

of the Pauli matrices.

The measure dßc^ and interaction —AV + SV + V axe invariant under

*»-».'(*»)*,**-?<(»*)*¦ (7.71a)

Therefore

(*„**) -<(*,)*(**)*) (***,)* (/.716)
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and energy momentum conservation further implies

S(k) §(ky.

It follows from (I.68b) that S(ifc)t È(k), or equivalently

S(Jfc) r0(k)l + rx(k)a* + r3(k)a3.

The measure d/icA and interation —AV + SV + V are also invariant under

*fc -> a2(*-kY, ** -» -(<r2*-ky (/-72a)

so that

and hence

<*p**) -(^(^V*-*)') -<t2(*-**-p)V2 (/-726)

r0(k) -r0(-k)

rx(k) rx(-k)

r3(k) =r3(-k).
Denote by

S(k,r) J ddxe-ik-*S((x,T),(0,0))

the partial Fourier transform of S. Since C^(k,r) is real and invariant under k —? Rk := —k

and the interaction satisfied (S2), (S3) and (S4) we find that r0(k,T),ri(k,-r) and r3(k,r)

are real and invariant under k —> —k. Finally

S(fc0 0,k) n^ky + r3(0,k)<r3 (7.73)

with rj(0,k) and r3(0,k) real.

We are now in a position to renormalize. Identity (1.73) and an "integral" equation

completely analogous to (1.20) ensure that Sß(X,ß,A) and D(X,ß, A) are uniquely

determined as formal power series in A by the renormalization condition

È(k0 0, |k| kp) rx(0, \k\ kp)a1 + r3(0, |k| kF)a3 0. (7.74)

(See (1.15) and (1.21).) We shall show in Section III that the coefficients in the expansion

of the counterterms Sß and D are finite, uniformly bounded in A and converge as A —? 0.
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Furthermore, the obvious analogue of (1.24b) holds uniformly in A. Let us remark that the

renormalization condition (1.74) determined kp as the zero of Tr(a3S~1(k0 0, |k|)) and A

as -\Tr(alS~l(ko 0, |k| kp)).

We now have a perturbation expansion that is uniform in A for the effective poten-

tion >V. In order to recover the physical effective potential Ç, (1.65), from W we impose the

constraint

A -D(X,ß,A). (7.75)

To first order in A

D(\,fi,A) -^Tr[al( -JL fc f S. k )|Jho_0.|fc|=*,]

dd+1X f dd+1n

f dd+1p A
XJ j2ïy+i{k'pivip'k)ïï + e(p)2l*o=°.iki=*'

-xf\^^-k'^-ph

(7.76)

'p2o + E(p)2

where k' (0,kpr^-A and (Sl) (1.6) is used in the last line. Therefore, to first order, the

constraint (1.75) is

A -A/ W^{k'' -k'ÌVÌP'-p)tiTkv {L77)

which one recognizes as the BCS gap equation. Here it appears as the Hartree-Fock

approximation.

For each po, |p| the kernel (k1, — fc'|V|p, —p) defines a rotation invariant, self-adjoint

operator on L2(kpSd~1). Expanding

-A(fc',-fc'|V|p,-p) ^A„(p0,|p|)7rn(fc',p')
n>0

one finds

-» / (0r<*'. -*l"h-rta+l5? - /B^«- "»Jjfa£(p)'
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If A0(0, kp) > 0 and, for example, / /2°u^i ]Ao(po,p)| < °°, then, as is well-known, (1.77) has

a unique solution A > 0 provided |A| is sufficiently small. Moreover A ~ exp — c?"Pt This

f dd+1p 1
follows from the simple observation that / -.—rrr,—; ^r,—nr is mononotonically

•A, W*?** 2,r p°+ E p||p|-k,|<6
decreasing and logarithmically divergent at A 0. L;

conjunction with the relevant flow, to any order in A.

||p|-k,|<6
decreasing and logarithmically divergent at A 0. Later in this section, (L75) is solved, in

The dispersion relation E(k) yje(k)2 + A2 of the free action

dd+1kI ,-*(*)[.•*„ - e(k)<r3 - Aa'Mk) (7.78)

is bounded below by A. In particular, there is no spectrum in the interval (0, A). Observe

that (1.78) is not invariant under the continuous particle number symmetry (1.61).

On the other hand, the full action of (1.69) with constraint (1-75) is invariant under

(1.61) with the result that the gap (0, A) in the energy spectrum typically disappears, due

to the presence of a "Goldstone boson". However, the gap should persist for the Coulomb

interaction because of the Higgs mechanism. Here we do not treat screening and spontaneous

mass generation. They will be discussed in another paper. Rather we mimic the Higgs

mechanism by adding the external field

dd+1k7 (2irpr*(*K*(fc). C-79)

which breaks the symmetry. Equivalently, we replace the constraint (1.75) by

A-J -D(X,ß,A). (7.80)

To explain the difficulties that can be caused by Goldstone bosons and to understand

the effect of (1.80) we evaluate the ladders

A±(M)

0 ?(P)? '" ?(^)?^fa)? (f
+—-

9 0
(/-SD
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for an interaction obeying (t, — t\V\s, — s) w(t)w(s), where w(t) x(|e(t)| < u). Under

appropriate hypotheses we will flow to interactions of essentially this type. We remark that

in the Nambu formalism A+ is no more regular than the usual A~ of (1.25c), because the

direction of the particle lines is given a new meaning. We have

A*(t,s) -Aw(t)(A±)n<r3 ® a3w(s)

where

-->/ dd+1k

(27r)d+l
™(k)2 3 ik0 + e(k)a3 + Aa1

k2 + E(k)2
3 ±ik0 + e(k)a3 + Aa1

k2+E(k)2
Let

£±(k)
±E(k) + e(k)a3 + Aa1

2E(k)
Further calculation yields

A± "A /7^ TjTth«3 » °3{fa(k) ® fa(k) + Mk) ® £±(k)}
ddk w(k)2 3

(27r)<* 2E(k)C

-A/(^^3®-1{=Fl®1+(^1 + ^3)8(è<rl + ^3)}
x f ddk u>(k)2 1 f /e .A ,\ /e .A Al-xJ (2^ mr)2{** ® * + U1+*ë*)*(V+*Ë* J)

The matrix
e -A 2 e A

-A e

has eigenvalues -g ± i-g with corresponding eigenvectors
1

Ai
Therefore the tensor prod-

UCt | —1 +t — <7

E E
.A

E E
1 + i—a 1 has eigenvalues I — +

.A
E E '^lE-i

corresponding eigenvectors
1

<8>

1

I
J

1

i ®
1

—i

1

—t j
®

1

i
and

1

—i
<8>

1

—i

b±
1

»
1

+
1

«
1

I —1 —I I

with

Also,

(7.82)

are eigenvectors of a3 ® a3 of eigenvalue ±1. It follows that b± is an eigenvector of eigenvalue

1 for - I +a3 ®a3 + [ -^1 + i
E

A 2\ /e, .A 2\ì J-^a 1 (g) I —1 + i — a I > and of eigenvalue

1

2E(k)

E

_A f ddk 1

/rffc)|<« (2T)d 2£(1
(7.83)
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for A^. Furthermore all other eigenvalues of A^ have magnitude strictly smaller than 7.

The sum of the ladders is given by
00

J2 A±(«, s) -XX(\e(t)\ < «)[1 - A^-V ® a3x(\e(s)\ < w). (7.84)
n=0

When A is determined by (1.77), 7 1 and (1.84) is marginally divergent. On the other hand

when A is determined by the first order approximation to (1.80), 7 ^ < 1 and (1.84)

converges for A >> J > 0. One can show directly, by means of a Ward identity, that, under

the constraint (1.75), the particle number symmetry (1.61) forces A to have an eigenvector

of eigenvalue one ([N]§4, [S] p. 235-236);

To make the formal discussion above precise we return to the flow. As before we

decompose the covariance

0

C CA ^2 C*£ (A real and positive) (7.85a)

j —OO

where

CA (0 / ^£ïei<k,°- [»'M - e(k)a3 - Aa1]-1f(M-23E(k)2)

- J Jg_e*~e-*(.0lri sgn(r)E(k)l + e(k).3 + A^^^
Ca(£) / ^A^k'°' [<M - e(k)a3 - Aa^KM'23E(k)2)

^e^e-g(k)MSgn(r)^(k)l + e(kV3 + A^ 2

(27r)d 2£(k) v v ; ;7

(7.856)

(7.85c)

-1

1 h(r) + ]T) f(M-23r)
j= — oo

for all r > 0 (see (II.2)) and

£(k)2 e(k)2 + A2. (7.626)

Note that f(M~2kE2(k)) 0 unless Mh > A. In other words, A imposes a deep infrared

cutoff. From this point of view there are only finitely many scales. But the number of scales

grows unboundedly as A tends to zero since A ~ exp — c?"ft (see the discussion following

(1.77)). To be precise the scales are restricted to the interval

const
0 > J > const log A p-j— (7.85d)

|A|
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Let

WW(*(<«, *<<«) log -J- /exp[-AV + *V + P](*^0),*^0))n^c«)(*(i)'*a))'
(7.86)

where SV,T> are given by (I.67a,b) and

— oo<j</l

with *(-°°) := *e, an external field.

The analog of (1.18) is evident. This is not the case for (1.29) because the quartic

Nambu monomials

(*fcl<ri*fc3)(*fcj^*fc4) 0 < i,j < 3 (7.87)

obscure the dependence on the physical fields ipki, 1^—*J.>V*T>V—*!• For this reason we,

temporarily, work with the physical fields.

A priori there are 44 256 independent quartic monomials in the fields

The superconducting effective potential (1.86) is not invariant under (1.61). It is, however,

invariant under

*fc-W*fc *k->e-i0*k. (7.88)

Therefore the quartic monomials that appear are necessarily the 16 possible products of

^PtV-fcT 2*?^° + ^)** := *PT°*fc

il>-pl$-ki -Z*p{<r° - °-3)** := *Pfa*t
\ (f-89)

¦4>p^-ki -^p{^ +i<r2)*k := ^pT1*^

il>-Pli>kt 2*p(ct1 ~ i<j2)** := *pfa*fc-

(Note that t,tx,t2 and t3 are 2x2 matrices. Tau's with subscripts will denote various

times.) It follows that a quartic monomial A4 in W has a representation

dd+1kx dd+1k2 dd+1k3 dd+1ki
M

1 ^ f dd+1kx dd+1k2 dd+1k3 dd+1ki „,.,„,,
2 EJ (^TT (^ (^ J^^)d+1^x +k2-k3- ki)
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fmAkx,k2,k3,ki)(^k,Tm^k2)(^k2Tn^ki) (7.90a)

We now show that four of these kernels determine the remaining twelve.

The kernels fm<n are uniquely determined on the support of S(kx + k2 — k3 — fc4) by

the condition that
3

E fm,n(kx,k2,k3,ki)(Tm)aua3(Tn)a2,ai (7.906)
m,n=0

be antisymmetric under (kx,ax) *-* (k2,a2) and (£3,023) *-* (£4,0:4). We make the antisymmetry

condition explicit. The kernels fm,n must satisfy:

a) fi,i(kx,k2, k3,ki) is antisymmetric under kx <-» k2 and k3 «-> £4

b) /o,s(&i>k2,k3,ki) -fx,2(kx,k2,ki,k3)

-f2,i(k2,kx,k3,ki)

f3,o(k2,kx,ki,k3)

cl) fo,i(kx,k2,k3,ki) fx,o(k2,kx,ki,k3)

fo,i(kx

c2) fo,2(kx

ha(k
c3) fx,3(k

c4) /2,3(£

fc2)£3i£4) and /1,0(^1,^2)^3)£4) are antisymmetric under kx *-* k2

k2,k3,ki) f2,o(k2,kx,ki,k3)

k2,k3,ki) and /2,0(^1, k2, k3, fc4) are antisymmetric under k3 *-* £4

k2, k3, ki) f3,x(k2,kx,ki,k3)

k2,k3,ki) and f3,x(kx,k2,k3,ki) are antisymmetric under k3 <-+ £4

£2,£3,£4) /3,2(^2, ^1,^4, £3)

£2,^3,£4) and fs,2(kx,k2,k3,ki) are antisymmetric under £1 <-> k2 (I.90c)

Since M is invariant under

the kernels obey

** - <r2(*_,)t ** - -(<r2*_*)'

*fc -> ^Rk *Jb -» *ÄJfc for all R G 0(d)

fm,n(kx,k2,k3,ki) /x(m),ir(n)(£3,£4,£l,£2)

where 7r is the permutation (0) (1,2) (3),

fm,n(kx,k2,k3,ki) (_l)«»,i+«-,» +*.,i+«.,.^„^^(-jfej.-^.-Jbi.-ta)

(7.91a)

(7.916)

(7.91c)

(7.92a)

(7.926)
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where p is the permutation (0,3) (1) (2) and

fmAkUk2,h,ki) fm,n(Rkx,Rk2,Rk3,Rki), ReO(d). (7.92c)

Combining the three parts of (1.92) yeilds

fm,n(kx,k2,k3,ki) (-l)s^+6^+6^+6^fp<m)^(n)(Tkx,Tk2,Tk3,Tki) (7.92d)

where the product p7r is the permutation (0,3) (1,2) and T(k0,k) (—k0,k) is time reversal.

In particular

/m,n((0,k1),(0,k2),(0,k3),(0,k4))

(_1)^,1+«m,2+^,1+*„,2/pir(m)^(n)((0)kl))(0)k2))(0)k3)i(0!k4)) (/.92e)

Observe that the antisymmetry conditions imply that the nine kernels

/o,o /o,i /0,2 /0,3

/l,l /l,3
/2,2 /2,3

/3,3

determine the others. It follows from (1.92a) that the six kernels

/0,0 /0,1 /0,3
/1,1 /i,3

/3,3

determine the others. Finally (I.92b) implies that only the four kernels /0,0 /0,1 /0,3 /1,1 are

independent.

Let the group SU(2) act on the fields ^k,^k by

A a 6

—6 ä
*t -+ a** + i&CT-2**,

*_jfe -> ä*_fc - ib^\a2.

or equivalently on the physical fields V'fcilÄfc by

(7.93a)

V'fcT

4>H. (7.936)

[^kt,i>ki] -» [ipki,i>ki\A*
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Observe that the transformation (1.93) sends the term

dd^k

f dd+1k

=Ay (27r)d+ig(fe) $ki$-ki + i>-kii>ki]

to

f dd+1k
A / (27r)d+i9^k) {(ä^*T + H>ki)(-H-kt + a^_*|) + (-6>-*t + S.i/>-ki)(arl>ki + Hkl)}

f dd+1k
=Ay (27r)d+i^) [^*t^-*i + V'-fciV'fcî]

when <?(&) #( —k). Consequently the effective potential y\?W and the associated connected

amputated Green's functions are invariant under the action of SU(2).

Set

Q(t',s'):=-f0tS(f, s', s',t') (7.94a)

where once again t' (0,fcj?4r). Then by direct calculation SU(2) invariance forces

f0,0(t',-i',s',-s') [Q(f,s') - Q(-t',s')\. (7.95a)

Moreover by antisymmetry and (I.93e)

/0)0(tf, -tf, s', -s') /,,,(<', -tf, s', -s')

[Q(t',s,)-Q(-f,s')}

/0,3(tf,sV,tf) /3,o(tf,fafatf)

-fl,2(t',S,t',s)

-/2,l(tf,«',tf,«')

-Q(tffa)

and

Q(tf,,') Q(s',t') Q(-tf, -.') (7.95c)

Define an involution * on the Grassman algebra by

** *T*

(7.956)

(7.96)



256 Feldman and Trubowitz H.P.A.

and by complex conjugation of scalars. One easily sees that

W(*e, *e)* W(*e, *e). (7.97)

Consequently

fm,n(kx,k2,k3,ki) fm<n(Tkx,Tk2,Tk3,Tki). (7.98)

In particular, Q(t',s') is real and therefore the kernel of a self-adjoint operator on L2(kpS

The localization operator IAfc',fc < 0, is now defined by the self-evident analogs of

(I.29b-d)

L(fe)const const (7.99a)

L(fc)y"d6d6*(6W6 -6)*(6)
=£ Jd^xd^mi)K((x -6)*(6)

jdi^(i)k(ko 0,|k| fa2^)*(0
where K K01 + Kxa1 + K2a2 + K3a3 (7.996)

Ifa> j dtx...dtnKht...liMu---,tn)®n(ti)-.$iMn) 0

for re > A,ij 1,2 (7.99c)

and

tW /ll ^^r(27r)d+1^ + *2 - *3 - ki)fm<n(kx,k2,k3,ki) (fc^r™*^)

(*£W£>)-0 (7.99d)

for (m,n) ^(0,0), (3,3), (0,3), (3,0), (1,2), (2,1),

w f dd+H d^s dfi+iq q q q q

J (2K)d+i (27r)<*+i (27r)d+lIm'n( +2' t+2'5+2' *+2J

/<&(»l) _m^(Ì3) \ ^(i2) _ntf>(»4) \
^<+?/2' *3+q/2J \*-t+q/2T ^-l+q/2)

/(SFT <££r ^(|q|Mfa^-i)/m,n(tf,-tf1fa-,')
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f*(*0 T™^(*3) \ (mi'A -njW ^ (7.99e)

for (ro,n) (0,0), (3,3) and

L J (2*)d+* (2k)*+i (2Tr)d+ifm'n{t+2'S 2,S+2'1 2]

\Vt+q/2T Vs+q/2j \Vs-q/2T *t-q/2)

f dd+1t dd+1s dd+1g „, .[,.+i]u ,M

(*<;Vro*(.+U) (*ÏÏ/»t"*ÏÏ/0 (J-99/)

for (rre,re) (0,3), (3,0) and

w f dd+H d^s d^q t + gs_lt_ls + l)J (2»)*W (2^+1 (2ir)*H/m'"1 +2' 2' 2' + 2]

(tyt'A Tm<&(*3) \ (^('A njfrh \

(*SJflr-»<«„) (*<«„.•••<«/,) </.«»)

for (7re,n) (1,2), (2,1) where, as before,

i* max(ii, 12,13,^4)

p(r) 1 — /i(r).

One may visuahze the flow of momentum in (1.99) by
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Nambu fields Physical fields

g/2

ix ^—
t

u ins «3

g/2

g/2»iT »3 T

{'s (m,n) (0,0)

*2Î H T
g/2
g/2

«3 1

3 Ç> (m, re) (3,3)

12 i U ïg/2

(7.99e)

Nambu fields Physical fields

ix ¦—• *-= n
8/2) W2

^g/2 (m,re) (0,3)

»iT

î/2)
Î2 4. ('4 J.

ìli «3 1

g/2) W2 (m,n) (3,0)

22 T u T

(7.99/)
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Physical fields

3/2) iß/2

»iT 23 1

9/2) W2 (m,n) (1,2)

Î2 1

21 1
23 î

ì> W2 (m, re) (2,1)g/t

22 î 24 4

(/•995)

Set

q(M($(0) $(i). i<h)-.= (L(Ä) - £)>VW J] *(0, E *W (7-100)
i<h i<h

Observe that kernels appearing in the range of L^ — / can, by (1.95), be expressed in terms

of Q. Consequently there exist kernels QW(t',s'),h < 0, such that

fij y (2t
*«, *¦». *«« ^-«r*«.

*l,»2i*3»*4<A
(27r)d+i (2ir)d+1 (2ir)lJ+1 '

*('i)

+

(m,n)=(0,0),(3,3)

E
(m,n)=(0,3),(3,0)

+ J] (-l)Q(ft)(^-')(*t+î/2

(m,n)=(l,2),(2,l)
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¦WL J^)d+l (27r)d+l (2^+iP(lql

\ [Q^(t',s') + Q^(-t',s')} ^m^-S./.i^^Si/.t

\V,«+,/2TV'_<+ç/2îV_,+g/2TV,+g/2î + Vt+q/2iV-t+q/2lV-*
(«*) ,/,(*»)

t+î/2J. V-J+«/2i^»-t-î/21

+3 ßK/»Ä./u + C^m] [Ä/.ÄA/.Ä/.J } C-101*)

Expression (1.101b) should be compared with the decomposition (1.30) into even orbital

angular momentum singlet spin states arid odd orbital angular momentum triplet spin states.

As explained before these combinations are the Cooper pairs.

The effective potentials y\>W (1.86) are analyzed using the same strategy. We applied

to

öW(^(<fc)|^(<*))=log J_ Jexpl-XV + SV^^^^lldßco)^,^). (/.14)

Just as before, W'" is the sum of all planar trees (including the trivial trees (I.34c,d))

constructed from R and C forks (I.34a,b) with root scale h and leaves —AV. Now, however,

the localization operators £ and If-k' are replaced by the operators / (1.99) and JAk> (1.99).

The graphs contributing to the perturbation series for

log — / exp[-AV]dMc^

are, as remarked above, bounded by (constA)" because [ik0 — e(k)<r3 — Act1]-1 O ^1.
As A tends to zero mass subdiagrams diverge and arrays of four-legged subdiagrams produce

anomolously large values. The addition of counterterms SV,T> in W, (1.69), yields a perturbation

series uniform in A. Still, as A tends to zero, anomolously large graphs appear. However

they are uniformly localized by ifa) — / in Q^k\ (1.100). Precisely, the content of Theorem

1 below is that graphs contributing to trees containing no quartic C forks are exponentially

bounded, uniformly in A.
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The derivations of (1.47) and (1.48) may be applied verbatim to the effective potentials

y\>W an(j effective interactions OS*1} to yield the coupled system

WW QW + ^(L(0 _ l«-i>)C(0 - £)*£(i)(W(i))

+ log%tl (7.102a)-A(l - l/°>)V + ^)(1 - L<i-1')£M(W(i))

i>h

+

Q^-1' (Lik-^ - /)S(fc) + (L^-1' - l)£w(WW) (7.1026)

and the boundary conditions

(projection onto nonquadratic part of W^ ^) —XV (7.103a)

Q(°)(rV) _A(tf,-tf|VV,-5'} (7.1036)

lim IWW 0. (7.103c)
h—»• — OO

Bear in mind that the truncated expectation S^ (1.17) is now with respect to the covariance

C&.

Given an arbitrary sequence of quartic monomials Qt- ', iteration of (I.102a) generates

wKk) as the sum of all planar trees constructed from R (I.34a) and c (I.23b) forks with

root scale h and leaves -A(l-l/°))V and Q(i) + ^(L(i)-L(i-1))Q(i). Following the discus¬

si
sion of (1.37) through (1.40) one sees that W^is the sum of graphs with generalized vertices

-A(l - lfa))V and ßW) + ^(L(i) - L(i_1))S(i). If the renormalization group flow (I.102b)

resums the quartic parts of C forks to effective interactions that are uniformly bounded in h

then by Theorem Ll, to come, all the graphs contributing to W^-k' are exponentially bounded,

uniformly in h. We shall discuss the convergence of (I.102b) in Theorem 1.2.

Let ufa)(*e, #e) be the sum of all planar trees constructed from R (1.34a) and c

(I.23b) forks with root scale h, leaves —AV. The scale sums in (1.34a) and (1.23b) are now

automatically restricted to the interval (I.85d). Of course, L^h\£,C^h) are replaced by i/fa/
and C^. We define «4^n(6. -,6j>) by expanding

OO OO v

,«(»•,*•) EE (4ta"II (J ^-i*«*"(6i-i)*'««)J <Uti
p

»1 »•••>&?)

(7.104)
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Let T be a tree contributing to w2Jn and T2p(T) the set of all 2p-point labelled graphs

consistent with T so that

(h)
£p,n £ E VaJA(G7). (7.105)

trees T with Tlr(T)
n leaves

We now state the first main result. It immediately implies, that for any fixed graph

contributing to (1.105), the sum over scale assignments if,f 6 T is exponentially bounded

in re, uniformly in A provided \£nA\ < c°"3t. Note that the solution of (1.77) satisfies

this inequality. The Theorem is designed so as to accomodate vertices/leaves of the type

c(J) + E(L(i) - tf*-1^1.
i>3

Let us imagine that Qf-3),j < 0, has been constructed nonperturbatively by iterating

a map of the form (I.102b). Then the first component (I.102a) of the coupled system can be

iterated on its own. The solution is a sum over more general trees in which we allow leaves

QU) + £i>,-(L(0 - L^^ßW and -A(l - l/°))V.
Define the norms

\h max.

4

J=2

iM<TjUr,ai+Yl)=x^k sup /dr2dr3dTi
L ki+k,+k3+k,=oi

4

nvf;7((0,k1),(r2,k2),(r3,k3),(r4,k4)) :

3=1

4 4

X)«i < 2,^^ <l,ai>0| (7.106)
3=2 j=\ >

\\T\\h max JM^+^ sup / dr|rr|Vf5((0,-k),(T,k)) | : 0 < a < 2, \ß\ < lj (7.107)

|w|' y o,dk1...o"ik2n«(k1-|-...+ k2„)s«pTl rj.luftTi.ki),...,^«,^»))! (7.108)

on four legged, two legged and general kernels respectively. Here (r, k) refers to mixed (time,

vector momentum) coordinates and | • | refers to the tensor norm. Roughly speaking the

norms (1.106,107) control two ko and one k derivatives.

We now describe the class of graphs to which Theorem Ll applies. Let T be a tree

constructed from 7? forks (1.34a), c forks (I.23b) and re general four legged leaves each of type
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t" <g> rb with a + 6 0 (mod 3). These leaves ll*M may depend on the scale j^v) of the fork

¦n(v) of T immediately below v and are assumed to obey

supplì,-<|AK. (7.109)
3

The ultraviolet regime has already been treated in [FT] so we discard j 0 and from now

on we restrict ourselves to the interval

-1 > j > const log A. (7.110)

To state the Theorem it is also necessary to describe the effects of Wick ordering

(see the discussion following (III.3)). If GJ is a graph contributing to T then each line of G

has a scale label jf, /a fork T, and is given a hard/soft label. Hard fines carry the covariance

(I.85b) while soft lines carry

C>J)M - f^.^I32!ffl^i^^i(k)») (/.in)

Furthermore, defining

Gf {£ G G| the fork /' of £ has /' > /}, (7.112)

Wick ordering forces each quotient subgraph Gf/{Gf \f > /} to be connected by hard lines

and to contain no tadpoles

0

Theorem Ll Let T be a tree constructed from R forks (I.34a), c forks (I.23b) and n general

scale dependent four legged leaves 7^ each of type t" ® rh with a + b 0 (mod 3) and

satisfying

supplì; < |AK

Let GJ be a labelled graph contributing to T as above. Let | log A| < ^r^p. Then

| £ Val(G')|' < consta|A|3/2 nilAfaV].
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The sum is over
{J I ,?'*(/) < jf < —1 if / is an R fork and

const log A < jf < J»(/) if / is a c fork}

with j^rj,) const log A.

Theorem Ll is an immediate consequence of the more general Theorem III.6.

Verifying Theorem III.6 will amount, in Sections III and IV, to controlling 1 — ifa).

When L(h) acts by (I.99e-g) the discussion of (1.41) applies. A new ingredient is required for

(I.99d).

For (m,n) ^ (0,0), (3,3),(3,0),(0,3), (1,2), (2,1), that is m + re ^ 0(mod 3) the

quartic monomial (*&Tmi&)(ì&Tni&) contains, by (L89), different numbers of physical i/>'s and

physical i/>'s. For example,

(*fclT3**3)(*fc2T1*Ä!4) t-krtf-kslîkr.ïï-kil.

Observe that all the interaction leaves (I.60a)

k3\V\k2,ki)(^kl[r° -r3}^k3)(^k2[ra -r3]^kt)^J(ki,k3

of any tree T contain only monomials with a + 6 0(mod 3). (This remains true in Theorem

III.6 where QW's are also admitted as leaves.) Furthermore, the portion (—1)' ° ^+J/fa-1"

of Ca preserves the number of physical tj)'s and physical V>'s since

r*rm t3

with i 0,3 implies m j and, in particular, m(mod 3)= j(mod 3). If G1 is a labelled

graph consistent with T and a + 6 ^ 0(mod 3) then it follows from the discussion above that

the kernel fa^ of any four-legged subgraph corresponding to an R fork of T must contain the

A^ + r2]
fa+gfiO* portion ot some covariance.

Recall that

0^(k) (-D£M + <k%;;[l; A[Tl + r2]/(M-^(k)2) (/.856)

On the support of f(M-2kE(k2))

rth\- ' ,,ihl + e(k)[T°-T*} 1

Cl{k) •= (-1} k2 + E(k)2
~ M~k (7-113o)
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^-^fw^- (J-1136)

The portion (I.113a) of C\*(k) obeys the same power counting bounds as the standard

cWw 7^h(k)^M-2h<^-

On the other hand the portion (I.113b) is smaller by a factor j^.
Suppose a + b ^ 0(mod 3). Then the kernel /a,j, of a four legged subgraph

corresponding to an 7ï fork of T of scale h is bounded by O j^c 1, in contrast to the usual power

counting bound O(l). We have

y^ -T7Ï < constant (/-114)
h s.t.

Mk>A

uniformly in A. Consequently the subgraph is summable over h, justifying definition (I.99d).

We also exploit

— l>j>const log A

in the proof of Theorem III.6. See the discussion surrounding (III.21) and (III.23) for more

explanation. Care is taken throughout Sections II-IV to ensure that the total number of sums

(1.115) does not exceed a fixed fraction (strictly less than one) of the number of leaves.

We now discuss convergence of flows of the form

Q(*-») (L^-1) -1)qW + (L<ft-1) -/)£W(ß(0\...,Q(ft)) + (lfa_1) -l)ê^(Qw,...,QW)
(7.116)

Here
£{2h)(QW,...,QW) =the part of £^\wW) that is

quartic in the external fields and is

homogeneous of degree 2 in (Qy° Qy ')
and £^(Q<.°'>,...,Q.(h)) is to be thought of as the quartic part of £^\w^) -
4W(SW,...,2W) where W(fc) is expressed nonperturbatively in terms of (Q(0),..., SW).

Once again, Wick ordering implies that £\ '(W^) 0. By (1.101) we may equivalently

discuss the flow

Q(h-i) Q(h) + Ê{k)(Q^\...,qW. A) + JS$k)(Q<°\ Qw; X, A) (7.117a)
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of the kernel Q«(tf ,s') of fi(fc). Here

Êih\tl,s,) Êih)(Q^,...,Q^;A)(f,S'),

Ê^Vfa) Êik\QM,...,QM;X,A)(t',s')

are the kernels of £2 and £>3 respectively.

Observe that (equation (1.118))

[the quartic part of ^£2 ' (quartic part of W^k\ quartic part of W^)]

(/.1176)

(7.117c)

I (VV« (wW (WW (y\>W

hyW vyC«) -2 wW WW

where | \W<-k>\ is the antisymmetric kernel (see (1.90)) of the quartic part of W^h\ We

easily show in Section IV that the last two diagrams are irrelevant. The first two are more

subtle. We proceed to analyze these diagrams.

The first step is to separate off the — ^) kilpr^\2 portion of the covariances on lines

1 and 2. As in (I.113b) and (1.114) they generate summable contributions. Next we remove

the ^(1 - L(*-J))£(<)(W(0) contributions to W«. They are part of £<£. The third step
i>h

is to identify electron-hole ladders. We will show in Section IV that they are also irrelevant

contributions. This is most easily done in the physical field formalism.

Let the Nambu graph

XX
represent the monomial | //m,„(*Tm*)(*T™*)with 0 < rre,n < 3, m + n 0(mod 3).
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AU contributions with m + re ^ 0(mod 3) have already been placed in £>3 In physical fields

this graph corresponds, by (1.89), to

IXJJZ for (m,n) (0,0)

IX jZ for ^m' n"> ^3'3^

"jf T*~ for (m, re) (0,3)

~*7^ T~ for (m, re) (3,0)

jQ^ hr (m,n) (1,2)

^J^yZ for (m, re) (2,1)

Consequently, for
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Wx W

(7.119)

we get zero or an electron-hole ladder except when Wx and W2 are both of type r° <g> r° or

both of type t3 (g) t3. Then the whole graph is of type t° <g> r° and t3 <g> t3 respectively. For

li.

(7.120)

we get zero or an electron hole ladder except when one of Wx and W2 is of type t1 (g) t2 and

the other is of type t2 <g> t1

The last step is to apply (L^1-1) — I) to the remaining parts of (1.119), (1.120) and

identify Q(A_1) from the result. By (1.101a) it suffices to antisymmetrize (1.119), (1.120) and

select the coefficient of t1 ® t2. Graph (1.119) does not contribute to this coefficient. By

(I.99g), setting q 0 for the whole graph (1.120) forces q 0 in the kernels Wx and W2 with

the result that the (L(i) - L<i-1))öW contributions to W{ are also zero. The term (1 - L°)V

of (1.102a) does not contain t1 % t2 or t2 ® t1 This leaves

I/*-« (-1) "foWr^r2)^ "foCOr2

(7.121)
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Antisymmetrization has replaced the coefficient (-2) by (-1). The kernel of (1.121) is

^Ä^W(*V)k(fcV>P') E trr2C?(Pyc[%) (7.122)

i or j=h

where C(nh)(p) Cn(p)f(M~2kE(p)2) and Cn(p) is given in (1.113). The sum ^
results, as usual, from Wick ordering. The only nonzeros traces are

trSlr1! =trr2\T1T3

tr^^T1! fo-rVi-V 1

so that

w*<-i /„wir (^ Po + e(p)2
trrCx(p)rCx(p) -lp2+E{p)]2.

Hence the integral (1.122) becomes

i or j—h

ß^Jdp'QW(t',p')Q^(p',s')

where

(7.123)

The conclusion of the discussion above is that we may rewrite the flow equation

(1.117) as

Q<fc-l>(<V) QW(t\ »') + ß^ J dp'QW(t',p')QW(p', s') + S<«(Q<°\..., Q«; A)(tf,,')

+j(«(Q(o)f..., qW. x, A)(f,s'). (7.124a)

Here all the contributions of third and higher order have been placed in BW. The

"summable" second order contributions have been placed in S^k\ Precisely

S(k> the second order parts of the last two diagrams of (1.118)

+ those second order parts of the first two diagrams of (1.118) for which either

propagator 1 or 2 is a C2 (see (I.113b))

+ all second order parts of the first diagram of (1.118) except those for which both

kernels are of type t° <8> t° or of type t3 ® r3
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+ ail second order parts of the second diagram of (1.118) except those for which one

kernel is of type t1 <g) t2 and the other is of type r2 &T1. (1.124b)

The only other second order contribution is that from the physical field electron-electron

ladder and this has produced ß^'QW
To see what is going on we once again start by considering the ladder approximation

&*-»(?,s') Q(fc)(tffa) + /#> [dp'QM(t',p')QW(p',s') (1.125)

to the flow and compare its behaviour to that of (1.53). By (I.92c), (I.95c) and (1.98)

Q( >(t',s') defines a real, self-adjoint, rotation invariant operator on Z2(fcjrS<i_1) and hence

may be decomposed into spherical harmonics

Q^(f,s') £ Xik\A)*n(t',s'). (7.126)
n>0

The analogue of (1.55) is

A^-^A) A«(A) + ß(»(Xik\A))2, re > 0 (7.127)

with initial data determined by

^A^TTnttf,*') -A(tf,-tf|VV,-,').
^>0

The solution of (1.127) behaves very differently from that of (1.55) because

dp0d\p\V ftw fdpo.^ Pa y (2tt)<<+i
ft=— OO V '

Ipll""1 PÎ+e(p)2
kp\ \p2+E(p)2}2

^^-|logA, + 0(l)

p2(M~2E(p)2)
(7.128)

in contrast to lim ß^k> ß.
h—*—oo

We show that if

|AL0)I E /4h)<7<i, l>L0)l«i (/.129)
A.=—oo

then

A« (1 - Ag») £,&» - W)-1^ (/-130a)
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with

le^^iA^iE^A <
2

(7.1306)

First observe that (1.130b) implies

|AL0)I

(7.131)

1-7
The flow of the tail is given by

e-1) bW _ x^fxik\i + xWß^r1-

The inductive bound (1.130b) follows from

ix^ß^x^i + x^ß^r1]

< |A?>|/#>{(-up/#>) J^\W\ (l-j^l^lsnpß^y1
< \w\ß:W

1 - 7
27

provided |A„ | is small enough. Consequently the sequence generated by (1.127) converges

(though not to zero) for all sufficiently small initial data irrespective of sign when (1.129) is

satisfied. Recall that, in contrast, the solution of

x(K-i) xW+ßW{XW)2

lim ßw =ß>0

(7.55)

converges to zero like

\(0)

Al")
aL°)

1 + X^ßh
h —> —oo

when An; < 0 and diverges when A„ > 0.

Condition (1.129) is anticipated in the discussion following (1.81). After all, solving

(1.125) amounts to summing ladders as in (1.84). In fact 7 is, up to sign, the largest eigenvalue

of A* with corresponding eigenvector (1.82) 6T
1

i ®
1

—i T
1

—i ®
1

i
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In evaluating the first two graphs of (1.118) we painstakingly distinguished between

physical field particle-particle and particle-hole ladders. The former determine the leading

behaviour of the flow while the latter were placed in S(k' (I.124b). This essential difference

is evident in A*. As A, A —? 0 with

ddk 1-xf pJ\e(in)\<u, (2tT

held fixed, A^ becomes

(k)|<„ W 2£(k)

f^{+<rae><ra + l®l}.
The limit has two eigenvalues 7 (for the particle-particle ladder) and two eigenvalues 0 (for

the particle-hole ladder). Thus, particle-hole interactions produce a relatively small effect.

As we have observed, (L84) is marginally divergent when 7 1, that is when A is

determined by the BCS gap equation (1.75). But, it is convergent when A is determined by

(1.80) that is 7 ~ g < 1. We introduced J in (L79) to eliminate Goldstone bosons. Our

discussion of the ladder approximation is finished and we now return to the full flow (1.117).

Four legged diagrams are, by natural power counting (see Lemma V.3 [FT,p. 209]

and the discussion preceeding it), dimensionless. That is, a four legged diagram whose lowest

particle lines are at scale h tends to obey a bound proportional to Mok. However, as we

have pointed out (see (I.85d)) there are only O A^ J scales. The net effect is to improve

Mok to Mt + A. We shall see in Lemma IV.4 that for "summable" second order diagrams

M° is improved even further. Thus one would expect, in the course of a nonperturbative

construction, using determinant bounds and Theorem III.6 to sum perturbation theory, that
S<~k> and TTfa) satisfy

|| Y S<»(QW,...,QM;A)\\h<v\\QW\\l (7.132a)
h'>j>h

and

||2r«(Q<°\...,QW; A, A)|U < Vj^^WQ^\\lß (/.1326)

for ||Q(1)||i,..., ||Q(fc)|U < CII<3(0)||o- The constants v and re depend on Ç. of course, but not

on A. This leads us to formulate

Theorem 1.2
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Let

<?W(tV) -X(t',-f\V\s',-s') J2W*n{t',»'),

where tf (0, -fakp) and 7r„ is the projection in L2(kpSd~1) onto the space of homogeneous

harmonic polynomials of degree re, satisfy

suplA^I Y /4ft)<7<l
n>0— h=—oo

where ß(k) is defined in (1.123) and ||Q(0)||0 < oo. Let S^ and H<-k> be maps from the h-fold

Cartesian product of B(L2(kpSd~1)) to E(L2(kpSd-1)) obeying (1.132). Then there exists a

constant £, independent of A, such that for |A| <£ the sequence QW generated by the flow

(1.124) satisfies

||QW|U<const||QW||o. (/.133)

The const depends on 7, but not on A.

Theorem 1.2 is an immediate consequence of the more general Theorem V.l. The

convergence of the sequence QW is discussed following Theorem V.l. The convergence is

in a norm weaker than all the || - ||ft's. For constructive purposes the boundedness (1.133) is

much more important than the nature of the convergence.

The coupling constant A and gap width A appear as independent parameters in the

coupled system (1.102). In Theorem Ll we required

IA log A| < const. (7.134)

In Theorem 1.2 we further required

sup|AW| Y ^kft)<7<l (/-135)
n>0 —

— h= — 00

0

Here,An is proportional to A and N. /$a > given in (1.128), is proportional to |logA|.
h= — 00

Inequality (1.135) is more stringent than (1.134) and, indeed, implies it.

It is now easy to summarize our main conclusions so far. Assume (1.135). Then

the flow (I.102b) converges when (1.132) is satisfied (and, by Theorem III.6, this is the case
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if (I.102b) is truncated at any finite order of A) and every graph contributing to (I.102a) is

exponentially bounded. The last step is to impose (1.80) so that the coupled system (1.102)

gives the physical model (1.60). See (1.75).

Recall that D(X,ß, A) is the coefficient of J d£-&(Ç)a1&(Ç) in the action -AV +

SV + T>. See (1.69). The order A contribution to D is given in (1.76). The re order

contribution, re > 2, is the coefficient of a1 in the sum of all trees with re leaves, root scale 0 and

lowest fork a c fork. By Lemma III.7, each graph contributing to such a tree is bounded by

const"|A|5'4A| log A|. Therefore, to any finite order the constraint

A- J -D(X,ß,A) (7.80)

becomes (following the discussion after (1.77))

/dd+1n A
J^^-k'^p^WTÊwp{E2{p))

+ 0(A|logA||A|5/4)
dd+1p A

W^X0{P0'ÌPÌ)^EWP{E2{P)) (/.136)

+ 0(A|logA||A|5/4)

^A0(0,,Fy(M-2E2(p))^4^
+ 0(A|A|) + 0(A|logA||A|5/4)

fa

fa

Just as before, (1.136) has for any J > 0 a solution A > max < J, exp — c?°ft > provided

Ao(0, kp) A<j0) > 0, and |A| is sufficiently small. Suppose, A<0) > 0,X(00) > |A^0)| for

all re > 1, and J > 0. Then (1.136) implies that

sup|A(°)| Y ^«^/feföte] " rlI^yiAM 2E2(p))
h=- \pI + e2(p)}2

x(o) f f dp0d\p\ p2(M-2E2(p)) \-A° (Jj^rTi p2+e2(p) +oil>)

< 1

when |A| is sufficiently small, depending on J. The inequality A > J tells us that the

symmetry breaking term (1.79) does not produce a gap larger than the physical A.
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Theorem 1.3. Let (kx,k2\V\k3, ki) be a general two-body interaction such that the symmetries

(1.6) are satisfied on the support of S(kx + k2 - k3 - ki) and ||V||0 < oo. Suppose A0 > 0

and Aq > |A„ |,re > 1, where (see Theorem 1.2)

-X(t',-t'\V\s',-s•) Y^)^(t,,s•).
n>0

Then, for |A| sufficiently small, the constraint (1.80) has a solution A such that the hypotheses

of Theorem Ll and Theorem I.2I.32 are satisfied for the pair (A, A). Consequently, the

coupled system (1.102) gives the physical model (1.60), the flow (I.102b) converges when

(1.132) is satisfied (and this is the case when (I.102b) is truncated at any finite order of A)

and finally, every graph contributing to (I.102a) is exponentially bounded.

Recall the interaction

(kx,k2\V\k3,ki) Û(k3 - kx) -720(^ -«(k, - ^))\h _ £)g VJtkf- kx)2
{L5C)

In this case

-A(tf, -t'\V\s\ -s') -XÛ(s' - tf + Xy29(u>D - u(s' - t'))2 (7.138)

If the two-body potential U and phonon frequency co are smooth and co is bounded away

from zero, we have ||F||o < oo. It is easy to see from (1.138) that for any U, X0 > 0 and

Aq > |A„ |, re > 1 when 72 is big enough. Thus the hypotheses of Theorem 1.3 are satisfied.

This completes our small-field analysis of the effective potential (1.5).

We now summarize the rest of the paper. Section II begins with simple estimates

(Lemma II.1) of the covariance C£ that are formulated in terms of the "dual" mixed time,

d-momentum norms (II.5). They tell us that the power counting dimension (in the sense

of (III.5)) of each particle line is 1. The rest of Section II is devoted to strings (II.6) of

renormalized mass subdiagrams that we regard as generalized covariances. The appropriate

estimates are given in Lemmas (II.2) and (II.2'). They are more involved than the analogous

[FT Lemma VII.3] because (II.4) does not localize ko near zero in contrast to [FT§2].

Section III culminates in an inductive proof of the graph estimates Theorem III.6

and Lemma III.7. The argument relies on the Abstract Power Counting Lemma III.l that

reduces the problem of estimating graphs to those for which renormalization cancellations
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must be exploited. It also relies on the fact that j> T7fc"fa E< ^ const|A[| log A| are
h s.t. •>•¦'¦

M">A M">A
uniformly bounded in A. Such a priori, bounds allow us via the yes/no Lemma III.5 (and

general string estimates of Section II) to further reduce the proof to controlling the special

second order, two and four legged graphs of Section IV. Lemma III.5 counts the fraction of

coupling constants eaten up by A y. 1-

Mk>A
Section IV is the most technical. Second order four legged graphs (IV.1) and two

legged graphs (IV.48) are treated by hand. The main tool is the k-volume bound Lemma IV.2.

It is used to obtain improved estimates of four legged electron-hole graphs with general kernels

(Lemma IV.4) and four legged electron-electron graphs with at least one renormalized kernel

(Lemma IV.5). Volume restrictions are also used to estimate two-legged graphs in Lemma

III.6.

Section V is more straight forward. It treats an abstract flow of the type (1.124).

We hope in the future to combine the ideas and estimates of this paper with the

exclusion principle (determinant bounds) to produce a convergent expansion for the effective

potential (1.5) with J > 0. We also hope to treat the Coulomb interaction with the Anderson-

Higgs mechanism (to eliminate the Goldstone boson) and produce a convergent expansion

for J 0.

II. Properties of the covariance

Fix a number M > 1. Let /ibea smooth monotone function obeying

rdlet

and

We have

p(x) 1 - h(x). (IIAc)

-l
1 h(x) + Y f(M~2ix). (77.2)
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These basic functions are illustrated below.

M2 M4

Recall that, for any A > 0, the covariance

C CA(k) [ikol - e(k)a3 - Ao-1]
"

ik0l +e(k)a3 + Aa1
- k2 + E(k)2

(77.3)
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yhere

and

£(k) (e(k)2 + A2)1/2>0,

e(k) — k2 - ßK ' 2m P

<r° 1 a1

As before, we decompose

0 1

1 0

0 -i
i 0

1 0

0 -1

C CA= Y C A (77.4a)

where

CU)<«-/ J"'k ^Hihi-^r^yU^mn jyi {nM)(2KY+1

Evaluating the ko integral, for r^O,

\h(E(k)2), i=0

(Au, I ddk ». Bfl0M (sgnr)g(k)! + e(k)a3 + Aa1 f f(M~23E(k)2)
2E(k)CÂ(0- I -fo^y" c
2E(k) \h(E(k)2)

f ddk

JWYe '

(77.4c)

When t 0, the Ci,! matrix element is defined by the limit r —> 0— while the C2)2 matrix

element is defined by the limit r —* 0+.

The basic estimates on C^ are stated in terms of the norms

p| := sup,Jdr\u(T,k)\

M'!~/ (^psup|«(T,k)|.

When u is matrix valued, \u(t, k)| refers to the matrix norm. Observe that

\uv\ < pipi

\uv\ < min{plpl lui p }

where uv is a product in k and convolution in t.
Lemma ILI For j < 0

|C(^| < const M~j

|C(^)|' < const M3

(77.5a)

(77.56)

(77.5c)

(II.5d)
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uniformly for A > 0.

Proof. The first estimate is an immediate consequence of

|C(j)(T,k)|< const e-M'lTl.

The second follows from

sup\&l\r,k)\<f(M-2iE(k)2).

The next lemma, an analog of [FT, Lemma VII.3], is essential for controlling strings

0 t
S(£) —->—rTx—^-rT2-^ «-rT —*—CT,+1—*-£T,+2—> >—£T3+t——

Jl 32 j'+l Ìs+2 Js+t+1
(77.6)

of renormalized mass subdiagrams. It will be applied in Section III. Recall that the localization

operator (see [I.99b])

(£T)(k) T(k') (fe'^O.pfc,.))

and that

r 1 - /.

Lemma II.2 Suppose that there is a j with each ja j or j + 1. Let

||V£T„(fc)|U~ < M-nk"coa, re < 2

with ha > j for 1 < a < s. Then

\S\ < const'+'M"-» Y[ M-kacoa \[ [\lTß\M~3]
a=l /3=s+l
s s+t

\S\' < const'+*AfJ' JJ M-k"coa JJ [\tTß\M~3}
a=l ,8=3+1

uniformly for A > 0.

Proof. It suffices to prove the intermediate estimate

S S+ t

|5(r,k)| < const,+1[l + M-'fal]-2 [J M'h"coa Y[ [\^\M~3]x(E(k) < constM3). (IIA)
a=l /3=s+l
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Define re min{/ia|l < a < s}. We decompose the fco integral in

5(T)k) / ^e-'^l^l - e(k)<r3 - Ao-1]"1 { f\ (rTa)(k)[ik0 - e(k)a3 - Aa1]-1

s+t s+t+1

Y[ (tTß)[ik0l - e(k)a3 - Aa1]'1 Y[ f(M~2"E(k)2)} (77.8)
/3=s+l i=l

using
oo

l=p(M-2"fc2) + ^/(M-2l'fc02).
i/=n

First, fix any k0 scale v > rj. Let 0 < re < 2. The volume of integration in

(Affa)™ / ^le-ikoT/(Af-2"fc2)[ifc0l - e(k)<73 - Afa]"1 ff (vTa)(k)[iko - e(k)fa - Ao-1]"1
J 2w ii

s+t
YJ (lTß)[ik0l - e(k)a3 - Aa1]'1

/3=3+1

=/ ff e~ikoT {-iM3éS {î{M~2vki)[iko1 -e(k)"3 -A<ri]_i

3 S +t -,

Y[(rTa)(k)[ik0 - e(k)a3 - Aa1]-1 YI (/2»[ifc0l-e(k)(r3-Acr1]-1l (77.9)„
a=l ß=s+l '

is M". We suppress unimportant constants. The matrix norm of each [ifc0l — e(k)<r3 — Au1]-1

is bounded by M~v. For a with ha > v we apply Taylor's Theorem to obtain

\rTa(k)\<[\k0\ + \k-k'\]snp\VkTa\

< [Mv + M3]M-k-coa

< Af-<fc«-'>wa

3+t+l
on the support of JJ /(M~"2*.E(k)2) < x(.E(k) < constila). On the other hand, for a.

i=l
with ha < v, and when a jjj- acts on Ta, we simply ignore the effect of renormalization and

bound

1^(4)1 <|r«,(*)| + |£r«|<2w0.
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Thus, no more than two derivatives ever act on Ta. Each derivative M3j^ produces an

MA"-3' < 1 when it acts on f(M~2vkl) or on a covariance, or M-(fc»-j) > Af-(k--*') when

it acts on Ta. Thus, for v > re

\(II.9)v\<Mv(M-v),+t+1 JJ M" JJ MA° JjM-^^JJ^T^)
k„>v ha<v a ß

<M-t("-J') JJ M-("-fc°)JjM-''»a;aJJ(|/r^|M-j).
ha<v a ß

The sum

E II M-(."-k") < Y M-**'-") < const
v>7] ha<v v>rj

SO

y, i(//.9),i < iJM"ft"w« n(i^iM_i) (j/-10)
v>7/ a ß

on the support of x(E(k) < constAP).

This leaves the p(M-2t?/:q) contribution. To handle it, write
â

JI[(rT«)(fc)CA(fc)]
a=l

s

JJ [ra(fc0, k) - ra(o, k')]cA(k)

IJ (PU*».*') - Ta(0,k')i + [Ta(k0,k) - Ta(k0,k')]}CA(k)
a=l

Y °Ii [ihra(h)CA(k)] JJ [Ta(fco,k) - ra(fc0,fc')]CA(fc)
AC{l,...,s} aÇA ociA

where the symbol Ö places the product over a in the correct order and

ra(ko) 4-[Ta(fc„,fc') - Ta(0,fc')].
I«o

Anytime an M3 jj- acts on an (rTa) the corresponding a is also put in AP. Further, write

the term with A {l,...,s}
5

JJ[^OTa(fc0)CA(fc)]
a=l

s

û MM + ^(fco)(e(k)<73 + A^1)CA(fc)]
a=l

E ° II T«(M II [^(fco)(e(k)<73 + A<T1)CA(fc)]

BC{1,...,»} cteB otgB
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All contributions with t ^ 0 or A ^ {1,..., s} or B ^ {l,...,s} are treated as follows.

The fco domain of integration, which is now determined by p(M~2vk2,), is refined using
7,-1

p(M-2"k2) ,(M-2>fco2) + YßM-2vk2o).
v=j

We shall refer to the p(M_2jfco) term as having u j — 1. Fix any fco scale v with j — 1 <

v<r)-l. This contribution to (7/.9)„ (for v=j-l, replace /(M-2"fcg) by p(M~23k2) in
s+t+l

(77.9),,) has volume of integration M". On the support of J [ f(M~23iE(k)2) we have

;=i
|CA(*0I<M-"

|[ra(fco,k)-ra(fc0,Jb')]CA(fc)| < |k-fc'|sup|vfcra|M-"

< MA"-3>M-k"ua

(d \ m
MJ —J (rTa)(k)\ < M-<-h«-3>mü>aM-', m 1,2

< Af-("-:')M-'l»a)a

|ra(fc0)| < M-fc-wa

|Ta(fc0)(e(k)<r3 + Ao-^Ca^)! < MA"-^M-h"coa

\(£Tß)CA(k)\<M-"]lTß].
Hence, the contribution to (77.9)„, j — 1 < v < T] — 1, corresponding to any given A,B is at

most
s s+t

M-(v-i)t j-j- M-(v-3) JJ M-(v-3) JJ M-k"coa JJ M~3]lTß\.
agA agB a=l ß=s+l

By assumption either t > 0 or A is nonempty or 7?c is nonempty so that, on the support

of x(E(k) < constM3),

y J |(77.9)„ excluding the A {l,...,s},B {1,...,«} contribution when t 0|

j—i<i^<ij—l
s s+t

< JJ M-k"coa JJ M~3\lTß\ Y EM_("~J)' Il MA"~3^ JJ Af-("-J)(
a=l /3=j+l i-l<i/<77-l A,B t.?i c?B

3 S+t

<Y[M-k"coa JJ M-J'|/7>| Y MA"'»
a=l /3=j+l j-l<v

s J+t
< JJ M-fc«^ JJ M-3\lTß\.

a=X ß=s+l
(77.11)



Vol. 64, 1991 Feldman and Trubowitz 283

Recall that we suppress unimportant constants.

One term remains, namely

/ jè)e~Ìk0T (~iMJ^Ï <UM~2,M['-M - e(k)a3 - Aa1]-1 f[ ra(k0) j

3

r(k0) JJra(fc0).

Let

Then, by hypothesis

|r(fco)| < Y[M-k"coa (77.12a)
a

\r(ko) - r(0)| < s\ko\M-" JJ M"*-««. (77.126)

Consequently,

/ l£e~Ìk0T [-^-^j1 {p(M-2^k2)[iko - e(k)a3 - A^rWo) - t(0)]}

< WM'11 JJ M-kacoa (77.13)

as desired. We are left with

r(0)(Mfa)™ / ^e-^ifco _ e(k)a3 - Aa1]-1p(M-2r'k2a) (77.14)
J 2-K

Combining part a) (rre re 0) of the technical lemma below with (II.12a) bounds (11.14).

The proof of the intermediate estimate (II.7) is concluded by adding (ILIO), (11.11),

(11.13) and (11.14) with re 0,2.

The following lemma is used to estimate the effect of renormalization for two legged

subdiagrams as above and for four legged subdiagrams in section IV.

Technical Lemma II.3 Let x be a 2 x 2 hermitian matrix with eigenvalues obeying constAP <

fai < constM1 with j < rf. Then, for any integers re,m, N > 0

a) \J 4£e-ik0T{iko _ *]-!-»*-„ (M-2^2) |

< constali + IMfan-1 M->(—») if re >11 ' J \M^m-™) if rre >
m

>re
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b) |/ ^e-ikaT[ik0 - x^^k^^M-^kDl

< constn[l + |M"T|JV]-1M--'(n-m) for re > m

Proof a) We choose a basis for C2 in which x is diagonal and first consider m 0,re > 0.

Setting

B(x,r) J ^e-^or^ _ ^-l-n^M-2^2)
6(fc0) [ifco-x]-1_n

<r(fc0) p(k\)

we ha

Since

it follows that

B(x,t) 6 * [<t(M-".)]\

f*2.t-n.r L__ (^e-- *,-r>0 (//15)J 2k (iko - Xi)-1-"- [0 XiT<0
K '

|6(t)| < const"M-ine-constM''H

On the other hand

[(t(M-,'.)]"(t) MJ''a(M7ir).

Consequently, applying

\tn'B(x, t)\ / dr'TN'b(T - t')M"ô-(M"t')

<const /"a*r'[|r - t'I*' + fal^r - T')|M'|â(MV)|

<constnM-J" f dT'[M-3N' + iT'l^lJIf'I^Af't')|

<const"M-J'™[M-;''iv' + M-^']
<const™M-^nM-:'w'

with N' 0,N yields the desired bound.

We now consider rre > 0. Since

m

(ikor Y(me)(ik°-xi)tx?~t
1=0
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it suffices to bound

Bi J 7§^_''*oT[**o - xi]-1-n+txrlp(M-2"kl).

When £ < n then, by the above bound,

\Bt\ < constn[l + |M^'r|JV]-1M-i(,l-')MJ'(m-i)

constn[l + |MJV|iv]-1M--'(n-m)

When £ > re we apply

J ^-^(ikof—V(M-2"fc„2)

(-j-l [M"â(MV)]

|S/| < const'M^l + \WT\N]-1M,i<-e-n-1)M3(-m-l)

< constai + \M3T\N]-1M"(m-n)

(77.16)

and get

(77.17)

Part a) is now a consequence of (11.16) and (11.17)'
xx 0

0 x2
We first treat |M"r| < 1. Thenb) As before we may assume that x

J ^e"ifcoT[^o - x^-K^M-^k2)

d^-ikoT(îk-^ -1 dè*-ikoT^ - ^'-w-2'«'
Differentiating (11.15), the first integral

f dkp
c_ikoT

fc0™

<
1 dm Lnfe-,r XiT>

J 2tt (ifc0 - Xi)1+n ~ re! drm [ \ 0 SjT <
< const™ max M~^n-l)M^m-l)

0<l<m

< constnM-i(n-m)

satisfies b) in this regime. The second integral is accounted for by a).

For IMVI > 1

|M,T|iv
I j Ìhe-ikoT{iko _ J..J-1-«k™h(M~27>kl)
\J 2k



286 Feldman and Trubowitz H.P.A.

< const™ max
I / ^e-{k°TM"N\ik» - x-]-1-n-akm-ß I Ä<M *!*$) if 7 0

< const amax0 \J — e M [ifc0 x,j fc0 j M-t,,M(M-^) if7>0
a+/3+7=JV

/3<m

< const« maJ/^M^Ifcofa-C—^^« ^"'(SL-,, x
îî 7 7

°
a,ß,-f\J 2k {M lva^>(M vk0) if7>0

<r ,» / M"JVM-"K™-m>+Jvl if 7 0
S const max | M,ArM,t_i_(n_m)_(a+0)]Jjf_t„m, if > n

const"M-''("-m).

The proof of the technical lemma is now complete.

In the next section a small generalization of Lemma II.2 is required. Let

C(>'> C(/) + C(/) (77.18a)

C")(Ä) -ikk2
+ E^yf{M~2JE{k)2) {ILm)

CP(k) -,2 ln.,2f(M-2JE(k)2) (11.18c)

Lemma II.2' Let S(£) be a generalization of the string (II.6) in the sense that each particle

line may be assigned any of the covariances (II.18a,b,c) and the lTa,s + l<a<s+t, are

replaced by general kernels Ta(k). Suppose that there is a j with each ja j or j + 1. Let

||ra(fc)||fca := max |m^+*)a« sup fdr^^T^r, k)| : 0 < 7 < 2, \S\ < 1 j < coa

with ha > j for 1 < a < s and ha j for s + 1 < a < s +t. Then

s+t / A \ ^(^2 covariances)

sup iM^-H^I-rfVESi < consf+'M^' JJ M-k'coa f —
0<7<2 „_, \M3 J

»+* / A \ '
sup \M3^A&\)\T\iV^SV < const'+'M'' JJ M-h"coa -=r

0<7<2 £* V-Mfa

uniformly for A > 0.

Proof We first consider the case 7 £ 0. Suppose all the covariances are of type (II.18a).

Then, writing,

Ta rTa + lTa s + 1 < a < s + t
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we may apply Lemma II.2. Since c[ C(j) — C2 it suffices to consider strings whose

covariances are of type (II.18a) and (II.18c). Now, one simply repeats the proof of Lemma

II.2 using

\(M3Vk)n&2j)(k)\ < M-<"-'»Am-«

\(M3Vk)nkora(k0)&2j\k)\ < M-^^M-^-J)A
when fco is of scale v > j — 1.

We now consider general j,S with 0 < j < 2,\S\ < 1. Apply the "derivatives"

(Mj|t|)7 and (M3Vk)s using the "product rule". Consider any term in the resulting sum.

Use (II.5c,d) to separate those Ta's with derivatives acting on them from the rest of the

string. Each factor

\(M3\T\y'(M3VkfTa\ < MAk"-j)coa

The rest of the string is estimated as in the last paragraph to produce the required bound.

¦
III. Graph Estimates

The purpose of this section is to extend the estimates of [FT] to superconducting

systems and, more importantly, to show that the renormalization of four legged subdiagrams

by 1 — L^ ' eliminates factorials to give exponential bounds. For graphs without four legged

subdiagrams we give a much simplified derivation, independent of [FT].

Our estimates will be made in the mixed (r-time, k=d-momemtum) representation.

However, it is often notationally convenient to write expressions in the pure (fco, k) momentum

representation. For this reason we will pass between them without further comment.

We begin by defining the pertinent class of labelled graphs. These graphs are

assembled from two kinds of, scale dependent, particle lines and four kinds of vertices.

The particle lines are

(j, hard)
cW(r1-r2,k)
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-EdOln-T,! (sgn(ri - r2))E(k)l + e(k)a3 + A^1

2E(k)

(f(M-23E(k)2), j<-l }
X\h(E(k)2), j=0 (IU-la)

and

(j, soft)

_ -E(k)|n-T,

C[3\rx - r2,k)

:=^c"')(n-T2,k)

(sgn(-n - T2))£(k)l + e(k)<73 + At1
2E(k)

[1 - h(M-2jE(k)2)] (IIIAb)

We will explain below that soft particle lines of scale j implement Wick ordering at that scale.

From now on we discard j 0, thus introducing an ultraviolet cutoff. The ultraviolet end is

relatively simple and is treated in [FT§3].

The vertices are

T, L<»T fc-P =(IT)(tx-t2,p)

J drT (r, ^-kp] S(tx - r2) (III.2a)

T(p')S(rx-T2)

(l-LW)rUp ((l-l)T)(rx-r2,p)
T(tx-t2,p)-T(p')6(tx-t2)

(777.26)
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« q/2
fa3«

LU) I jÇ (111.2c)

f2 Ti
' q/2

q/2
J~3

tY(l-L<>>)jYs (777.2d)
T4

q/2

Here 7 \J fjn,nrm ® t" satisfies conditions (I.90)-(I.92) and the localization
Tn,n=0

operator, IA3\ is defined, in momentum space, by (1.99). (Note that the momenta t,s and q

of (III.2c,d) must not be confused with those of (I.99f,g).)

Let LT2n(m) be the set of labelled connected graphs constructed from m vertices

(III.2) by joining all but 2re vertex legs with properly oriented particle lines (ILI). We impose

the additional requirement that these graphs remain connected when all soft lines are cut.

The value, in momentum space, of such a graph is

v3(GX2r)*»*(wy sgn(G) / JJ £^CHh) fl[ (ËAC^(*<)
J hard * ' soft V '

lines lines

JJ lUAT(Pv) JJ (i-lUA)T(Pv)
2-legged 2-legged

L—vertices (1—L)—vertices

JJ lfa->7(i„,S„,g„) JJ (l-LUA)l(tv,sv,qv)
4-legged 4-legged

L—vertices (1—L)—vertices

JJ (2K)d+1S(wv).
vertices

(777.3)

The momenta flowing in the 2re external legs of G have been suppressed. They are the

arguments of the kernel Val(G). Here tv, sv,qv and pv are respectively the momenta flowing

through the four and two-legged vertices as indicated in the diagrams of (III.2). The total
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momentum flowing into the vertex v is denoted wv. The overall energy-momentum conserving

delta function (2-!r)d+1S(wa) has been explicitly extracted. The signature sgn(G) is the usual

fermion factor and is computed by the recipe given on [FT page 164].

In Section I, (I.37)-(L40) we formulated a set of rules defining the value of a labelled

graph in momentum space. Definition (III.3) is a slight modification of those rules that

incorporates Wick ordering. Specifically, all monomials JJ &-k'(£i) JJ * (Cj) appearing

in effective potentials at scale h (e.g. (I.24a)), as well as in the definitions of localization

operators (e.g. (1.99)), are replaced by monomials : JJ^ (£;) TT * ~ (Ci) : ^h&t are

Wick ordered with respect to C'-fc'. In particular, the value of every truncated expectation

£' ', see (1.17), is expressed as a sum of Wick ordered monomials.

We must, of course, Wick order the initial

W<°) - - / —* et dl— (*i+1a3* +fa
2 y (27r)d+1 (27r)d+i (2ir)d+1 V!t+i<T *°+i)

(* + §,-* + f|V|« + f,-« + §)(*-*f !»•*_.+§)

by hand. The result is

2 J (2KY+1 (2KY+1 (27r)d+1
" V <+* s+iJ

<t + §,-* + ||V|- + §,-*+ §) (*-t+l-3*_J+|) :

+ *j j^{j j^(pMv\p,k)cZ(p)}-.*k«3*k-.

-V^!**{/^<M^*^c2>>y}**!
+ ^/(i^Tr:^3*i:+7)/'^Tr:^^fc:
+ const

where the Wick dots are with respect to the ultraviolet cutoff covariance C^\(p)
p(E(p)2)CA(p).

The introduction of Wick ordering has five important effects. First, localization

operators become orthogonal projections (as indicated following (1.29)), since Wick monomials

of different degree are, by construction, orthogonal with respect to dßCi<h). Second, at the
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level of trees, there are no longer any two forks Third, at the level of graphs, there are

hard and soft lines. Fourth, the condition, in (1.39), that each subgraph

Gf {lines £ E G and connecting vertices | I(£) if ,/'>/}
be connected is transformed into the condition that it be connected by hard fines. Finally

the quotient graphs Gf/{Gf, \f > /} do not contain tadpoles Q For a more extended

discussion see [FT 199-201].

As a warm up exercise we derive bounds on unrenormalized labelled graphs.

Consider a general connected labelled graph GJ, not necessarily axising from our model. It

contains two and four legged vertices

T(t2-tx,p)

-q/2

tY Yf =/(Tl,T2,T3,T4,t,S,q)

^3^/2

with kernels that are translation invariant in the time components and obey the bounds

|r|,|7|<oo

where

|r|:=suPy<ir|r(r,p)| (777.4a)

as in (II.5a) and

|7| := sup dT2dT3dTi\I(Tx,T2,T3,Ti,t,s,q)\ (777.46)
t,s,q J
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External lines of GJ are amputated, that is, discarded. Each internal line £ carries a hard/soft

label, a dimension Si, a scale jt < —1 and a covariance Ci(k), which when hard satisfies

\Ct\ < aiM^-2»'
(III.5 Hard)

\Ct\ < atM6th

(see (II.5b)) and when soft satisfies

\Ci\' < atM6t3i. (III.h Soft)

Let us define, in the mixed representation

ddkt
Val(GJ)(27r)^(wGJ) sgn(GJ) Z" JI dn JJ i-^G^.r^.k*)

internal t ^ *

times

JJ 3n(r1)V,r2(ü,pv)
2-legged
vertices

|| -^(Tl,w>r2,«>T3,vî7'4,v)tt,,ST,îqu)
4-legged
vertices

JJ (2ir)dS(vtv)
vertices

where Tx,i, r2<t and k/ are the temporal and ^-momentum arguments of the line £,

Ti,v,VvAv,Sv and q„ are the temporal and rf-momentum arguments of the vertex v and

w„ is the total d-momentum entering the vertex v.

We associate to each general graph G a tree t(G The forks / of this tree are

the connected components Gy of all the subgraphs

{£ e GJ\jt >h}, h< -1.

We only consider labelled graphs GJ for which each Gi is connected by hard lines.

The subgraphs are partially ordered by inclusion to form t(GJ). As usual 7r(/)

denotes the predecessor fork of /. The scale of a fork is defined by

jf rmn{jt\£ 6 GJ} (777.7)

and obeys jf > j*(f), that is the scale of forks strictly increases as you move up the tree.
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Let u u((n,ki), ...,(T2„,k2n)) be a general (C2)®2p tensor valued kernel. Define

the norms

\u\ := sup / dT2...dT2n\u((0,kx),...,(r2n,k2n))\ (7//.8a)
ki,...,k2n J

|«|' := dk2,...,dk2n sup |«((ti, -k2 - k2n), (r2,k2),- • • ,(r2n,k2n))| (777.86)
J ri,...,T3n

Here |u| is the tensor norm. The first norm will be estimated in terms of degrees

Df Y ft - 2(#{vertices of GJ} - 1) (///.9)
l£GJf

a, -, E ft
external lines

of the subgraphs Gy. The second norm will be estimated in terms of the degrees

1

2
es „.

1 ot Gf (777.10)

a-—3 E. ft
external lines

of v

of the subgraphs Gi and vertices v of GJ. A line £ of GJ is an external line of Gi or v if it

is hooked to GÌ or ti but, in the former case, is not a line of Gi. (See the example on [FT p.

202].)

Abstract Power Counting Lemma IIIA

Let G GJ be a general labelled graph such that each fork Gf of the associated

tree t(G) is connected by hard lines. Recalling definition (III.6)

a)

ividfGji^n^nNiiw^*'* n ^D/°w*(/,)
i v v fet(G)

Here <f> is the lowest fork of t(G),jf is given by (III.7) and Df by (III.9).

b) Assume, in addition, that each internal vertex is dimensionless in the sense that

\ Y ft 2- (/J/-n)
l hooked to v

By convention, there is one external momentum for each external vertex (rather than line)

of G. Then

|Val(G)|' < û \TV\ H \lv\Y[at YI MD'U,-3^n)
V V t f>4>

Gf contains no external
verticesof G
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M^iUt-3rrU))n
ns a
ex c

TT MAv(0-jx(v))

f><t>
Gf contains an external

vertex of G

external
vertices of G

Here tt(v) is highest fork / of t(G) for which v is a vertex of G/ and Af,Av are defined in

(III.10).

The convention that there is one external momentum per external vertex means, for

example, that

is viewed as

Mil— q

with

sup
k\+k2=q

\^/"
/m\

We remark that the power counting dimension 2 (independent of the physical

dimension d) in (III.9) and (III.ll) is motivated by the covariance estimates of Lemma ILI. (It

appears, for example, as 4 (the difference between the exponents appearing the estimates of

|C«)|' and \CU)\).

As usual, the momentum conserving delta functions in (11.26) are eliminated by
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selecting a basis of d-momentum loops for G. We have (suppressing the temporal arguments)

Val(G') sgn(G')/ IJ dn J] fe
internal momentum ^ 'internal

times loopsT

ii Ct(kt) n Tv(pv) n iv(tv,sv,civ) (777.12)
lines 2-legged

vertices
4-legged
vertices

where ke is the signed sum of all loop and external d-momenta flowing through £. The

momenta p„, t„, s„ and q„ are similarly expressed in terms of loop and external momenta.

For example

v l

v 3

e 5

1

£ 2

ke external momentum

ki k5 ri
k2 r3

k3 r2 - r3

k4 r2 - rj
ti -Sx |(ke - ri) ,q! ke +tx
t2 |r2 - r3 s2 |r2 - rj q2 r2

t3 Tx - \r2 s3 |r2 - r3 q2 r2

v=2

To construct a basis of rf-momentum loops of GJ it is helpful to introduce the notion

of a spanning tree of lines of GJ. This tree is

not to be confused with the tree t(G ofsubgraphsof G

A spanning tree T is a connected subgraph of GJ without loops that contains all of the

vertices of GJ. To each line £ G GJ\T corresponds a unique loop je consisting of £ and the

linear subtree of T joining the vertices at the ends of £. Obviously, the loops ji,£ G GJ\T,

are independent since £ belongs to 7/ and none of the other loops. They are in fact a basis

since, for any connected graph

# independent internal loops # lines — # vertices + 1

L(GJ) - L(T).
(777.13)
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To prepare for the proof of Lemma ULI we first construct a special spanning tree in the

Technical Lemma III.2 There exists a spanning tree T for GJ such that

(1) Every line £ G T is hard.

(2) T n Gj is connected for all / 6 t(GJ).

(3) S/6t(GJ)(P/ — 1) V(GJ) — 1, where pf is the number of upward branches

leaving /.
(4)L(rn[G/\u/->/G/,])=P/-i.

Here L(G) and V(G) are the number of lines and vertices of G respectively

Proof Construct T inductively working through the forks / 6 t(GJ) from high to low scale

and using the hypothesis that each Gi is connected by hard lines. Properties (3) and (4) are

general properties of trees.

¦
Proof of Lemma IH.l a) Let T be the spanning tree of Lemma III.2 and, for £ 6 G\T,fi the

d-momentum loop associated to £. Then

|ValG|< sup / H dn [ YI (^Ci(Ti<2-n<x,ki))
S2S2&J all internal and J «S\TVW J

save one

Y[Ci(Ti<2-Tttl,ki)]lTvYliv

?*J n Êfd n «pio«(r,k*)i
î'rne-nfa J teO\T W l£G\T T

sup /"n^ n \°^2 - T^-k<)i n ir*i n ij*i
k' J l£T v v

UNIINUN -»p, / Il (Êys^\°^^
/ct „ „ external J .„„i™ V^71^ t

UNIINilw n N'
<£T t) ti leG\T

^iiniiw n «^"'ii^'4'^
» » l€G\T teT
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by (III.5). In the step between the second and third lines we perform the time integrals

starting at the extremities farthest from the single nonintegrated time. The step between the

second and third lines uses the change of variables

r^ kt + external momenta.

It is justifed by the fact that ji is the only internal d-momentum loop containing £.

Since,

M"31 M°" 11 M^Ut-irru:
fet(0)

f>4>
l€G,

we have

n m6^ n m-23'=Mj*[^e°si-2Lm]
IEG 1ST

0-7-^</))[Z,€a/<-2^G>nT>]n «
fet(G)

M0*3* IT MD'U'-3*(f))
f><t>

because L(T) #vertices(T) — 1 for any tree.

¦
Proof of Lemma HLlb

We prove the bound on the dual norm |Val(G)| by applying the estimate of part

a) to an extension G* of G. The dual norm is morally an £1-norm in (d + l)-rnomentum

space. Thus, the rough idea is to perform the integral over external (d+ l)-momenta fcj,..., fcr
r

subject to the constraint 2. fcj 0 by adjoining one extra vertex that is hooked to the r
i=i

lines carrying these momenta. This observation suggests the following construction of G*.

The vertices of G* are the vertices of G plus one extra vertex v*. All vertices of G*,

with the exception of v*, are internal. The lines of G* are the lines of G plus one extra line

for each external vertex of G. Each new line, denoted £1,1 < i < r, joins v* to a different

external vertex of G. These new lines are assigned scale zero and covariance C* S(r* — n)
where n is the temporal component of the vertex of G to which £* is attached and r* is an

arbitrary constant. (Recall that we wish to sup over the temporal components of the external
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vertices of G.) We have

lc*|<M(é<:-2)'fa i,.=o,

St! E
t hooked to external

vertex number i
so that all vertices of G*, with the possible exception of v*, are, in the sense of the Lemma

dimensionless.

All other lines £ of G* inherit scales and dimensions St from the corresponding lines

of G. By definition their covariances are the absolute values of the covariances of the lines of

G. It follows that
|Val(G)|' < sup Val(G*)

rT,X<i<r

sup |Val(G*)|

Now we apply part a) to obtain

|Val(G)|'<Ha<IlNllW M°a'U IT MD>Ut-3«(f))
IEG v fet(G')

The fact that jC* | oo is harmless. We can place all these lines in the tree of Lemma III.2.

Observe that

DG' Y ft ~ 2 (#{vertices of G} + 1 - 1)
(EG-

~ E ft + E ft; - 2 #{vertices of G}
l£G external vertices

Vi of G

Eft+ E
IÇ.G external vertices

Vi of G

2-\ E ft
t hooked

to Vi

2 #{vertices of G}

0

since, by hypothesis, the internal vertices of G are dimensionless. To analyse the last factor

it is necessary to express the tree and forest structure of G* in terms of G. We have

o

IJ MD'U>-3,rW) JJ JJ md, (777.14)
fet(G') j=i*+i/ec;
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where CJ is the set of connected components of {£ G G*\jt > j}.

We wish to rewrite (III.14) in terms of Cj, the set of connected components of

{£ € G\ji > j}. To do so notice that C*. consists precisely of those elements of Cj that do not

contain external vertices of G together with a single element /* combining the lines £*, ...,£*

with the elements fx, ...,/r' of Cj that do contain external vertices. (See the diagram below.)

/ /l ^

* / <J

It,
<]<J

\£

<j

G*

The degree of /* is

Df. Y ft - 2 (#{vertices of Gf.} - 1)

tEGf.

' r

\ E ft
l hooked

to Vi

2 < 2_^ (#vertices of Gf.) + ^external vertices of G not in any G/. +1 — 1

EEft+E
x=l (SG,j t=l

i=l



300 Feldman and Trubowitz H.P.A.

Further manipulation yields

Df=Y E
vertices

v of G*

-2+ Y \*<
lines of Gf.
hooked ton

E
external vertices

10ÎG
2 #{external vertices of G not contained in any Gf{}

E4/.+ E A.
external vertices v

of G not in any Gf.

Thus,

\ E ft
lines of G
hooked tou

ivai(G)i'<n^ni^inw n
(EG v v J=J0+1

n md> yi m*' n Mi
fECj SEC, external vertices

/ internal / external v o{ 3 n?'Ìn
any Gf JEC,

n^nir'inii»i n m^^-m») h ^»-w
££G i> /e*(G) />«

G/ contains no
external vertices of G

fet(G) f>4
Gf contains an

external vertex of G

TI mA" (•>-;„(.))

external vertices
of G

To implement renormalization cancellations it is necessary to control derivatives. For

this reason we formulate a self-evident supplement to the abstract power counting lemma.

Supplement to Lemma III.l
Let G GJ be general 2p-point labelled graph as in Lemma III.l. Let Sp be the

2P) vector of differences between its external temporal arguments and let kp be the (2p— l)d
vector of external momenta. Suppose the covariances corresponding to hard lines obey

sup \[M3i(r, Vk)]mG*| < atM^-2)31
0<|m|<|n|

sup \[M3i(T,Vk)]mCt\'< aeMSl3t
0<|m|<|n|

(777.15a)

(777.156)
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Then

\[Mi*(Sp,VkpWV3l(G)\

and

|[M"(ft.,Vk,)]nVal(G)|'

obey the bounds of Lemma III.l when TT \TV\ TT \lv\ is replaced by
V V

sup H |[M3*(r, Vk)pT.| JJ | WU(ft, Vk2)]-/.|.

By Lemma ILI the covariances (III.l) obey (III.5) with St 1. Consequently, all

four legged vertices are dimensionless in the sense of (III.ll). A two legged vertex is not.

However, the artifice of writing Tv [TvM~3*l"'>]M3''lv'> and assigning the factor M7*<"> to

the vertex makes it so. These remarks imply that our model obeys Lemma III.l with T„

replaced by iTUM^'t") and degrees

Df "Y 1 - 2(V2 + Vi-1) + V2

tEGj

i[2V2 + 4V4 - Ef] - V2 - 2V4 + 2

ì(4-25/)

(777.16a)

and

A/<-ì, A„<-ì. (777.166)

Here, V2 and V4 are the number of two and four legged vertices in Gf and the last term in

Df arises from the extra MJ»<") that we assigned to the two legged vertices.

Lemma III.l reduces the problem of estimating a general graph to that of controlling

two and four legged subgraphs. This is done by several techniques. The most subtle are

applied in Section IV where special low order subgraphs are renormalized by hand. In this

section we exploit the fact that fa^ TTT an^ ^ /_, 1 axe uniformly bounded in A for
h s.t. h s.t.

the superconducting model.

It is necessary to introduce the decomposition (see (1.69))
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CU) C^ + C{2j) (777.17a)

C«>(r,k) -e-*™ teaT)E(k)* + e(k)g3 /(M-2^(k)2) (777.176)
2x^f kl

Act1
C^(r,k) -e-E(k)l^l^/(M-2^(k)2) (777.17c)

and its soft analogue

C«> C£ + C£ (777.18a)

3«(r,k) _e-*(k)H'«g(^P0; + <k^3p(M-23E(k)2) (777.186)
' 27i(k)

C«)(T,k) -e-E^M^p(M-23E(k)2) (//7.18c)

where A > 0 and £(k)2 e(k)2 + A2.

Lemma III.3 Let d > 1. For j < 0 and m 6 Nd+1, with |m| ^ra;,
a) CP c£° C(^ C<f> 0 for M3+2 < A

b) |(T,Vk)»CÎi)(T,k)|<eoiMtmJf-<1+MM

|(t, VkrC^fT.kJl' < constmM(1-lmIW

|ci^("r,k)|' < constMJ

c) i(r,VkrC^(r,k)| < consU^M-C^I™!»

|(r, Vk)™C«(r,k)|' < consU^M^-l-IW

|C^(r,k)|'<const^n(^-)Mi
Proof The bounds on C^ and C^ follow from

IVgC^^.k)! < constn(M-J' + \r\)^e-MJ^x(E(k) < constM')

iVgC^V.k)! < constn^j(M-^ + |T|)lnle-MIlrlX(£(k) < constM')

and the observation that the volume of the support of x(E(k) < constM') is M3. The

estimates on

M3+2 < A.

estimates on Cj3,,C2s are obtained by setting m 0 and summing over j' < j such that

Lemma III.4 Let G GJ be a labelled graph with two and four legged vertices and L(G)

particle lines each of which has covariance C(fa C,j), c[j), c[j], &2j) or C^'J. See (111.1,17,18).
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Denote by L2(G) the number of C2 C2 \ lines of G. Let each fork of the associated tree

t(G) be connected by hard lines and denote by Ef the number of external lines of Gf. Let

each vertex obey

sup |[M'*(T,Vk)nT„|M_i'W <cov
|n„|<|n|

sup \MJ*(62,Vk2)n°Iv\<cov.
KI<M

Recall that the notation Sp and kp was introduced in Supplementary Lemma III.l. Then the

value Val(G) given in (III.6) obeys

a) |[M»(«„VkF)]»Val(GJ)|

< const L(G) n< M$(i-E4,)J4, A
M3*

log
M3*\ L2(G)

n m^ (.i-E,-L2(G,))(j,-j„u))
/et(G)

b) |[M'fa*p,VkJ]"Val(G^)|'

< constL(G) IT< n Mi(i-Ef-L2(.Gf))Uf-3«{n)
Gf contains no external

vertices of G

TT M"^*-0*^) IT M"^0'^^
f>4>,Gf contains an
external vertex of G

external vertices
of G

c) Assume that every Gfzf > <f> has at least six external legs. Then

Y |[M'>(5p,Vkp)]"Val(G-7)|
ijf\f><t>}

0>3f>3\(t)

< constL<°>M*(4-**W* A fM3*\
l0g {—)M3*

LAG)

n^
and

Y \[M^(SP, Vk,)]»Val(GJ)|' < const*«» JJ«,.
0/l/>*}

0>3f>3\u)

All constants are independent of A.
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Proof Lemma III.3 implies that the hard covariances obey (III.15). We apply

_£_<_*_, (Mit\
M3t - Mh °e\ A J

A fM3*\ -pr M3'W) log(Mjt'/A)^ 7777 lo8 m nM3* \ A if M3f log(MJ'W)/A)

to the A factors arising from Lemma III.3.C Lemma III.4 now follows from the supplement

to Lemma III.l.

We now prepare for the proof of Theorem Ll. Let T be a tree constructed from 7?

forks (1.34a), c forks (1.23b) and n general four legged leaves. Let GJ be a graph contributing

to T. That is t(GJ) T. It is among the graphs having

- particle lines C^.C^.c'/'.C^C^.C^ (111.1,17,18) (III.19a)

- local and renormalized four legged vertices (III.2) (III.19b)

- for each R fork / of T, a renormalization operator (1 — LU/-1)) (1.99)

acting on Gf (III.19c)

- for each c fork / of T, a localization operator / (1.99) acting on Gf (III.19d)

- each Gf connected by hard lines (III.19e)

- for each R fork / of T, j<f) <jf<0 (III.19f)

- for each c fork / of T, log A<jf< ;'*(/)¦ (HL19g)

We first ignore any potential gain from the renormalization of four legged subgraphs

to motivate an estimate of the sum >J GJ. First, suppose that Gf is a two legged c fork of
3

scale jf. The factor Mî'4"5*''* of Lemma III.4.a, when applied to Gf becomes M3t. Since

Y Mh < constM'-O
\o%ÛL<jt<j„u)

Gf acts, after summing over jf, as a generalized dimensionless vertex. We may therefore

assume that there are no c forks.
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If (III.19c) is not implemented Lemma III.4b gives

|Val(GJ)|' < const*«» IL TT Mi(i-E,-l2(.G,))Uf-3*(,))
internal (777.20)

"TT M~^Ut-3„u)) JI M-i(°-3*w)
external external

The string Lemma II.2' implements renormahzation of two legged subgraphs and improves

(III.20) to

|Val(GJ)|' < const*«» IL n mì (i-Et-L2(Gt))Ut-J*(t))
internal,
Ef>i

"Tf M-$Ll<-Gt)Ut-3*u)) IT M-iUt-3*u)) (777.21)
internal external
Ef-2

YJ M-^o-i-M)
external

It follows that in the sum of (III.21) over J there are two kinds of factors. If / has Ef > 6 or

L2(G f) > 1 or if Gf contains on external vertex of G, the sum over jf is uniformly bounded.

On the other hand, when / has Ef 2,4 and L2(Gf) 0 the sum produces a factor

Y l<logA
max(j,r(/),ln A)<jy<0 .^ ^.

const j—rI'M

for relevant A, A. Each cov is proportional to X and compensates a sum (III.22). We must

ensure that the total number of sums (III. 22) does not exceed a fixed fraction (strictly less

than one) of the number of leaves. The following lemma provides a sufficient condition for

this to be the case.

Yes/No Lemma III.5 Let T be an abstract rooted tree. Each fork has a branching number

(the number of branches leaving / upward) bf > 2 and is assigned a scale hf and a variable

Sf G {yes, no}. Assume that the functions af(hf,h^f^) of the scales hf,hn(f) satisfy

(1)0 <af(hf,KU))<1

(2) E af(hf> h*U)) < 1 if */ yes.
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Here h^) —1/|A|. If, for each / > <j>, either

(a) Sf =yes

(b) K(f) > 3

(c) b^(f) 2 and at least one /' with K(f') ir(/) has Sf =yes

(d) m/o =yes

then

Yaf(hf,KU))<\x\^*— {W- 22T
Here the sum runs over {{/i/}|0 > hf > h^f^O > h$ > —1/\X\}.

Remark A minor modification of the proof below actually gives a slightly stronger result.

The |A|-I#leaves is replaced by

n iAi_3/4 n i*ri/2 (m-23)
leaves*» leavesv

with 6„(„)=2 with !>„(„) >3

Proof Clearly,

Y"f{hf,Ku)) < |A|-#^l"=no>. (///.24)
h,

Suppose that, for every f > cj>,Sf =no and that, for every nonmaximal /, 6/ > 3. In

this case, we prove, by induction on the size of T, that

|#(leaves) - #{f\a, no, / > <j>} > 3/2 (777.25)

Since |2 — 0 |, (III.25) is satisfied for the smallest possible tree

Y
Let the successor forks of cj> be denoted /i,...,/m and the successor leaves t>lt...,vn. Then

bf m + n and we have, by the inductive hypothesis,

-#(leaves of T) - #{f\sf no,/ > cj>}
4

mm 3 3

- Etl^(leaves above f*) ~ #{f\sf nofa > fei -m+-n
i=l
3 3

> —771 — 771 + —71

>3/2
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since m + n >3.

Let T be a general tree. Construct from it a new tree T' by collapsing every branch

i'
Hf)

with Sf =yes to a point. The resulting fork /' inherits Sfi, from 5T(/). The new tree

has the same number of leaves and the same number of no forks as T. All its forks, except

possibly the first, 4>', are no forks. Finally, every nonmaximal /' has bfr > 3 by (a), (b (c),

(d). We have already verified (III.25) for T.
m

Lemma III.5 implies that the sum over J of the right hand side of (III.21) will be

bounded by const*C» n»[w«>A3^4] provided t(GJ) does not have a two fork

V
such that all of Gf, Gfx, Gf2 have at most four external legs, no C2 or C2<s lines and

no external vertices of G. In the discussion above we have reduced the problem of controlling

Z Val(Gj) to consideration of a small number of second order graphs. They are treated, by
J

hand, in Section IV, where the improvement due to renormalization is carefully extracted.

We now formalize the remarks made above. Introduce the norms

\\T\\j max{M(a+l^'sup /dr|T|aVfr(T,k)| : 0 < a < 2, \ß\ < 1}
k J (111.20a)

maxIM^+l^'lo-fV^Tl : 0 < a < 2, \ß\ < 1}
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II7II, max{M(lal+l/3l)' sup / dT2dT3dn ff \tj\a'
k1+k2+k3+k4=oy j=2

(777.266)
nVg/((0,k1),(ti,k1),(7»tk,)>(T4,*4))
3=1

aj>0,ßj>0,\a]<2,\ß\<l}
on two and four point kernels.

Theorem III.6 Let T be a tree constructed from 7? forks (I. 34a), e forks (I.23b) and n general

four legged leaves each of type ra ® t6 with a + 6 0 (mod 3). These leaves Iv *'*' may

depend on the scale j*(v) of the fork k(v) of T immediately below v and are assumed to obey

sup\]li3)\\j<]X\cov.
3

Let GJ be a labelled graph, with t(GJ) T, satisfying (III.19). Let |log A| < ^sp. Then

|^Val(GJ)|' < const*«» | Afa2 flll^^M
J v=l

Recall that, by (III.19f,g), the sum is over

{•/|jw(/) < J/ < — 1 if / is an 7? fork and

log A < jf'< j^(f) if / is a c fork}

with j„(4>) log A.

If GJ is two-legged

Y |*Val(GJ)| < const*«»Mr|A|3/2 IJ[I^I1/4«»].
J s.t. )4<r v

If GJ is four-legged

Y l|Val(GJ)||r < const*«»|Afa2 Y[[\\\V*u,v].
J s.t. J4=r v

All the const's above are uniform in A.

Proof The proof will proceed by repeatedly trimming off portions of J above forks with

Ef 2 and above "dangerous" forks with bf 2. First assign Sf =yes to each fork f oi T
such that Ef > 6 or L2(Gf) > 1 or Gf contains an external vertex of G. Assign Sf =no to
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the remainings forks. As we proceed some of these no's will be changed to yes's. The final

Sf's will obey (a)-(d) of Lemma III.5.

In each step we consider all remaining forks that are maximal in the class of all

forks that are (i) two legged forks or (ii) two forks fx whose successor forks/leaves f2,f3 are

not both leaves and have Sf, Sf2 Sf3 no. We trim just below the two legged forks and

/2 > /3 forks. The portions trimmed off will be treated as leaves v in the next step. In the

case of a c-fork the leaf will be viewed as a local two-legged vertex of scale jv. The sum over

scales for the c-fork itself is, by definition, included in the trimmed off portion, that is, the

new leaf. The remaining new leaves are viewed as two or four legged renormalized vertices.

Their scales run from j*(v) + 1 to —1. The sum over these scales and the renormalization

operator are included in T\{new leaves}. The quotient graph G/1/{G/2,G/3} is one of those

considered in Lemmas IV.4, IV.5 and IV.6. The bounds there are of three kinds. One kind

controls the sum over the scale of Gf2 or G/3 with that of Gf, held fixed. An example is the

factor M~Ul~*) in Lemma IV.6b). In this case change Sf2 or Sf3 to yes. The second kind

controls the scale of Gf, with those of Gf2 or Gf3 held fixed as in Lemma IV.6 a). In this

case change Sf, to yes. Finally there is the term jß in Lemma IV.5. This term will provide

decay M~U*i~3**> between the scale jf, of Gf, and the scale jft of the line hooked to r2 so

change s f to yes for / /1 as well as for all

fx > f > fi. (///.28)

All the forks /1 > / > /4 are by construction in 7"\{new leaves} and so affect the trimming

rides at the next step.

We now bound the new leaf Val(G^) that is obtained by trimming {/' > /} off the

tree. The graph Gf has general two and four legged scale dependent leaves v, generated by

previous trimmings. We assume, by induction, that the local two and four legged leaves have

scale j„(„) and kernels satisfying

ÌÌTi^ììj^M-^^UÌ^^K n un«-' |A|-#{/>»l>/=n°}. (777.29a)
lv'>v

The renormalized two and four legged leaves come equipped with (1 — L)'s, have scales

summed from J*(t>) + 1 to — 1 and have kernels obeying (before 1 — L is applied and the scale
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is summed over)

liri^M-', ||iu>||,. < n M«-* U|-#{/>»l»/=no} (777.296)

The /'s in (III.29) refer to the forks of the original tree T, Sf is the final assignment of yes/no

to /, and the i's in (III.29) refer to the original leaves of T. We shall suppress all constants

that can be absorbed in const*«5'.

We must verify that, if Gf is two legged

Y \tV3l(GJf)\M-* <

and

{3f\f>n

Y ||Val(G/)||i/M-^ <

n 1*1«»'

v'>f

n i*K'
V>f

m-#{/'>/l»/<=n°} (777.30a)

\\\-#{f>f\'f=™} (777.306)

that, if Gf is four legged

Y l|Val(G/)||i/ <
Urif>f} v'>f

|A|-#{/'>/|^.=»o} (777.30c)

and that, when / <f>

EWl'< ILAK |A| -#{/!«/=«»} (777.30d)

The Theorem will then follow from Lemma III.5, or more precisely (III.25).

By construction, G/ contains no /' > / with Efr 2. Further more if fx is a two

fork with Sf( =no or fi a leaf for i 1,2,3 then /2 and f3 must both be leaves. The first

step in bounding Val(G/) is to apply Lemma's IV.4, 5, 6 to Val(G/x) and treat the latter as a

generalized vertex in Gf. We have defined 3ft, i 2,3, so that the sum over jft yields const if

3Ji =yes and 1/A if Sft =no. This generalized vertex may of course be a jßfin. The next step

is to apply Lemma 11,2' to convert all strings of two legged diagrams into new covariances.

The last step is to apply the power counting Lemma III.4.
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One technical nuisance remains. We need to prepare jß,en so that Lemma III.4

automatically generates the desired renormalization decay factor. If CU=3**) is the covariance

of Gf hooked to t2 and jß<en is of scale h jf, write (suppressing irrelevant arguments)

/ dT2CU)(r2)[jßien(rx,T2) - S(n - r2) / da2jßien(rx,a2)]

J dr2[cU)(r2) - cU)(rx)]jß,en(Tx,r2)

J dT2[cU)(T2)h(MÌU+V\r2\) _ cW(r1)A(^'°'+Mkil)]j>,«n(Ti,T2)

+ f dT2CU)(T2)p(MiU+^\T2\)jßten(rx,T2)

- Jdr2cU)(Tx)P(MÎU+»)|Tl|)7>,en(r1,r2)

J da J dT2-£-[cU\T)h(MÏU+»\T\)](Tl + a(T2 _ Tx))jß,en(Tx,T2)(T2 - n) (777.31a)

+ J dr2cU)(T2)p(M^3+^)\T2\)jßen(rx,T2) (111.31b)

- J dr2cU)(rx)p(M-A3+k)\rx\)jß,en(^.*i) (///.31c)

For (III.31a) we simply treat ^p[CU)(r)h(M^U+h)\T\)] as a new covariance, obeying

\-^cU)(T)h(MlA3+^)\T\)\\^cU)(T)h(M-Ai+k)\T])\'
dr ' 'dr

< MÌU+V x old bound on C^

and treat y/3,en(r'i,T2)(r2 — tx) as a new vertex obeying

\jß,en(rx,r2)(r2 - n)\ < M-k\\jß,en\\h.

Thus we gain M~^k~3) from (III.31a) as desired.

Contributions (III.31b,c) are easy to treat when C(J' is in the spanning tree of

technical Lemma III.2. In this case we merely replace

f dt\C(j)(r,k)] < constM'3x(E(k) « M3)
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by
/dT|C«>(T,k)|p(Afiü+k>|T|)

< constx(£(k) « M3) f dTp(M^U+^)\T\) (III.32)

constM-*<-'+k)x(.E(k) « M3).

Once again renormalization generates an extra factor of M~^^ ~3'.

When CU) xs not in the spanning tree we take its | - | norm (II.5b). Then, since

sup p 1, there is no gain.

To circumvent this difficulty we modify the abstract power counting lemma to allow

separate spanning trees for t and k. The norms (III.5) on the covariances are generalized to

sup sup IG^t, k)| < a/1 x 1 (777.33a)
k t

\Ce\ sup f dr\Ct(T,k)\ < atl x M~h (777.336)

dk
sup |G<(T,k)| < atMu x 1 (777.33c)

J Wfl
(2K)d

dr|G!(T,k)| < aiMil x M"fa (777.33d)

The hard covariances CU),c[j),c\j) (III.17) and the string (II.6) all obey (III.32a-d) with

it jt j. The soft covariances C^, C^, C^] (III.18) obey (III.32a,c) with it jt j.
The product of any of C<3">, C<j\ c['\ c[3)3, C(2j),C(2Jt] or the string with /j(M^'+,fa) obeys

(III.32a-d) with it j,jt \(j + h)> j.
We select any two spanning trees Tmom, Ttime for the graph G. When the line

l G Trnom n Ttime (resp. Tmom n 2?ime, T£om n Ttime, 2£om n Ttcime we require that Ct obey

(III.33b) (resp. (III.33a), (III.33d), (III.33c)). Then mimicing the proof of Lemma IILl.a
one obtains

ivai(G)i<n^niT"ini^i n mü n M~h (in-3^tv v £ETC lET.-,m„

We now apply (III.34) to extract the required decay factor for (III.31b,c). Call the

four lines hooked to jß<en,£i,£2,£3 and £i with CU) being the covariance for £j. Let Tmom

be original spanning tree of Technical Lemma III.2. By hypotheses £x $ Tmom. But at least

one £2,£3,£i is. The tree Tmom\{^2,^3,^4} is a union of at most three connected components.
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one £2,£3,£i is. The tree rmom\{^2,£3,£i} is a union of at most three connected components.

The vertex of G at the far end of £x is in one of those components, say the component ending

at £a. Use MiU« + h) rather than M?U+h) jn (ffl.31). (The improvement for (III.31a) is now

Mï('-'->.)

h/

/li

t: J-mom

— — ¥- ¦'¦mom

— £4LJ

We choose Ttime /mom\{^} U {^1}. Thus the only consequence of changing the time tree is

that the time integral is done using £x (which now gives, by (III.32), M~*U<*+h) instead of 1)

rather than £a (which now gives 1 instead of M~3a). The net improvement is M~Ak~3a).

¦ sGw.

Lemma III.7 Let GJ be a labelled two legged graph with t(GJ) T with GJ and T satisfying

the hypotheses of Theorem III.6. If GJ is of type t1 or t2 then

V |/Val(GJ)| <const*^A|^A||Afa2lT[|A|1/4a;t)](A if#W 2
(777.35)¦L± 11 otherwise

Proof The proof is almost identical to that of Theorem III.6. However now, since G is of

type t1 or t2, it must contain at least one line of type C2 or C2jS. Hence Lemma III.3

provides an extra factor of -j^ log ^~- < -^1 log A| for this line. We are only interested in

gaining one extra A (and |log A|'s) so we may as well assume that there is only one C2/C2|>

line.

Denote by /^ the highest / for which the line is in GÌ. First suppose that there is

no c fork between /a and (j> (including /^ but excluding <j>). Then since

A
M3'*

log A: (j**»*) n M-Ut-3*u)) (III.36)
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we get, as in Theorem III.6,

{it
Y \£Vd(GJ)\ < const*«»M'* f-^fa|log aA X3'2 II[I^|1/4^] (///.37)

The sum over j^ from log A to 0 gives another | log A| < ^rjjjp and hence (III .35) when G is

at least third order. When G is of second order Lemma IV.6 insures that the sum over j$ is

bounded uniformly in A so that we do not loose the £Trp in this case.

The proof continues by induction with previously estimated £Gi's fed in as 2-legged

vertices. Each such vertex comes with a coefficient

MJ*(" (Mè77|l0gA|) |A|1/2u,/ (///.38a)

where

cof const*(G'> IJllAI^V]. (777.386)
»>/

The factor M-7*") renders the 2-legged vertex dimensionless as usual and the factor

—j^tjt I log A | j mimics a C2/C2l, line in G^,... At first sight lAfa2^ seems to have too

small a power of |A|, since the original vertices had |A|3/4[|A|1/,4a!r]. However, by the remark

following the statement of Lemma III.5, IAI1/2 is sufficient provided &»(/) > 3.

It remains only to consider 6,r(/) 2. If IGi is an external vertex, then when I is

applied to GÌ.

£Gj

C<Jx</>)

the hard covariance CU*(.t)>t connecting IGi to the rest of GÌ, is evaluated on the fermi

surface and vanishes. If LGÌ is internal and 6X(^) 2 then

GUf)

Once again Lemma IV.6 saves us a factor of A.

£G



Vol. 64, 1991 Feldman and Trubowitz 315

IV. Second Order Graphs

The purpose of this section is to control the quadratic and quartic parts of

A£{2h)(U,U) where U is the part of W(fe) of degree at most four (see [I.102a]). The trun-
c-CO (ft)cated expectation £2 ' (1.17) is with respect to the superconducting covariance C^fa Here,

as in Section III, all monomials are Wick ordered and degree is interpreted accordingly.

We begin with the quartic part. The quadratic part is treated following (IV.48). In

more detail

quartic part of —,£2 (U,U)

+

(IVA)

The kernel

of the quartic part of IA is a sum of renormalized (1 — L«))7 and local (i.e. in the range of

LU), see (1.99)) kernels 7. Also, the kernel

of the quadratic part of U consists of renormalized and local contributions (1 — L^s^)5 and

(see (1.99a)) IS. By [1.102] the renormalized contributions are respectively of scales i,s > h,
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while the (resummed [1.102b]) local quartic part has scale i h and the local quadratic part

has scale s < h.

As in the last section (III.26) we use the norms

||7||i max

iW
j=2

(MGfa=*ay+£i=fa')i sup f dr2dr3dTi
[ k1+k2+k3+ki=oy

4

Ylvi'.I^kxUT,,^),^,^),^,^)) :

3=1

*j>0, X><2, £|&|<1 (IV.20)
3=2 3=1

\\S]\, max {m^+^" sup f dT\r\a\V^S((0, -k), (r,k))| : 0 < a < 2, \ß\ < il (7V.26)

to measure the size of four and two legged kernels.

The bottom two diagrams are easy to treat. If

ends up as part of a larger diagram

then, by conservation of momentum, the scales i and j differ by at most one and the second

order diagram may be absorbed into the larger one. The latter, being of at least third order,

was treated in the last section. If

ends up integrated against an external test function g there is a summable factor MA(-k~kA

(see Lemma III.l) associated with the diagram rendering it harmless. This was also treated

in the last section.
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We now consider the top two diagrams of (IV.1) when at least one of the generalized

vertices is renormalized. Our goal will be to extract exponential decay between scales hidden

in the renormalization. In order to control the action of (1 — L) the technique of [FT]

is supplemented by a detailed analysis of the volume of momentum space that is actually

integrated over.

To illustrate the mechanism consider, as an example, the labelled graph

Kilt ha{2

"all a(2)

a(n)
pf {0,kFfr)

"W

h (IV.3a)

contributing to the binary tree

F0 Fx

R\fam-1

RX2

Fn-l Fn

RV2m- 1

Ryii+1 - 1

CY1

root scale 0

(7V.36)

Here, n 2m — 1 and the indices

a(j) -[(2m+j)/2<i-l]
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where 2e' is the largest power of 2 dividing 2m + j. For example, in the case of the 23 — 1

ladder
a(l) 4

<r(2) 2

a(3) 5

<r(4) 1

a(5) 6

a(6) 3

<r(7) 7.

Note that we have written hj as j at the forks of figure (IV.3b).

The tree rules (1.34) require that we sum over all hj obeying 0 > hj > fc„-(j) for

j 2,..., 2m — 1 and hx < 0, where k(j) is the index of the predecessor fork of j, that is the

integer part oi j/2.
In discussing (IV.3) we restrict ourselves to the most subtle term, (I.41b), of the

operator (1 — L«1')) at 7Î forks. See the discussion following (1.41). To make the example

especially simple, we assume that all lines are hard, that the kernels Fi r° (g> r° and that

A 0.

Then the value of (IV.3a)

E /p^wwu Û [/ j$»<*ÏHu a a.ic2«>(-*, + *)m"

n

H [l - p(\p' + k|M-»[fc*«)+Ä'])| r° (7V.3c)
J=2

dk 1 YT f dti
+p')*(-t,-+k)>0

E 7 (2»)*fi i^o - e(k) n/e(ti+p,)e(_ti+k)>0 (2ff)-

[-^0sgne(ti + p') + |e(ti + p')| + |e(-t; + k)!]"1
n

/(M-2^e(k)2)H[/(M-2ft-e(ti+p')2)/(M-2'"e(-ti + k)2)]
î=l

n

Y[[l-P (|p' + k|Mfa[fc-ü>+k'])] r°
;=2
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Evaluating the fco-integral yields a sum of terms one of which is

Y -sgn(e(k)) / fa^/(M-2kMk)2) ft / faiI" J (27r) ^1 ^e(t,.+p'H-t;+k)>0 l^J

/(M-2^e(ti + p')2)/(M-2^e(-ti + k)2)
|e(t; + p')| + |e(-t« + k)| - e(k)sgne(ti + p')

n

H [i _ pflp» + k|M-^k'«)+k'])] r° (7V.4)
j=2

The analysis of the remaining terms is similar to that of (IV.4) so we concentrate on the

latter. It is bounded in magnitude by

^(const)"IlM-^ [ dkf(M-2k*e(k)2)f[ fdtif(M-2kie(ti + p')2)f(M-2kie(-ti + k)2)
hi i=i ¦* ;=fa

n

n[i-p(ip'+kiM-^fe'«)+k'])]
3=2

n

Ignoring the last product, that is the effect of |j(l — L the volume of integration over k
%=2

and each tj, 1 < i < n, may be estimated as usual by Mkl and Mk' respectively. This yields

the "unrenormalized" bound

n

(const)" Y, MklY[M~hiMki
K(,-)<kj<0 t=l

ftl<0

One sees by induction that

(const)" Y Mhl E 1

Y 1~ (const)" \hx I""1.
h.*li)<hj<0

Therefore, the unrenormalized bound is

o

(const)" Y |Air-1Afkl ~(const)"ra! (IV.5a)
hi — oo
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To eliminate the n! in (IV.5a) we exploit the last product in (IV.4) by applying

Lemma IV.2 below. For each 2 < j < n the j'th factor of this product forces q p' + k

to be large compared to the scale of the predecessor fork i k(j). To each fork with

1 < t < 2m_1 |(re + 1) there correspond two such factors, namely j 2i,2i + 1. Selecting

the one that gives the larger gap between scales and hence better decay leads us, via Lemma

IV.2, to

{l - p(\p' + k|M-*[k,+m"(k",k"+,)])} jdtif(M-2kie(ti + p')2)f(M-2k'e(-ti + k)2)

< constM-iHlhi+^^h'i>h'i+A]-hi}Mhi

constM-** max(Ä„-,fcj;+1)-ift..}Mht

<constM-ï('l2'-'l')M-s(fc2,+1-'li)M'"

for each 1 < i < 2m_1 (Lemma IV.2 is used in the second line) yielding the renormalized

bound
n n

(const)" YMklY[M~hiMki Y[M~°(hi~h"'U))
hi t=l 7=2

< (const)" Y Mhlfl[ E M-ï^-^l'A
ftl -oo j=2 \0>fty>ft,(>) J

< (const)" (IV.5b)

Consider a pair of particles or holes with momenta At + q/2. Pairs that bind

have || ± t + q/21 — kp] small. Our immediate goal is to show that the volume of {t :

|| ± t -f q/2| — kp\ < 0(M1)} for component particles of scale i is small when the scale of the

composite momentum q is comparatively high. This effect was exactly what was required in

the derivation of the renormalized bound (IV.5b). To do this we first prove the Technical

Lemma IV.1 from which we shall derive Lemma IV.2 that estimates the amount of momentum

space available for condensation.

Technical Lemma IV. 1

a) If v > 0 or |q| > 2kF, then

/ |t+q/2|<*, dt *(e(t + q/2) + e(-t + q/2)-„) 0

\-t+cx/2\<kF



Vol. 64, 1991 Feldman and Trubowitz 321

< consta <

If u < 0 and |q| < 2kp, then

/|t+q/*l<*, «* 6(e(t+q/2) + e(-t + q/2)-v)
J |-t+q/2|<*j.

^[mu + kl-^-]^, ifm|H<Jf1(2fcF-|q|)

[mu + k2F - Jail]
***

if M (2kp - |q|) < r»M < k2p - ^
I o, if k2p - Jail < m|„|

b) If ^ < 0, then

/|t+q/2|>*, «* o(e(t + q/2)-e(-t + q/2)-I,) 0

If u > 0 and |q| > 2kF, then

/|t+q/2|>*, «* %(t + q/2)-e(-t + q/2)-,)
\-t+<x/2\<kF

0, ifmi/< Jfl (|q| - 2Af)

(7V.6)

< const d

0,

^-(^-w) ififJ(|q|-2fcF)<^<^(|q| + 2M (IVA)

if JfJ (|q| + 2kF) < mu

If u > 0 and |q| < 2fcj?, then

/|t+q/2|>*, ddt S(e(t+q/2)-e(-t + q/2)-u)
-t+q/2|<fcJr

< const d '

d-3

TqT[4-(¥-w)2]T> ifm^<M(2fcF-|q|)

JL2 _ /Jql _ m^V"F [2 |q| ; if JfJ (2kp - |q|) < 77», < ^ (2fcF + |q|)

if Jfl (2kF + |q|) < mu

(IV.8)

c) If u < 0, then

/|t+q/2|>^ ^ «Wt + q/2) + e(-t + q/2)-,)=0
|-t+q/2|>fcF

If u > 0 and |q| > 2feF then

/ |t+q/2|>fcy
|-t+q/2|>*j,.

ddt S(e(t + q/2) + e(-t + q/2) - u)
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< consta '

0, if mu < J^l - k%

[ml/ + fc|,_^l] ' xî^--k2F<mu<^(]q\-2kp)
d-3

^[rm,+ fc|.-Jall]
ä ifJal(|q|_2t,)<mi/<Jal(|q| + 2*F)

d-a

[m^+4-^1] ' if Jfl (|q| + 2kp) < mu

liu>0 and |q| < 2kp, then

(IV.9)

I |t+q/2|>fcjr
|-i+q/2|>»,

ddt S(e(t + q/2) + e(-t + q/2) - u)

< consta '

a —3

^[m^ + fc2,-^!]"5-, if0<mi/<ifl(|q| + 2*,)
d-2

\mu + k2p-^-] * if Ifl (|q| + 2kF) < mu

Proof a) Observe that

1

(IV.IO)

e(t + q/2) + e(-t + q/2) - u —(t2 - a)
771

with

a mu + 2mß — q2/4.

Let dan(4>x,...,<j>n-x,9) be the surface measure on 5" expressed in polar coordinates. Then,

for n > 2,

dan(<f>x,...,<j>n-x,0) sin"-1 <j>xd<j>xdan-x(4>2, -,<l>n-i,9)

so that, for d > 3, a > 0

/ ddt S( — (t2 - a)) / drd</>xdai_2rd-1 sin1*""2 <j>xS( — (r2 - a))
Jf-e<4,,<^+( m J m (7V.11)

ma 2 $(«)

where
1 /"e

*(«) := 2^d-2 / ^1 COsd_2 4>l < ^d-2Ê

Formula (IV.11) also applies for d 2 with u>0 2.

There are five cases:

case 1 u > 0: The integrand is zero, since on the domain of integration e(t + q/2),e(—t +

q/2) < 0.
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case 2 |q| > 2kp: The domain of integration is empty since if |t + q/2| < kp and | — t +q/2| <

kp, then |q| |q/2 + t + q/2 - t| < 2kp.

case 3-^ +Jail < mu < -J|l(2ifcir-|q|): Let dx := (kp - JfJ) and d2 := k\ - (Jf*)'
Of course, dx < d2. li, 0 < a < d\, or equivalently,

1/2

0 < mu + k2p - J-îJ- < Jb| - fc^lgl +
4 '

the support of S (^(t2 — af) is contained in the domain of integration and we may therefore

apply (IV.ll) with e f.

-t + q/2| < kp J

domain of integration

|t + q/2| < kF H

q/2

q/2

case 4 —^-(2kp — |q|) < mu < 0: If d\ < a < d\, or equivalently,

k2p-kp\q] + ^-<mu + k2p-^-<k2 4 '

we may apply (IV.ll) with e determined by

kp a H h \/cê|q| sin e.

Consequently,

/|t+q/2|<t, ddt S(e(t + q/2) + e(-t + q/2)-u)
|—t+q/2|<*jr
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771^ + kp — $ sin 1

lql^ + 4-M]

consti
|q| L

^„j.i.2 ™mu + kp —
4

Support of S((t2 - a)/m)

domain of integration

s/A

q/2

radius kp

case 5 mu < — kp + laj-: If a < 0 the support of the delta function does not intersect the

domain of integration.

b) Now

e(t + q/2) - e(-t + q/2) - v —t • q - u
m

that

/d»t *(e(t+q/2)-e(-t + q/2)-„) f\/«rt S (t -S. _ ™)
J» |q| Jn \ |q| |q| /

mIT1„ f q rafì—rVoin n {t : t • ji- — }
|q| I |q| |q| J

(7V.12)
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There are three cases.

t.JL-™/ 0
ki " ki

q/2

integration domain

|t-q/2| *F

|t + q/2| kF

q/2

q/2
|q| |q|

|q| > 2*f |q| < 2kp

case 1: If u < 0 or, |q| > 2kF, |üf < 1§L_*F or, |q| > 2kF, ffi > Jfl + fcF or, |q| < 2fcF, ^ >

Ifl + fcF then the hyperplane t • A ìpy fails to intersect the domain of integration and the

integral is zero.

case 2: If |q| > 2kp, Jfl - kp < ^ < Jfl + kp or, |q| < 2kp, kp - Jfl < ^ < Jfl + kp then

the hyperplane t ¦ -Pi
|q| intersects the domain of integration in a (d — 1) dimensional ball

of radius fiai mi/V
I 2 |q|j

1/2
Now apply (IV.12).

case 3: If |q| < 2kp and 0 < j^j < kp — Jfl then the hyperplane intersects the domain of

integration in a (d — 1) dimensional ball of radius 7Ï k2 fiai smcY
\2 M J

1/2
with a (d — 1)

dimensional ball of radius r Kp
'jsi + mu \

1/2
excluded. By (IV.12) the desired
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integral is

^constil^-1-^-1]
|q|

™constdË-ZlllRd-2 + vRd-3 + + Rrd-3 + rd~2]
|q| R + r

<™constd?^-{(d-l)Rd-2]
|q| K

_ /]q| _
mu\

U \q\)

c) The proof is similar to that of part a)

u
=consti —

|q|

<f-3
21 ~5"~

The estimates of Technical Lemma IV.1 are in the spirit of, for example, [FW pages 160-162].

We are ready to estimate the amount of momentum space available for condensation.

Consider particle (holes) of momenta ±t + q/2 constrained by /(M_2,e(±t + q/2)2) > 0.

That is, particles with momenta lying in a shell of thickness 0(M*) about the Fermi surface.

The momentum of the composite is further constrained by 1 — p(M~3\q\) h(M~3\q\) > 0.

In other words |q| > O(M^). See (I.29a) and (I.41b).

Lemma IV.2 Let d > 2 and q u + v 6 Rd+1. Let h(M~3\q\) > 0 with j > i. Then,

vol{t e Hd : f(M'2ie(t + u)2) > 0, f(M"2ie(-t + v)2) > 0}

< vol{t 6 Rd : p(M"2«+1>e(t + u)2) > 0, p(M-2(i+1>e(-t + v)2) > 0}

< constM-ìU-i)voi{t e Rd : /(M-2ie(t)2) > 0}

Proof By shifting t it suffices to consider u v q/2. Since p(x) 1 — h(x)
-l
Y. f(xM~2') > f(xM2) the first inequality is self evident.

i= — oo

The right hand side is bounded below by

corxst(kF,d)M-'U-i)Mi.

The left hand side is the volume of three disjoint sets. They are determined by the

positions of ±t + q/2 relative to the Fermi surface.
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Inside-inside. The set in which ±t + q/2 are both inside the Fermi surface has

volume at most.

ddt
e(t+q/2)<0

-0(Mi)<e(-t+q/2)<0
/ -0(AT)<e(-
-0(Mi)<e(-

f ddt f du S(e(t + q/2) + e(-t + q/2) - u)
J V|i/|<o(M")

/ du I
Jmkoim') J ',e(t+q/2)<0

' e(-t+q/2)<0

ddt S(e(t + q/2) + e(-t + q/2) - u)
(IVA3)

The contribution with ]u] < A^-\q](2kF — |q|) := u(q) is bounded by

J — min(f(< m 4
(7V.14)

n(Kq),o(M'))

If d > 3 or if |q| < kp, then [mu + k2F - 1^1]^ < const and (IV.14) is bounded by M2i/M3

as desired. If d 2 and |q| > kp, then

12

J — n

¦ r
2 _ iqii-i/2(77.16) < constM' / du[mu + k2F

-min(i/(q),0(Mi)) 4

y(TO-|-0(Mi)
< constM' / da a'1'2

< constM'* < constM-'^-^M'.

(7V.15)

where a0 -mmin(i/(q),0(Mi)) + k2F - ^-> \(2kp - |q|)2 > 0.

The contribution with f |q|(2&*. - |q|) < m\u\ < k2F - l-?f is, by (IV.6), at most

Ctbj/<—2\q\(2kF — |q|)
H<0(AP)

du mu + kp —/-(4*î.-|q|2)<
w

In order for (IV.l6) to be nonzero it is necessary that

|q|(2*!P - |q|) < 0(M{)

so that either |q| < O(M'), or (2kp - |q|) < O(M'). In the former case

(7V.16) < 0(M*) Mj~i0(Mi)

while in the latter case

(7V.16) < const (k>F - 1^1) - i|q| (2kF - |q|)

< const j du (IV.16)
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const (2kp - |q|)2 0(M2i) < M~(-3-i'0(Mi)

Outside-inside. The set in which ±t + q/2 are on opposite sides of the Fermi surface

has volume at most

ddt
(t+q/2)<0(M*)

0(AT)<e(-t+q/2)<0-0(iW

/ dV /e(t+q/2)>0 ddi *(«(* + I/2) e(-t + q/2) - u) (IV.17)

The part of (IV.17) with u > 0, |g| < 2kp and mu < ||q|(2fep - |q|) is bounded by

/o<mi/<ì |q|(2*j"-|q|) du -—: kp (7V.18)

For d > 3, this at most const^ and (7V.18) < constM-^'-^M'. For d 2, the integrand

factors
u

N
|q| vm

kF~T+M
-1/2

|q| mu -1/2

When |q| > kF, the second radical is 0(1) and (7V.18) < constM?' as in (IV.15). When

|q| < kp, the first radical is 0(1) and

-1/2
(7V.18) < const / duJ- kF +

const / du/' |qfa2

< constM(3/2>'M-^2.

|g| mu

l„|2
kF\q] + — mu

-1/2

The part of (IV.17) with ||q| \2kF - |q|| < mu < ||q|(2feF + |q[) is bounded by

/ du 2 fill m!fa'

< constHi constM-^-^V Mi

Outside-outside. Finally, the set in which ±t + q/2 are both outside the Fermi

surface has volume at most

/0<e(t-fq/2)<0(M')
d t <

0<e(-t+q/2)<0(M')
/ du f ddt o(e(t + q/2) + e(-t + q/2) - u).

./M<0(Af'') Je(±t+n/2)>0
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If |q| > 2kF, J^l - k2p < mu < JfJ[|q| - 2kp] then

„„, ts iqi
mu + Kp < const

4

and u is integrated over an interval of length

ì|q|[|q| - 2kp] - ì|q|2 - k\ |[|q| - 2kF]2

< constM2i.

If
(û, ì|q| [|q| - 2kp]j <mu<±|q| [|q| + 2kF]

we must bound

/ du -—r mu + k2p-^A (7V.19)
iqi

It is handled precisely as (IV.14). Finally, ||q|[|q| + 2kF] < mu forces |q| < consti/, that is

j < i + const. So we have

/ ddt < 0(M-^j-i)Mi)
Vo<e(±t+q/2)<0(Mi)D<e(±t+q/2)<0(MO

and the proof is complete.

¦
We remark that, as a brief inspection of the above proof shows, for d > 3, the

M~j(/-0 in the statement of Lemma IV.2 may be replaced by M~(J~fa

Lemma IV.3 Let |q| < const. Then,

/ ddt S(u-\e(t + q/2)\-\e(-t + q/2)\)
/e(t+q/2)c(-t+q/2)<0

< const { Vl'2 + T5P7t(2**-I«iI ~ W " *™>)-1/2x(0 < ^ < ^(2kF - |q|)) d 2
~COnS l^ + Tq|X(|q|> consta d>3

Proof By Technical Lemma IV.lb), there are two cases. Namely,

2mu
\2kp-\q]]< —— <2fcF+|q|

|q|

0<jj<2kF- \q\, |q| < 2kp.
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In the first case, the integral is bounded by

const kF - ^ + -r-r kp + ^ - -r-r

const
d-1

I const | J if |q| > kp
d~7

2 1 2const |jbF-Jsl + JfcF +Ml ° IM + Jf I
2

if|q|<feF

Î
consti/ 2 if |q| > fcF

const|#Rr|~'~' ifM^**
< consti/ 2

In the second case, the integral is bounded by

const-
|q| mu

kF~T+M kF + A^ - TT

I/ I I d-3 d-3
const-pj|const| 2 |consti 2

-1/2
d> 3

<, constj^l^l Iqi"1/2 d 2,|q|>fcF

const^ (i*) -1/2
(Ajp + ifl - ^) _1/2

d 2, |q| < fcF

const-pr d > 3

consti/1/2 d 2, |q| > fcF

const^7T(fcF|q| + ||q|2 - mu)-1'2 d 2, |q| < fcF

and is zero unless |q| > 2£™A\ \-

We now return to our analysis of the top two diagrams of (IV.1).

As before, we decompose

Ca Ci + C2

ikol + e(k)a3
Cl-(_1) *2+/î(k)2

C2 (-1)!
Ao-1

'*o2 + £(k)2-

Each of the two diagrams become a sum of four terms. Three of these terms contain at

least one C2. As explained in the introduction, and implemented in Section III, with every



Vol. 64, 1991 Feldman and Trubowitz 331

occurence of a C2 there is an accompanying uniformly summable factor of j^. See (1.114).

Hence, we only consider Ci in this section.

To obtain the necessary information about the top two diagrams that is required

for the scheme of Section III we must consider the following problems, that naturally divide

into the case of two local kernels and the case of at least one renormalized kernel. For

the former we need only consider, in the language of physical fields, the electron-hole ladder,

since the electron-electron and hole-hole ladders have been put in the flow. The latter is more

involved. We must extract summable factors from three distinct sources, namely, momentum

space constraints, cancellations of the type f(p) — f(p') when \p — p'] is small and effective

infrared cutoffs when po is large.

For the rest of this section Ix and 72 denote arbitrary kernels proportional to pure

tensor products r* <8> r3 and

Jx-.--

r2

T"3 ax

ty(lxTa®Tb <fc) (l2rc®Td Ys

T"4 C2

c-i

(74

(7V.20a)

<— s
a373 ax

q (7V.206IoTcÏÏTda ^ _6IxTa ®T
CX474 yrr-<>2CD

J2:

The internal lines of J; are of type

CW(r,k) (-l)e-E^\^l)^lp^^f(M-2kE(k)2)
2E(k)

or its soft analogue (/ replaced by p). At least one internal line is hard. We shall, without

loss of generality, assume that it is the upper one.
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The case of an electron-hole ladder is covered by the lemma below. In the expansion

of Theorem Ll each kernel /i,/2 is either local and of scale h or renormalized and of scale

ji > h. We do not need to exploit the effect of renormalization in the electron-hole ladder so

we replace renormalized kernels by general ones.

Lemma IV.4 Let r < —1. Let /it° ® r6 (resp. I2rc <S> rd) be a local or general kernel with

a + 6 0 (mod 3) (resp. c + d 0 (mod 3)). In the former case it may depend on h. Let

r' < <

— 1 if 7i,72 are both local
jx H Ii is general and 72 is local /tv>ì\
J2, ii Ix is local and 72 is general
min(ji,j2), if 7i,72 are both general

and define

Bi _ f Pi II* i if/; is general
(IV.22)\maxr.<fc<r||4k)||P, if 7; is local

a) Suppose that 7i and 72 are not both of type t° ® t° and not both of type r3 (g> t3. Then

|| Y j[h)]\r<corxstBxB2.
r'>h>r

b) Suppose that /i,72 are not of type r1 ® r2,r2 ® r1 or vice versa. Then

|| Y Ah)\\<^oristBxB2
r'>h>r

Proof a) The proof is made by combining estimates on Jx(A 0) and j^Jx- When A 0

J[h) J -0-ddr3dndaxda2 F(M~2ke(k + q)2,M~2ke(-k)2)

/l(n,T2,T3,T4,t,k,q)/2(<r1,«r2,ör,)<r4)k,s,q)

e-|e(k+q)||<T1-r3|e-|e(-k)||<T2-T4|

ra[sgn(<7i - rs)l + sgn(e(k + q))a3]rc

®T6[sgn(<r2 - Ti)l + sgn(e(-k))o-3]fa (7V.23)

with

F(M~2ke(k + q), M-2fce(-k)2) f(M~2ke(k + q)2)(p or f)(M~2ke(-k)2) (7V.24)
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supplying the scale cutoff.

First consider the case in which (cri — r3)(a2 — t4) > 0. Denote this part of j} by

Jjj. and the other part by J_ '. We claim that unless e(k + q)e(—k) < 0 the integrand of

AK' +J+ ' vanishes. To see this observe that when (<7i — r3)(a2 — t4) > 0 and e(k + q)e(—k) > 0,

(sgn(<7! - r3)l + sgn(e(k + q))<r3,sgn(<r2 - r4)l + sgn(e(-k)cr3))

G 2sgn(<ri-r3){(r0,T0),(r3,r3)}. (7V.25)

Since
rVV 0 unless (i,j) 6 {(0,0), (0,1), (2,1), (2,0)}

(7F.26)
r\3T3 0 unless (i,j) 6 {(1,2), (1,3), (3,2), (3,3)}

and a + b, c + d 0(mod 3) and furthermore, by assumption (a, 6, c, d) /= (0,0,0, 0), (3,3,3,3)

we have
(Ta®fa)(T°®T°)(TC®Td)=0

(ra ® Tb) (t3 ® T3) (tc ® fa) 0.

Therefore, when A 0,

(7V.27)

/ dr2da3dai]J\ '(rx,T2,a3, <74, t, s, q)|

<constM-fc|71| |72| / ddk F(M-2ke(k + q)2,M-2ke(-k)2) (IV.28)

/ dT2d(73d<r4|.7+ '\

< consti^ | |72|M(-")/ du *i *(„_|c(k + q)|_|e(-k)|)
JcojisXMh Je(k+a)e(-k)<0 (¦**

Mfc + ^-x(|q| >constMfe), if rf > 3

<const|71||72| { Mk'2
+ ÎÏF7Î /ZstM^ du\2mu - 2fcF|q| + |q|2|faX(|q| > constM*), if d 2

fMfc + 44x(Iqi > constM'1) d>3
< const 7i72 wk/, "£iql -

^
> -

„ (7V.29)
Mk/* + M^x(|q|> constM*) d 2

where Lemma IV.3 is used in the third line
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We next consider f dr2da3dat]J_ ']. Now, the domain of integration in (IV.21a) is

restricted by (ax — r3)(a2 — r4) < 0. Hence,

\r3 - ax | < |ts - ax + a2 - r4|

< ]r3 -t4| + \ax - a2\

Suppose, 7i,72 are both general. Then, recalling r' min(ji,j2),

4

[dT2da3d*i]jw\< [ T^n^n^i^w^J J(<7,-T3)(a2-Tt)<o (2tt) " "
[l+Mr|T3-<T1|]-2[l+Mr|T3-<Tl|]2

fai0n*.n^i4'-i^v (rc30)

[1 +Mr'|r3 - <Ti|]-2[l + M3*\r3 - r4| + M3*\ax - <r2|]2

<constMfe||7<^)||J1||7^)||J-3M-'-'.

When only one kernel, say 7i, is general the bound (IV.30) still applies since then 72 forces

ax a2. When both are local J_ vanishes.

The next step is to bound s,t and q derivatives of Jj, while retaining A 0. By

a go-derivative we mean multiplication by r. Observe that t derivatives must act on Ix

and s derivatives must act on 72, while q derivatives may act on 71,72,e-le(k+q'"CTl-T3l, the

cutoff F(M~2ke(k + q)2,M-2ke(-k)2) or on the sgn(e(k + q)). If the derivative acts on

sgn(e(k + q)), we get zero because the hardness of the upper line implies that the supports

of S(e(k + q)) and F are disjoint.

The result of applying any derivative to 7i,72 is estimated immediately. Only

slightly more involved is the action of a g derivative on e~le^k+q^lCTl_T3' or F(M~2ke(k +

q)2,M-2 e(—k)2). In both cases each derivative produces an extra M~k (possibly via

/dr|T|"e-M"lTl < constnM-(™+1)'').

Recalling (IV.29) and (IV.30) it follows that when A 0,aj > 0,ßj > 0,

3 3

X>,<2, £>,-|<l

/
7=1 3=1

dr2da3da±]]T2 - nHn - <73|as|<74 - <t3\"3d?1 d?>d%> j(fc)|MA(E«i+E IAD
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„ Mk + KX(\q\> constM*) d>3
< constaB2 MAr-k) + \ J ^l/A *

L lM*/2 + M^x(|q|> constM*) d 2
(7V.31)

or, summing over h,

II X) ^ifc)||, <constB!B2
r'>h>r

\ 1 + sup Y
I q fc<0

Mhl2
Mh'2 + f?7T^(lql * constMÄ)

< constai B2 < 1 + sup N^

|q|

Mh/2

W2
Mk<const|q|

(7V.32)

< constBxB2

_d_
dA

The next step is to consider

d f ddk

h2<h
'

tc ® Td72/(M-2*E(k + q)2)/(M-2*£(-k)2)

Jik) Y, ¦^J-^T7îdT3dTidaxda2IxTa®ThCx(ax-T3,k + q)®Cx(a2-ri,-k)

(IV.33)

We apply

|Ci(t,p)|/(M-2*E(p)2) < e-M'^x(E(p) < M3) (IV.34a)

dA Cx(r,p)f(M-23E(p)2) < M~3e-M'Mx(E(p) < M3) (7V.346)

to get

/ dr2da3dai
d Ah)

dAJl < Y |/i||Ì2|M-fcjM-AM*
A2=£nA

|71||72|M-*log(^).
(7V.35)

Just as for A 0, the result of applying any t,s,q "derivative" to /i,/2 is immediately

bounded. As expected each "(t, Vq) derivative" acting on

Ci(<n - r3,k + q) ® Cx(a2 - n, -k)F(M-2kE(k + q)2,M-2kE(-k)2)

produces an M~k. Thus

\-^4h)\\h < constB152M-*log(M*/A) (7V.36)
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and

dA1Y JÌh)\\r<]] Y ^wIa=o||t.+ Y J dA
r'>h>r r'>h>r r'>h>r

/•A
1+ Y / dA'M-*log(M*/A')< B2B2

<BxB2

<BxB2

ignoring irrelevant constants,

b) From (IV.20b), when A 0,

d^k

0>ft>rv

A!+ E ^'»^VA)
0>fc>T"

Ah) / 7^dT2dT4d<72d<r4F(M-2*e(k + q)2,M-2*e(k)2)7172ra ® rc
J (2k)

e-|e(k+q)||crJ-r«|e-|e(k)||r,-<r«|

trTb[sgrx(r2 - <r4)l + sgn(e(k)<r3]Td[sgn(<72 - r4)l + sgn(e(k + q))<r3].

(7V.37)

(7V.38)

As in part (a), we first verify that when (t2 — cr4)(cr2 — r4) < 0 and e(k)e(k + q) > 0 the

integrand vanishes. This is a consequence of

trr t t t trr t t t U

when (6,d) ^ (1,2) or (2,1). The hypothesis on t° ®Tb,rc ®rd forces (6,d) / (1,2) or (2,1).

The argument continues as in part (a).

At this point we have finished our analysis of the "wrong way ladder" contributions

to the first two diagrams of (IV.1). (Recall that the second two diagrams have already been

completely treated.) We now treat "right way ladders" and assume that at least one of the

kernels appearing in each of the first two diagrams is renormalized.

Lemma IV.5 Let 7 and K be kernels of scale i and k respectively. Let 7? (1 — L^k))K be

the renormalized kernel. Define

n

Jx-.=

<T3

R

r2 <T4
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TL T2 Ö3 <?4

/2:= R I

For Ji, assume that 7 and K are both of type t° ® t° or are both of type t3 ®t3. For J2,

assume that I, K are of types t1 ®t2,t2 ® r1 or vice versa. Then

Jß(n ,T2,<r3,<7i,t,s,q) j>,int(-ri, r2, a3, ai, t, s, q)

+i/3,mom('ri, t2 <r3, (T4, t, s, q)

+{i/3,en(Ti,T2,<T3,<r4,t,s,q)- / da2jßytn(Tx,a2,a3,at,t,s,q)S(rx - r2)}

for /9 1,2 where

||j>,in,IU < const || jsriun^iu [«-«"'+£'¦«(£)
||j>,momP(M-2*JE2(t ±q/2))|U < constllüTIUII/lliM-^*-*)

|b>,en|U < «mrtllA-llfcllllli.

Here, ft. < i,fc is the scale of the internal lines. The external momenta t,s and q are defined

as in (1.99) and t' fcjrt/|t|.
Remark The subscript int indicates that the renormalization operator (1 — L*-*') acts on

the internal lines of Jß. The subscripts mom and en indicate that it acts on the external

momentum and energy arguments of Jß.

Proof. To avoid the tedium of repeated conversion from Nambu to physical fields we shall

assume that K and 7 are both proportional to t° ®t°. The remaining eight cases are treated

in exactly the same way. Evaluating (IV.20a), using the notation (IV.21b),

Ji(t,;q) JÄ(l - LW)K(t,p,q)[r0Cx(p + q/2)r°] ® [r°Cx(-p+ q/2)r°]I(P,s,q)

F(M~2kE(p + q/2)2,M~2kE(-p + q/2)2)

- / d*P
(1 T<»\K(f \ *(p° + go/2) + e(p + q/2) '(~Po + go/2) + e(~P + q/2)

J (2kY
y ,AKhP,q,(po + qo/2)2 + E(p + q/2)2 (-pò + q0/2)2 + E(-p + q/2)2
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I(p,s,q)F(M-2kE(p + q/2)2,M-2*(-p + q/2)2)

J1(A 0) + y dA'^(A'). (JV.39)

To facilitate the estimates we work in the mixed (r, k) representation with the variable names

displayed in

Ji((n,t + q/2), (t2, -t + q/2), (<rs,S + q/2),(<r4, -s + q/2))

q/2
Ti r3 ai a3

T2 Ti a2 Oi
« q/2

For A 0, recalling the definition (1.99) of L(A),

/i(T"i,r2,o-3,<74,t,s,q)

J j^dT3dndaxda2F(M-2ke(p + q/2)2, M"2*e(-p + q/2)2)

R(rx, t2, t3, t4, t, p, q)/(<ri, a2, a3, <r4, p, s, q)

e-|e(P+q/2)||CTl-r3|[x(_e(_p + q/2))x((Tl _ Ts) _ x(e(p + q/2))X(r3 - ax)]

e-|.(-P+q/»)|k,-r4| W_e(p + q/2))x((72 - T4) _ x(e(_p + q/2))x(r4 - <r2)] (/V.40a)

where

R K(tx,t2,t3,n,t,p,q)-

- p (\q\M-ì(k+k))Y[S(Tx - tj) f Y[dajK(Tx,a2,a3,ai,t',p',0) ^'^
j=2 ^ j=2

We decompose the renormalized factor R (IV.40b) into the sum of nine pieces:

Ra= [l-p(|q|M-^*+*))]7r(ri,T2,r3,r4,t,p,q) (7V.41a)

7?6 p(|q|M-2(*+*))[7:(ri,T2,T3,r4,t,p,q)-7f(Ti,T2,T3,T4,t,p,0)] (7V.416)

Äc ^(|q|M-5(*+*))[7:(Ti,T2,r3,r4,t,p,0)-7r(ri,T2,T3,T4,t,p',0)] (7V.41c)
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Rd p (|q|M-*<*+t>) [ü:(ri,T2,T3,T4,t,p',0)-7ir(ri,T2,T3,T4,t',p',0)] (7V.41d)

Re Ax j dai[K(Tx,T2,T3,Ti,t',p',0)S(tx - on) - K(tx,t2,t3,a^t',p',0)S(tx -t4)]
(7V.41e)

Rf AxS(tx — r4) / da3dcti

[K(Tx,T2,T3,ai,tl,p,,0)S(Tx-a3)-K(Tx,T2,a3,ai,f,p',0)S(Tx-T3)] (IVAlf)

Rg AxS(tx — t3)S(tx —Ti) da2da3dcci

[K(Tx,T2,a3,ai,t,,p,,0)S(Tx-a2)-K(Tx,a2,a3,ai,t',p',0)S(Tx-r2)] (IVAlg)

Rh A2K(Tx,T2,T3,Ti,f,p',0) (IVAlh)
4 .4

Ri A2(-l) YJ S(rx - rj) / n&»iJr(n,a,,o„O4,t,,p',0) (IVAli)
3=2

J j=2

where

Ax p (|q|M-*(*+*>) h (m*<*+*>(t3 - ax)) h (m*(*+*>(t4 - a2))

and

A2 p (|q|)Mfa<*+*>) [l - h (m*(*+*>(t3 - <Ti)) h (MÌ(*+fc)(T4 - <r2))]

We have

R Ra + Rb + Rc + Rd + Re + Rf + Rg + Rh + Ri-

As a preliminary exercise, we first, as in example (IV.3), bound Jx (still with A 0)

without exploiting the renormalization cancellations (IV.41) in R. Recalling the norm (IV.2)

and our convention that the upper line, joining r3 and cri, is haxd

/ dr2da3dai\Jx(Tx,T2,a3,ai,t,s,q)]

^ j (i^ Û *3 Ô d"iF(M-2ke(p + q/2)2, M-2*e(-p + q/2)2)e"«*l**-u\

|A(Ti,T2,T3,T4,t,p,q)||7(o-i,<T2,<r3,o-4,P,s,q)| (7V.42a)

< sup / da2da3dai]I(ax,a2,a3,ai,p,s,q)\
p,s,q J
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/(ân^iFii?(r^'T"T4't>p'q)ie"Mlki"'" {ivA2h)

< M-k\\I\\{ J¦^f[dTjF\R(T1,T2,rs,u,t,p,q)] (IVA2c)

< Af-fc||J||i sup / dT1dT2dT3\R(TlìT2ìTZiT4it,Pìq)\
*»p.q J

jWfnM~2h<v + q/2)2'M_2fte(-p + q/2)2) (IVA2d)

< M-k\\I\\i\\R\]kMh

imi«||Ä|U- (IVA2e)

We have suppressed constants.

We now explain how each term in (IV.41) improves (IV.42e). For Ra, we improve

(IV.42d) by using the immediate consequence

J JfiJLF(M-2ke(p + q/2)2,M-2ke(-p + q/2)2) [l - p (|q|Mfa(*+fc>)]

< M-*(*-*)m* (7V.43a)

of Lemma IV.2. This replaces (IV.42e) by M-^k-k)]]I]\i]]K]\k.
For Ri, we improve (IV.42c) by

p (|q|M-*<*+*>) JjldTjlKany^p^-KUny^p^)]

pjY[dTj]J de^-K({Ti},t,p,eq)]

<pj de J YldTj^.V^KdnyA^eq)]

<\q]p f de sup /J|dri|Vq7r({ri},t,p,eq)|
Jo *iP,q J

|q|psup / YldTj\V^K({Ti},t,p,q)\

< M^k+") sup /n*i-|V,#({ri},t,p,q)|

The norm (IV.2a) "converts" the Vq into M~k yielding an extra M^k~k) M"^*-*) in

(IV.42e). For 7?c, we improve (IV.42c) as above but with q • Vq replaced by (p — p') ¦ Vp.

(7V.436)
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As observed following (1.41)

Fp\q-p'] Fp\]p\-kF]

<*7>[||p + q/2|-*F| + lql/2] (IVA3c)

< Fp[Mk + M^k+k)]

Once again the norm generates from (IV.43c) an extra M~^k~k) in (IV.42e). For Rd, the

same argument contributes p|t — t'|M
For Re, we first naanipulate (IV.40a)

/ T^dT3dTidaxda2daiFpIh {M^k+k)(T3 - ax)) h ^M^k+k)(n - a2))

[K(...,tì,...)S(tx - a4) - K(...,a4,...)*(n - U)]

e-|e(p+q/2)|kl-r3|[x(_e(p + q/2))X(ax - Ti) - X('(P + <ll*))*fo ~ °l)\

e-|e(-p+q/2)||<T2-r4|[x(_e(_p + q/2))x((T2 _ T4) _ X(e(_p + q/2))X(T4 - <72)]

j^dT3dTidaxda2FpIh (m*(*+*>(t3 - ax)) K(n,T2,T3,Ti,t',p',0)

e-|e(p+q/2)l|CTi-r3|[x(_e(p + q/2))x(ax - t3) - X(e(p + q/2))x(r3 - <n)]

{e-M-P+i/2)\W,-T<\[x{_e)x{(72 _ T4) _ x(e)x(T4 _ a2)]h (m^*+*)|t4 - *2\)

_e-k(-P+q/2)||cr2-r1|[x(_e)x((r2 _ ri) _ x(e)x(Ti _ a2)]h (Mè(*+*)|Tl -a2\)}. (IVA4)

For the K(...,cti, ...)S(tx — r4) we evaluated the t4 integral using S(tx — T4) and then made

the change of variables r4 a4. We next apply Taylor's theorem to {...} in (IV.44). This

yields

tT-4- tx)£ da£ {e-HI—l[x(-e)x(<r2 - r) - X(e)X(r - <r2)]A (m*<*+*>(t - <r2)) }

evaluated at

r Ti +a(T4 -n)
The -A may act on eH«""»—"!, producing |e(-p + q/2)| < M*, or on h (M^k+k)(r - a2)),

producing M^k+k). It may not act on x(A(r — a2)) since h (M*(k+k)(r — a2)j is supported
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away from t a2. The |ti — t4| produces an M~~k via the norm (IV.2a). Thus, altogether,

Taylor's theorem yields an M-*'*-*'. The analysis of Rf is similar.

Substituting Rg for R in (IV.40a) yields

/ T^jdTsdndaxda^Fph (M^*+fc>(ri - <n)) h (m^*+*>(ti - a2)) I

e-|e(P+q/2)|K-ri|[x(_e(p + q/2))x((7l _ Tl) _ x(e(p + q/2))X(7ï - ax)]

e-|e(-p+q/2)ll<T3-ri|[x(-e(-p + q/2))X(<72 - n) - X(e(-p + q/2))X(n - a2)]

[/f(Tl,T2,T3,T4,t',p',0)5(Tl -a2)- X(T1,a2,T3,T4,t',p',0)5(Ti -T2)]

:= Ji,«n(T-i,T2,o-3,<r4,t',s,q) - / da2ji,en(Ti, a2, <r3, cr4, t', s, q)£(Tj -t2) (7V.45a)

where

sup / dT2d<73d<r4|j'i,en(Ti,T2,o-3,«r4,t',s,q)| < const||7i:||fc||7||i (7V.456)
t,s,q J

as in (IV.42).

For the remaining contributions Rh and Ri we follow the argument (IV.42),

leading to the unrenormalized bound, but exploit the fact that, on the support of

[l - h (Mi<-k+k)(T3 - ax)) h (m*(*+*)(t4 - <72))] at least one of |t3 -<ti |, |t4 -<t2| is smaller

than M~*(k+k). In either case the M~~* coming from the integration

/'daxe~M>^l < M-*

in (IV.42b) is replaced by

dai 1 < Mfa(*+fa/J\<r,/|<r.-r,|<M-i<k+*)

This is the desired improvement of M~'(k~k).

Our "sup" estimate on Ji(A 0) is now complete. We next derive a "sup" estimate

on -j^Jx- After that we include derivatives of J\.

Just as in (IV.35c) unrenormalized power counting estimates suffice. Recall that, in

the mixed (r, k) representation,

C(/»(T,k) -«-«->H^^± e{k)a3
f(M-23E(k)2). (IVASa)
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Hence

— CW(r,k) e-^M/tM-^k)2)^^ {M[(«gnT)JE(k)l + e(k)a3]

+2(sgnr)l + e(k)/E(k).3}-e-^^l-'/'(M-2>^(k)2)^(sgnr)^)+e(k)<T3 (7V.466)

obeys

\-JXC['\t,k)| < constM-*e-s(k)lrlX(7J(k) < M3)[l + \t\M3] (IVAQc)

Decomposing the soft lower line into scales foA < h2 < h and then using (IV.46c)

in the "unrenormalized" argument (IV.42) gives

/d h

dT2da3dai] —J1(Tx,T2,a3,ai,t,s,q)\ < con«t||jyür||» Y ^^M^M^
h2=lnt±

with the M~ 2 coming from the action of -Ar on the lower (soft) propagator (if -^ acts on

the upper line we get M~* < M-*2), the M~k coming from the tri integral and the M*2

coming from the d3p integral. Hence, just as in (IV.35),

j dT2da3doi\ — Jx(Tx,T2,a3,ai,t,s,q)\ < const]\I\]i\\K\]kM-kln (— J (7V.47)

Denoting by jx,iat the contributions to Jx from Ra, Ä&, Rc, Re, Rf, Rh, Ri and -jfcJi

we have

/l jl,int +jl,mom + <Ìl,en(Tl,T2,...) - / da2jx,m(Tx,0-2,—)S(tX - T2)\ (IVATa)

where the second (resp. third) term is the contribution from Rd (resp. Rg). So far we have

shown

sup j dT2do3doi\j1Mt\ < constllüTIUII/lli M~^k-h) + A_£n (M\ (JV.47Ò)

sup / dT2da3dai]j1<mom]p (M~2kE2(t + q/2)) < canst\\K\\h\\I\\iM-Kh-h'> (IVA7c)
t,s,q J

(since ji.mom contains a factor |t — t'| which, as in (IV.43c), is bounded by Mï(-k+k))

sup jdr2da3dai]jx,m] < const||jr||fc||/||i. (7V.47d)
t,s,q J
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To complete the bound on Jx it is necessary to show that each derivative with

respect to the external momenta t, s, q and each multiplication by the external time differences

|t2 — Ti |, ]a3 — Tx |, |<r4 — Ti | produces at worst an M_*. This is reasonable, since K has scale

k, I has scale i, the internal lines have scale h, p has scale |(/i + k) and k,i, h, ^(h + k) > h.

The proof is a straightforward variation of the above provided one first makes the change of

variables p —» p + q/2 (so that q derivatives cannot act on the soft line) and one applies

the momentum derivatives before setting A 0 (so that derivatives cannot act on the

characteristic functions X(±e) in (IV.40)).

The bound on J2 is proven similarly.

¦
We have controlled the quartic part of jf£2 (U,U) where U is the part of W^k) (see

[1.102a]) of degree at most four. It remains to control the quadratic part. Precisely,

quadratic part of h£2 (U,U)

+ Ì

(7V.48)

We denote the values of the first, second and third graphs in (IV.48) by Tx, T2 and T3

respectively. That is,
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thequadratic part of — £2 '{U,ll) Tx + T2 + T3

Recall that § f J is the kernel of the quartic part of U and is a sum of

renormalized (1 — LW)7 and local (see (1.99) L^'7 kernels; / j is the kernel of the

quadratic part of U and also is a sum of renormalized and local (see(I.99b)) contributions

(1 — L("))S and IS; all monomials are Wick ordered. Once again by [1.102] renormalized

contributions are of scales i,s > h, while the (resummed [I.102b]) local quartic part has scale

i h and the local quadratic part is a number. The last diagram T3 has already been treated

in Lemma II.2'.

Lemma IV.6 Let I\'l'ra ®rh, 7(J2VC ® Td and 5(s)<re be general (not necessarily in the range

of L) kernels, with jx,j2,s > h.

a) Let Ti(t, q) be the first diagram of (IV.48). Recall, from (IV.48), that the lines of this

diagram are of scale h. Then,

II21IU < constH^IUII/^IUM^ \yh A /M*\M5 +M^log("Ä-J

b) Suppose, e 6 {0,3}. Let T2(t, q) be the second diagram of (IV.48). Define

-1 7i, S both local
jx Ix nonlocal, 5 local
s Ix local, S nonlocal
min(ji,s) 7i, S both nonlocal

Then,

Hulk < constM*||7<J'l)|U[|5(J)|M-*] (J^) + constM*||7<^)||il[||S^)||,M-*]M-('-*)

Proof The strategy is the same as in Lemma IV.4. The volume estimates of Lemma IV.2 are

used to control the case A 0. Normal power counting suffices to control -j^Ti.
a) When A 0

Tx(r,q) - d d JJdTi71(p,q,r,0,Ti,T2,T3)72(p,q,r,T4,T5,T6,T)

e-|e(p+q)||r4-T2|e-|e(r-p)||T3-r6|e-|e(r)||ri-r6|
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Ta[sgn(T4 - t2)1 + sgne(p + q)cr3]Tc

<TT6[sgn(T5 - t3)1 + sgne(r - p)a3]Td[sgn(Tx - t6)1 + sgne(r)a3]

F(M~2ke(p + q)2, M-2*e(r - p)2, M-2*e(r)2) (7V.49)

where F ensures that at least one of the three lines is hard of scale h, while the remaining

two are hard or soft of scale h.

Suppose the Une carrying [sgn(T4 — t2)1 + sgne(p + q)<r3] is hard. Then for

0 < a < 4, |/9| < 1

we have

M("+W)k J dT]T»V^Tx(T,q)] < consta|U,||J2|U y dne^"^-^

J ddpddrX(]e(p + q)\< M*)X(|e(r - p)| < M*)X(|e(r)| < M*)

Each "derivative" M*(t, Vx) yields a factor 0(1) when it acts upon l\h), I{2h), e-l«(p+<i)lr'-4-T»l

or F. If it acts on sgne(p + q) we get zero since the supports of S(e(p + q)) and F are disjoint.

Thus,

||Ti(A 0)|U < const||7i|U||72||ftM-*y"dVir

x(Hp + q)\ < M*)X(|e(r - p)| < M*)X(|e(r)| < M*) (7V.50)

If the top line is soft we arrive at (IV.50) by, first, changing variables in (IV.49) so that q

flows through a hard line, estimating as above and then changing variables back again.

To estimate the integral on the right hand side of (IV.50) we write 1 X(|p| <
3

2d+lMak) + x(\p\ > Mak) with a -frx and bound

j ddpdArx(]p\ < Ma*)X(|e(r)| < M*) < MdakMk M™&kMh

Jddpx(\e(p + q)\ < Mk)JddrX(\p\ > Mak)X(\e(r - p)| < M*)X(|e(r)| < M*)

< M*M_*(a*-*)M* M^kMk
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by Lemma IV.2. This yields

||Ti(A 0)|U < constila\\h\\I2\\kMhM*&h

<const||7i||fc||72|UM*M**.

Finally, by conventional power counting bounds, as in [IV.34, 35, 36]

||^ri|U<const||7i|U||72|U YI M-k(M-ki+M-h*+M-k)Mh-Mk*
£n/±<h,<h2<k

h

<const||7i|U||72|UM-* £ M*2 ]T 1

h2<h h,=tn£.

< constHIj|k||72||fc£n
M*\

The argument is completed as in [IV.37].

b) When A 0,

2i(T,q) "J /
J^Td ndT'Il(P'cl'0'Tl'T2'T)5(p'T3'T4)

e-|e(p)l[|T-3-r1|+|r4-Tj|]jp/jW—2fce/p\2^

irTa[sgn(T3 - Ti)l + sgne(p)<73]<7e[sgn(T2 - t4)1 + sgne(p)<73]. (7V.51)

Observe that, when (t3 — Ti)(t2 — t4) < 0,

(sgn(T3 - t^I + sgne(p)o-3,sgn(T2 - t4)1 + sgne(p)<x3)

€2sgne(p){(T°,-T3),(-T3,T0)}

with the result that the trace is zero since T°TaT3 T3TaT° 0 for ct 0,3. On the other

hand when (t3 — Ti)(t2 — t4) > 0

1rs - Ti| < |t3 - Ti + t2 - T4|

< \n -t2| + |t4 -t3|.
So, recalling that

0 if Tj T2,T3 =T4

< J
01 if T3 T4>rl 7^ T2

1 - S if Tj ^ T2, T3 T4

min(«,j"i) if tj ^ t2,t3 ^ Ti
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A 4

/dT|r2(T,q)A=o|< / ^fldndr^WS^lF
J J(t3-t,)(t2-t<)>0 (1k) ££

[1 + M>3 - ri |]-2[1 + M>3 - Ti|]2

zJj&IL d^lih)S"F[l + M-|t3 - ti |]-2
(/K52)

[l+M^|Tl-T2| + Ma|T4-T3|]2

<const||71°'l)||il||5W||JM*M-'-

To estimate M<-a+W>h J dT|TaV^T2(T, q)A=ol when a + ]ß\ > 1 it suffices to use

straight power counting without exploiting the constraint (t3 — Ti)(t2 — t4) > 0. The "derivatives"

necessarily act on 7, and produce M~f-a+iß'>31. Consequently,

|T2(A 0)|U < const||Ip'l)II^IISW^M-^-*) (7V.53)

As in part a)

Jo

H^IilU < const||7i|U|s|M-*M-*M*

dA'||^T2(A')|U < const||Ii|U[|5|M-*]M*A. (7y.54)

Adding (IV.53) and (IV.54) finishes the proof.

¦
V. The Flow of the Effective Interaction

Let 7i be a Banach space and B B(7i) the space of bounded operators on 7i

with operator norm || • ||. Let || • ]\h,h < 0, be a sequence of norms (motivated by, but not

necessarily equal to (1.106)) on B obeying

IMI* < \H\'h> for all A < h' (V.l.a)

\\a\\ < HI'« (V.l.*)

ll«Mi < IMIàlWIIMIi (V.l.c)

for all a, b, e e B and h < 0. For example, if Ti ^(kpS^1) then

ll«llk (l + 4"2^-i) max sup |M(W+W^v?V>(i',/)| (V.l.d)
lnl<2 C,.'6SpS'->
|m|<2
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satisfies (V.l)
We consider a flow on B defined for h < 0 by

a.h-1 a-h + ahBkah + Sk(a0,...,ak) + Hn(a0,...,ah) (V.2)

where Bh € B and Sh,Hh are maps from the h-fold product of B with itself to B.

Theorem V.l Let 7 < 1, M > 1, A > 0, a and T be constants such that

||a0 Y BhW <7<lf°raUJfc<0 (V.3.a)
h>k

\\Bh\\h < «jjTtÇâ for "" h - ° (K3-6)

and

Further, suppose that there are constants u,r\ (possibly depending on a, 7,T) and 0 < w < 1

such that

|| Y Sj(a0,...,aj)]\h<u]]ao]]2 (VA)
h'>j>h

]\Eh(ao,...,ah)\\h < 1jjJiqrsll««llo+" (VS)

for all ||a0||o,..., ||afc|U < 4^"^ ||a0||0. Then there exists a constant G=£ (-f,T,a,u,^,u>) > 0

for which

Kilo <€ (V.6)

implies that the sequence ao,ai,a2)... generated by (V.2) obeys

IKIk<4V^II«o||o, h<0 (V.7)
1-7

Proof We first verify, by induction, that the solution of the truncated flow

äh-i âfc + ähBhäh (V.8)

is of the form

â& [l-a0 Y Bj-bh]-lao (V.9o)
o>j>h
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with 6n 0 and

iMu<yw s M^TÄ<fafa- {vM)
0>j>h

Note that (V.3.a) and (V.9b) imply
1 — 7 1 + 7

~2ao Y B3+bh]\<7+-T2 ^L<^
and hence

0>7>h

||äh|U=||[l-a0 Y Bj-h)-l*oh
0>j>h

<Y\\[*oYB3 + bdha°\\k

< j i + ]]aoYBi+mu Y iia» J2 Bi+6*un~1} im* (y-10)

H-v)Hfa)lllao||o<

<2i±^||a„||o
1-7

The bound (V.l.c) is used in the third line.

The flow of the tail 6^ is given by

bh-i =bh- a0BhâhBh[l + àhBh]-1 (VU)

since substituting (V.9.a) into (V.8) yields

1 - a0 Y B)•- ^-i | [1 - ao Y Bi - 6*]_1 + ähB^ -a°Y,Bi- W* \
3>h {[ j>h j>h J

[1 - a0 J2 Bi - h][l + àhBh]'1
3>h

1 — a0 2_j Bj — *A — aoBfc + a0BhàhBh[l + ähBh]~
3>h

We have used [1 — a0 Xfak Bj ~ *fc]"fc ao in the last line.

For ||a0||o <€,
\]a0BhahBh[l + ähBh]-1]^-! ||a0J5fc[l + ahBh]~rahBh]]h-i

|a0||o<*
7

^^ll II
Mh

^r~MoM^7Ä

^ m ,i Mk / 1 + aT,, „ \ 1
1 + al

^^^m^taÌ1-2!^^11'10110"; 2t^
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provided € is small enough, depending on a,j,T. This completes the verification of (V.9b).

We now show, by induction of course, that the solution of the full flow (V.2) obeys

o-h àh + y^/Sj(ao,...,aj) + ch (V.12.a)
j>h

with c0 0 and

cfe|U< ||ao||o+"n ^ + ^mJTaIKII") =7* ^126)
3>h

1+a.T,
S 6a- (1 + u) + tj1-7

The bound (V.12b) implies

IM|fc<||«o||J+"«p( Y *T7^rl!«o||o
Mi + A '

W> —oo

< ||a0||J+"e*r (by(V.3b))
i + «r„- „< -j——libilo1-7

provided e" esv < i±s£.. Hence, by (V.10), (V.4)

IK|U<4Ì±££||ao||o
1 — 7

provided u G< ^ffa
The flow for the error Ch is

Cfc_i ch + chBhah + ahBhch + (Y Sj)Bhah + ähBh(Y Sj) + Hh (V.13)
3>h j>h

since, substituting (V.12a) into (V.2),

ak-x ah + ahBhah + Sh+Hh

âh + àhBhâh + Y^Sj + Ch + (Y si + ch)Bha.h
3>h j>h

+ ahBh(Y Sj + ch) + Sh + Hh
3>h

àh-x + Y Si + c* + (YI Si + ch.)Bh<ih

j>h-l j>h
+ âhBh(Y Si + cft) + Hh

3>h
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Assuming the inductive bound (V.12b) for c/, we have

„ „ / M* • 1 + aT„ „ \lk-i|U-i <\]ch]\h(l + 6aMh + A l-7 IKHoj

+ (6^1±^+")+ aT \ M* 2+w+ '¦) ,,fc ¦
Allao|lo+

<Ih 1 + 6a

l + o

7 7 M* + A
M* 1 + aT

M* +A 1-7
1 + aT \ M*

aoilo + 6™^—— +77J M^ + Al|a0||o

Mh

M* + A |a0||o

where we used ||c&||h, ||ao||0 5: /fc in the second line.

It follows from Theorem V.l that

ak Y2(Ai A Sj) + ao

3>h

(V.14)

where Aj ajBjaj + 77,- obeys

E libili ^ E 16 (^t)" M3
M3 + A

< 161 TIT") «r'lfallao||?

ko Ho +»7

11 «-o 0

M3
M3 + A

|ao||2+"

(VIS)

Thus the fa^ .4^ part of ah converges in any norm || • ||Loo that is smaller than all the || • ||'h's.

3>h
For example, if (V.l.d) is used then the L°° norm

IHI'-oo (l + *p-1«a-i) «up |«(*V)|
('.«'ÊtfS'-1

will do. We see from (IV.29) and (IV.35) that Sj(t',s') is bounded by

const 11 a0 B{ M'72 + -^-log(M7A)
MU2 ¦

+
{SI ±tli/2X(W ±t'\> constM3) j (V.16)

The portion in square brackets is summable as in (V.15). The contribution to ah from the

second part converges pointwise and in all Lp norms with p < 00 but not uniformly.



Vol. 64, 1991 Feldman and Trubowitz 353

List of Symbols

fak) ^
k (fco.k) G Rd+1

(fc,(r,x))_ —fc0T + k-x

i'k.ati V^.a physical Grassmann fields

-î/"6, ij)e external Grassmann fields

C(Ìx,Ì2) (1.3)

e(k) £^ — ß, ß =chemical potential

dßc(tl>,V>) fermionic Gaussian measure with covariance C

g(^,V) (I.5a), (1.14)

V(V-fa) (L5b)

(fci,fc2|u|&3,fc4) general two-body interaction satisfying (1.6)

Fermi surface (1-7)

CU) (1.8)

h(x), f(x) (Il.la) (Il.lb)

p(z) 1 - h(x) (II.lc)

dßciJ)(rf,U)^U)) (1.9)

£(*)(<£(<*)) (1.10)

</.(^*) (1.11)

/ d£ := / ddxdT ^
Git S2, E (1.13)

£(*>, dA) (1.17)

£ (1.18)

Sß (1.21)

r, c forks (1.23)
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4p!n (1-24)

£(*) (1.29)

i* max(i'i,t2,i3,i4) (L29)

f (t„,t)' (o,-fckp) ,kp (2777M)1/2 (1.29)

?° (?o,0)

77" homogeneous harmonic polynomials on R. of degree n

irn projection from L2(kFS onto 77n

An Tith eigenvalue of the rotation invariant kernel F(t',s')

R, C forks (1.34), (1.50)

9W, <C (1.36)

T rooted planar tree

s(T) (1.38)

G) (1.39)

Val(GJ) (1.40) (III.3) (III.6) (III.12)

jAV), p(h) (I42)

ßW, ß (1.54)

*fc, **. Nambu fields (1.56)

a3, j 0,1, 2, 3 Pauli matrices (1.57)

C0 (1.59)

C CA (I.62a) (II.3)

C^ (1.85) (II.4a)

E(k) (I.62b)

SV, Sß (I.67a)

V, D (I.67b)

W (1.69)

*£(k) r0l + na1 + r2a2 + r3a3 (1.70)
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J (1.79)

A± (1.81)

6± (1.82)

7 (1-83)

C«) CW (j 85) (ln.la)

W^ (1.86)

$0);fO) (1.86)

„_0 1 f^O „3\ ' 1

t =2(a +a 1 2) <"•>

^ Kfa + -2)=(S 5) (L89)

T2 f(^-zV2)=(j :) cl»)

T3=i(.°-<73)=(j ;) (1.89)

/m,n (LOO)
3

7= XI /"-r"1®^ general quartic
m,n=0

Q(t.',s') (1.94)

L<*>, I, r (1.99) (II.6) (III.19c)

e(*}, Q(h) (1.100)

w(A),^n (1.104)

||/|U (L106) (II.26b)

||T||h (1.107) (III.26a)

\u\ (II.5a) (III.4) (III.8a)

|u|' (1.108) (II.5b) (III.8b)

""(/) n(f) is the fork: immediately below the fork / of a tree

C(fa (1.111) (IILlb)

Gf (1.112)

4(fe\ 4V a-il«)

355
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È[h\ 4h3> (1.117)

ß<-k) (1.123)

SW, £•(*) (1.124)

An(A) (1.126)

(t, k) G R.^"1"1 (time, vector momentum)

GÌ a connected component of {£ 6 GJ|j< > h}, h < — 1

jf (HL?)

Df (111.9)

Af, Av (III.10)

L(G) number of lines in G

T spanning tree (Technical Lemma III.2)

Sp, kp (supplement to Lemma III.l) (III.15)

C^, C23) (11.18) (III.17)

C(^, C(2^ (III.18)

bf number of upward branches from /
Sf (Lemma III.5)

Ef number of external legs of Gf

L2(G) number of C2 or C2|, lines in G

Ji, J2 (IV.20) (Lemma IV.4) (Lemma IV.5)

r' (IV.21)

Bi (IV.22)

jß,int, J/3,mom, J>,en (Lemma IV.5) (IV.45a) (IV.47a)

Tx,T2, T3 (IV.48)
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