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ABSTRACT

Our purpose is to study the asymptotic behaviour of
cosmological wave functions in the region of Superspace where
det (metric) =oo. We are considering curves c in Superspace, with
lim(deto- )=», and by means of a family of these curves an

y y
asymptotic region in det(metric)=» is defined. The behaviour of
solutions to the Einstein-Hamilton-Jacobi equation along the
curves <r is analysed. From this analysis we deduce for the wave

functions of the universe the following behaviour in that
asymptotic region: dissipative (dispersive) if A>0 (resp. A<0).
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INTRODUCTION

The behaviours of cosmological wave functions have been

analysed by several authors using minisuperspace models of gravity
coupled to a scalar field [1 - 8 ], or cosmological models with a

Higgs field [9]. In these models the infinite number of degrees of
freedom is reduced to a finite number, by restricting the metric
and the field to be homogeneous and isotropic. Thus the Wheeler -
De Witt (W-DW) equation is reduced to a partial differential
equation in the remaining degrees of freedom; and by means of an

asymptotic analysis the controlling factors [10] and the
prefactors of solutions are obtained.

In this paper we are considering curves in Superspace [11],
i.e. one parameter families of "points" of Superspace. Each point
is a pair metric-field, in general with an infinite number of
degrees of freedom. Our purpose is to study the asymptotic
behaviours of wave functions of the universe along those curves.
The controlling factors of the asymptotic behaviours obtained in
[1-4,6-9] using a minisuperspace model are reproduced by applying
our method to suitable curves (Section 6).

The asymptotic analysis of solutions to the W-DW equation
suggests that the solutions of the Einstein-Hamilton-Jacobi (EHJ)

equation [12] [13] be studied. The framework in which the EHJ

operator will be considered and a definition of distance in
Superspace are introduced in Sect. 1.

In Sections 2 and 3 we define a class E of curves (<r1 y' ye b co)

in Superspace, with lim det(o- )=». E is constructed so that on a

curve o- eE the EHJ equation takes a suitable form with regard to
the asymptotic analysis.

In Section 3 the asymptotic behaviour, along o- of solutions V

to the EHJ equation is studied. In Theorem 2 the results are
collected. There are two types of behaviour: either V~(deto-)1/2
or V~F((deto- )1/3) being F a function such that |F(u) |»u3/2,

as u-*».

Theorem 2 is applied to pure quantum gravity in Sect. 4. In
this case, as y-*o, V[ct ] is real (purely imaginary) if the
cosmological constant A is negative (resp. A>0). From this result,
properties for cosmological wave functions 0 of gravity coupled to
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a scalar field are deduced: There is a neighbourhood U of field
zero such that if 0€t/, on (tr ,<t>) the behaviour of semiclassical
approximation for <fi is dissipative [10] (dispersive) if A>0 (resp.
A<0)

The dispersive behaviour of 0, if A<0, is reasonably
conjectured in an "extensive" asymptotic region of Superspace. As

a consequence of this supposition new difficulties arise in the
probability interpretation of 0. So it suggests that the
possibility A<0 in pure quantum gravity be rejected. (Similar
suggestions based on the analysis of a minisuperspace model can
be found in [3] and [7]). These questions are considered in
Section 5.

In Section 6 two examples of curves which do not belong to E

are considered. In the first example the curve consists of
homogeneous, isotropic metrics; the second curve consists of
homogeneous metrics. By applying our method to first example we

reproduce the types of asymptotic behaviour which appear in the
study of minisuperspace models.

1 THE W-DW AND THE EHJ EQUATIONS

We consider gravity coupled to a scalar field; and for the
massive scalar field 0 we take the usual Lagrangian

L -(1/2)0 M0 vgßV - (l/2)m2cV202

In absolute units (16irG c h 1) and with a simple choice of a

factor ordering, the respective W-DW equation is [11], [14]
Ô2

Kbcd^W) So- (x)6ff (x) + det(crij(x))W(o-,0,x) +
ab cd

+ w^wmwrn^ ° (1>1)

^bc^W) s (V^KJxJaJxjwfxXrfxl-aJxlafx))bd ad be ab cd
ab ,„, 2.2W(tT,0,x) R^x)- 2A - (l/2)ffau(x)0Jx)0Jx) - (l/2)iti0"(5C)

c is a riemannian metric on the 3-dimensional manifold S. And

we suppose that S is compact. To simplify we suppose also that S

is covered with only one chart Ç, and therefore Ç(S) is a compact
3of R The second supposition is not restrictive, because there

are finite atlas and compact coverings for S (see Remark 2 to
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Theorem 1).
M={a\a is a C2 riemannian metric on S)

Fs{q|q is a C1 scalar field on S)

Metrics and fields will be expressed in the chart Ç.

The coordinates defined by the chart Ç are denoted by x ,x ,x ;

hence ff=ff dx'dxJ, where a :Ç(S) MR.

We define _M {{ff Iff coordinates of creJf in the chart Ç).

ÇF {0 q o C"1! qeF).
The solutions of (1.1) may be viewed as maps 0: _M x _F » C.

If, moreover, we demand 0 to satisfy the supermomentum equations

ac '

then 0 may be regarded as a map 0 : M x F > C; that is, 0 does

not depend on the coordinates in terms of which ff and q are
expressed.

The second functional derivatives in the W-DW equation, are not
necessarily regular distributions, (p. 1123, [11]). This
difficulty can be seen already in the expression for the ground
state of linearized gravitational field in the field
representation [14]. However the first step in deriving the
asymptotic behaviour of a solution to an ordinary differential
equation, near an irregular singular point, is to express the
solution in the form exp(z) and next to suppose that z"«(z')
[10]. If we make 0[ff ,0] expfiV[<r ,0]1 in the W-DW equation,ab * ab '
and remove the second derivatives, the EHJ equation [12] is
obtained

-NabCdHx>) s^m ¦ 6ff6V(x) + detKj<x)) w(ff,0,x) -
ab cd

-(^Häf^)-)2 ° d-3)

If we admit the analogy with quantum mechanics, then the
semiclassical approximation for 0 is D[<r ,0]expfiV[ff ,0]1, beingab v ab '
D a slowly varying functional.

A functional derivative may be considered as a distribution;
but the product of two distributions is not necessarily defined
[16]. Since the first and third terms of (1-3) are products of
distibutions, in order to deduce rigorously the behaviour of V,
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solution of the EHJ equation, we consider only "regular"
solutions.

Definition. Let V:..Jf x _F > C be a map such that the
SV SVderivatives - and -= 7—r (for all a,b) are regularS0(x) ôaaô '

distributions; that is, integrable functions on Ç(S) with respect
to the Lebesgue measure. Then we say that V is a regular
functional.

The lorentzian metric G [11] on Superspace generates a
abed

distance which is not adequate to our asymptotic analysis: the
distance between {ff and {y } can be zero and R * R1 u' ij ff 7
therefore the coefficients of the EHJ equation are not continuous
with relation to this distance. On the other hand each <r is a C2

ab

function defined on the compact Ç(S), so it can be viewed as an

element of Dt,c. (space of the C2 functions with support contained
in Ç(S); see p.24 [16]). Likewise 0 can be regarded as an element
of D_.„. In dZ.-. we can consider the seminorms Ns(f)=sup|Ds(f) |,
where s=(s ,s ,s o£|s|ss +s +s s», andv 1' 2' 3' ' 123 '

s + s +s„1 2 3

ds B 2

(ax1) '(ax2) 2(ax3) 3

The convergence of {f } > f in D™ (endowed with the topologyn

defined by {Ns}) is the uniform convergence of {Dsf } » DBf forn

all |s|£». d£,s» is also a metric space (p.27, [17]). Let d and
d be the respectives distances in D1 and in D2. Starting from d

we can define on 1 [D2C., and therefore on rM, the distance

d' H"" IA? n=max{d (ff ,y )}. And finally a distance on ^Afx-FU ijI'i'ljIJ a,Vl 2V ab' ab' ' J Ç Ç

d((«rij},0) ({riJ),0))=max[d' («r^),^)) ,dt (0,0))
The topology defined by d is the adequate to regard the functional
derivatives as distributions (p.24, [16] and p.47, [17]). Moreover
bearing in mind the expression of 3R in terms of the metric, we

have :

Proposition 1. With relation to d, the coefficients of the EHJ

equation are continuous.o

2 CURVES IN THE SPACE OF METRICS

Given V, solution of the EHJ equation; V depends on the
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functional variables cr and 0. We want to reduce the six
ab r

variables cru to one functional variable. For this purpose we
ab

consider metrics which depend on a fixed C2 function z:Ç(S) > R.

Let ff:D_.g. H T^rrsì be a continuous function such that
{ff (x)sff (z) (x) )e_M. Then V may be considered as a functional
of z.

In order to have a curve in rM we need an one parameter family
of functions z. Let z: (b,oo)xÇ(S) »R+ be a continuous function
such that:

i) For each ye(b,oo) z z(y, ):Ç(S) > R* is C2.

ii) lim z(y,x) co, for each xeÇ(S).
If we choose ff so that {ff (z )e„M, we have a curveab i J y Ç

ye(b,co) > {ff s ff (z }e..M, and the subset I(ff,z) of .M x _F

I(ff,z) {({ffyij),0) |ye(b, co),0ecF}

This subset has not isolated points with relation to the distance
d. On I(ff,z) the EHJ equation reads

L[ffy] + det(ffy)W(ffy,0) - (1/2) (-§|-) 0 (2.1)

where

„ 5V SV S V _( SV ÌL[ff ] s -N Aa ]T-— -_-—, and -f- t-— i
y abcdL yJSff Sff Sff ISff I

yab ycd yab v ab7 I A
' ij irZy'

In regard to operate with (2.1), the term L[ff ] is the principal
difficulty. However, in order to study the behaviour of solutions
to (2.1) as y-x», the term L[ff ] may be replaced by other
expressions without modifying the type of behaviour.

Henceforth one suppose that the function z(y,x) has been fixed.
With F PffSì'^ ^ffSM we denote the respective space of

continuous functions endowed with the point open topology; i.e.
{f } converges to g in F if and only if {f } converges pointwise
to g. Let M a metric space and let cr: A€M Kriel^ ^e a

continuous map (therefore if X-»u, for each y, ff,. (z )-»ff (z in the
distance d'). We define 0={XeW|ff- e_M, for all y) ; in consequenceAy Ç

for every XeO there is the respective L[o\ ]. We need to replace
N by a suitable expression.abed r

Let j :_Jf »D2_., a,b,c,d6{l,2,3) be a family ofabed Q Ç(o)



132 Vina H.P.A.

continuous functions, and let A eö satisfying the following
conditions:
iii) For every e>0 there exists a deleted neighbourhood of AQ,

such that IHabcd(ffXy(x))-Jabcd(ffAy)(x)|<C.|Jabcd(ffAy)(x)|, for all
x.y.a.b.c.d, and all A in that neighbourhood.
iv) There exists k>0 such that if 0 is a field with |0(x)|<k for
all x, then if V is solution to the EHJ equation

Ulf «abed^Ay) (jäf") | js^f") | /° ' *« ««* "0 v Ayab' '0*- Aycd' '0
Then, under the preceding hypotheses, for every A in a deleted
neighbourhood of A the asymptotic behaviour, as y-x» on

O

{ (cr,0)el(ff ,z) | |0(x) |<k for all x), of solutions to the EHJ

equation will be of the same type as that of solutions to

M[ffXy]+ det(ffAy)W(ffXy,0) - (1/2) (-§J-j 0, (2.2)

where M[<rXy] * -j^* ] «2_ «2-
A yab A y cd

(The remark about zero-signature limit, in Sect. 4, shows that the
condition iv) is necessary to can substitute L[ff. ] for M[o\ ]

without modifying the type of behaviour).

Example 1. Let A ,x :Ç(S) »R (i,j=l,2,3) be two families
of C2 functions such that x =x A =A rank(x (x))=l andij ji' ij ji ' v ijx ''
r (x)*0 for all xeÇ(S). We define ff (x)=r fx)+z (x) (xi (x)+A[ fx)
Let us suppose that {cr )e»M; then a curve on »N is defined. In
Appendix I we shall construct a set {j J), such that theabed
condition iii) holds for {j on ff, (Proposition A.3). The

abed Ay
property iv) holds also for this set of curves. (As an example
of families which satisfy the preceding conditions we can take

Example 2. Let S the 3-sphere. On S the usual coordinates x, &,
tp are employed. By setting z (x) y and

' y2 0 0

0 y2sin2* 0

0 0 y2sin2* sin2#
s V

we have a curve in _M.
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3 ASYMPTOTIC BEHAVIOURS

The following step is to seek the asymptotic relation that
correspond to equation (2.2).

We employ the usual symbols - and « for the well-known
asymptotic relations: "is asymptotic to" and "is much smaller
than" [10].

Let us suppose that for the family {ff. K of curves in rM, and
Ay A Ç,

the set {j _ _} of functions the following properties holdabc d

„v 3 function(x) M ^_v) R^Jx) Zy(x)
' • as ^00'

vi) det(ffx(x)) - z3(x)-h.(x), as y-x».

vii) Given an arbitrary AeO M.(x) - -(1/2) z2(x) as

y-Ho, for all V regular.
For the families of curves defined in the Example 1 the

conditions v)-vii) hold (see Appendix I).
From (2.2) the following relation is obtained, as y-x»

(1/2)z2 (x) (8z^x))+h(x)z3(x)(2A+(1/2)m202(x)) -

According to the remarks of the Sect. 2 we have

Proposition 2. For all A belonging to a certain neighbourhood B

in W, the asymptotic behaviour, on the curve {cr.. } ofJ r ' l Ay y€(b,co)'
solutions to the EHJ equation is of the same type as that of
solutions to (3.1). a

Remark. The meaning of the expression "the same type of
behaviour" is explained in Remark to Theorem 2.

Hence for each pair consisted of a function z and a family
{tr. which satisfy i)—vii) we have a set E(ff.,z)s{ffx |AeB) of
curves in _tf. To simplify, henceforth we assume that
z (x)=p(y)-n(x) being D.:Ç(S) » R+ a C2 function, and

p: (b,co) >R+ a continuous function with lim p(y)=<».
The union of the sets E(ff.,z) gives a class E of curves in _M.

And given {ff } eE we can analyse the behaviour of3 l yij ye <b, co) 2

solutions to (3.1), according to Proposition 2.

Wedenote A(zy,0,x) (1/2) z2(x) (gf-^y)
2
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B(zy,0,x) S h(x)z3(x)(2A+(l/2)m202(x))

C(zy,0,x) S -(l/2)(4TJy)2
Taking into account that the terms of (3.1) are regular
distributions; given a field 0, there are the following dominant
balances to consider, as y-x»:

(a) A(zy,0,x)~ -B(zy,0,x), |C(zy,0,x)|«|A(zy,0,x)|, almost
everywhere on Ç(S).

(b) B(zy,0,x) -C(zy,0,x), |A(Zy,0,x)|«|B(Zy,0,x)|, almost
everywhere on Ç(S).

(C) A~C, |B|«|A|.
(d) A-B-C.
(e) There are subsets of Ç(S) : Sa, Sb, Sc, Sd (and at least

two of them with nonzero measure), such that in Sr the
dominant balance (r), re{a,b,c,d}, holds.

3a. In this case we have
2

y
almost everywhere on Ç(S); then

(l/2)z2(x) Lj ¥-y] ~ -h(x)z3(x) (2A+(l/2)m202(x)),

srywhere on Ç(S); then

V[z ,0] - ±(2/3) f(-(4A+m202(x))h(x)z3(x))1/2 dx ±
y J

j. y
i

±(2/3)i[((4A+m202(x))h(x)z3(x))1/2 dx + Y[0]
J

K y
2

Y[0] is a functional of 0. K ={xeÇ (S) |4A+m202(x)sO}, and KsÇ(S)-K
If, for example, xeK

^ly - ±(2/3)im202(x)(h(x)z3(x))1/2(4A+m20(x))-1/2+ gf^y, th.^n
the relation |C(z ,0,x)|«|B(z ,0,x)| does not hold as y-x». In
consequence the dominant balance (a) is inconsistent.

3b. Now we have (4A+m202(x))h(x) z3(x) ~ -f8l/L] ¦ If m202(x)

is much smaller than |A| almost everywhere on Ç(S),

V[z ,0] - ±if(4Ah(x)z3(x))1/20(x)dx + N[z ], for A>0

C(S)

V[z ,0] ~ ±f(-4Ah(x)z3(x))1/20(x)dx + N[z ], for A<0.

C(S)
But |A(z ,0,x)|«|B(z ,0,x)| does not hold as y-x».
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If m202(x) is much bigger than |A| almost everywhere on Ç(S),

then -m202(x)h(x)z3(x) - [AZ)} '< and hence

V[zy,0] ~ ±(l/2)i|(m2h(x)z3(x))1/202(x)dx + N[zy].
C(S)

But |A(z ,0,x)|«|B(z ,0,x)| does not hold as y-x». In consequence,
for a field 0 such that 02 is either big enough or small enough
with relation to I Aim"2, the dominant balance (b) is inconsistent.

3c. Now

(V2)z*(x) (ôfw)2- -<V2) (s£(iy)2- Then zy(x)|i2_ - ±i |_v_.
The general solution is

V[zy,0]~FJJ*zy(x)-exp(±i0(x))dx],
C(S)

being F a differentiable function such that, as y-x»
2

(3.2)|f'JJzy(x)-exp(±i0(x))dxj| h(x)z (x)(2A+(l/2)m202(x))
C(S)

almost everywhere on Ç(S) (in this way |A|»|B|).
Since z (x)sp(y)-£i(x), the conditon (3.2) is equivalent to

1/2 r|F'(a-u)|»u as u-*», with as fi(x)-exp(±i0(x))dx.
C(S)

3d. In this case
2

Z
y (yfa (Sfa-<"+-v>K <3-»

Since A ~ B and C - B,

Sa Yx) - function(x)-(z (x))1/2, and
y

S V function(x)-(z (x))3/2.S0(X) *-»v.w-w..V^, v-y

Therefore the solutions of (3.3) have the form

V[zy,0] - j-(zy(x))3'2H(0(x))dx, with H a differentiable function
C(S)

of a real variable such that
(9/4)(H(0(x)))2+ (df^j-) -(4A + m202(x))h(x) (3.4)

The asymptotic relation (3.3) implies the equation (3.4) between
the coefficients of z3. We analyse (3.4) in two cases:

(I) For fields 0 such that 02(x) is, almost everywhere, much
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bigger than |A|m" and 1. There are four dominant balances to
consider in (3.4):

A|H|2; |H|2«|ff; H2~(g)2~m202h; dH
d0 «|H(0) I'

A straightforward calculation shows that only the last possibility
is consistent. Hence H(0(x))~±(2/3)i(m h(x)) 0(x), and

V[z ,0] ~± (2/3 i f (m2h(x) z3 (x) 1/20 (x) dx
C(S)

-±(2/3)iJ(m2det(ffyi|x)))1/20(x)dx.
Ç(S)

This asymptotic behaviour is possible under the hypotheses of (d),
A-B-C, and if |0| is big enough.

(II) In order to solve (3.4) for fields 0 with 101 small, a

perturbation method can be used (see Appendix II). By applying
Theorem A.l we obtain

V[zy,< (zy(x))' (coI*o
2n(h(x))1/2yn(0(x))jdx (3.5)

US)
Conditions on 0 which guarantee the convergence of the series are
given in Theorem A.l

3e. For a field 0 such that 0 (x) is small enough with
relation to |A|m" for all xeÇ(S), Sa and Sb are sets of measure

zero, in accordance with the results of 3a and 3b.
Se s {xeÇ(S)| A(z ,0,x)~C(z ,0,x); |B(z ,0,x)|«|A(z ,0,x)|)

Sd s {xeÇ(S)| A(zy,0,x)-B(zy,0,x)~c(zy,0,x) }

If moreover |0(x)|<T for all xeÇ(S), and KT<4(27m)
A.l), we have according to 3c and 3d

V[zy,0] - F0[ Jzy(x)-exp(±i0(x))dx) +

Sc

2, -1 (Theorem

(zy(x))- J m2n(h(x))1/2yn(0(x)))dx

Sd

We can summarize the results in
Theorem 1. Let V be a regular solution of (3.1), with A*0; and

ff a curve belonging to E. Then there is a number 5>0 such that,
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given a field 0 with |0(x)|<5 for all x, as y-x»

V[°yab'*J " F4 J"(det(ffy(x)))1/3exp(±i0(x))dx) +

(det(ffy^)))1/2Q(0(x))dx (3.6)

C(S)-s#
Being S. a subset of Ç(S); F. a differentiable function which
satisfies |F'(u)|»u
differential equation

1/2satisfies |Fi(u)|»u as u-x»; and Q solution of the

(9/4)Q2 + (jjö) -(4A + iV).
Remark 1. Bearing in mind the Theorem A.l

CO

Q(0(x)) V m2nyn(0(x)), and yQ(v)=c, or yo(v)=c-sin((3/2)v+d)
o

(d constant). Where c s ±(4/3) (-A)1/2, if A<0, and

c s ±(4/3)iA1/2, if A>0.
Remark 2. If S can not be covered with only one chart, there is

however a finite atlas {(A ,Ç for S, and coverings {U of S,

with Ü cA and Ü compact. So on Ç (Ü all the preceding results
are valid. We can obtain a finite covering {W) of S with W cU

W compact, and such that W nW_ are sets of measure zero (if a*ß).a a p \
Denoting with ff^ the coordinates of ff in W .£.„,, V is a

CtlJ I Oc OC I WOtJ

functional of ov and V can be written V=V V0[cr0 ], where eachalj u p pi}
ß

Vß is a functional with the properties stated in Theorem 1.

Remark 3. If f(h(x)fi3(x) )1/3exp(±i0(x) )dx 0 (*0) the first
C(S)

(resp. second) term on the right of (3.6) can be deleted.

Taking into account the definition of the class E we have
Theorem 2. Let V be a regular solution of the EHJ equation,

with A*0, and ff a curve belonging to E, with
det(ff (x))~(p(y)) -b(x) as y-x». Then there is a number 5>0 such

that, given a field 0 with |0(x)|<5 for all x, either
V[ffyab,0]~<y (p(y))3/2, or V[ffyab,0]-F0(p(y)), as y-x». Where o^ is
a constant, and F, is a differentiable function, with

3/2IF, (u)|»u as u-xo.d

Remark. Owing to (3.5), there is a real number p, such that
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a0=p0-J(b(x))1/2(^ m2nyn(0(x)))dx. (3.7)
US)

(That is really the explanation of that we mean by "the same type
of behaviour" in Proposition 2).

4 PURE QUANTUM GRAVITY

In this case the relation (3.1), if A*0, is reduced to

(sfw)2- -4Ah(x)Zy(x).
And then, if V is solution to the EHJ equation

V[ffyab] ~ pc|(det(<ry(x)))1/2dx (4.1)
US)

The right term of (4.1) is purely imaginary (real) for A>0

(resp. A<0) If 0 is a vawe function of the universe, its
semiclassical approximation D[ff ]-exp(iV[ff ]) has on {ff } a

dissipative (dispersive) [10] behaviour as y-x», for A>0 (resp.
A<0)

In the limit of zero signature [18] [19] the EHJ equation reads

N.f?i So^- sF- + 2Adet(ff) 0 (4.2)
ab cd

the form [20] VL J 0
-ß

'( )1/zdetff fx) dx.

at ^o-Jx)
'

SV ]
0 (ß/2)(det(fffx))1/2ScbKH

SV SV
0 0

Sff Sff
ab cd

¦ "(3/8) ß2detff,aB e è
ab cd

we obtain the following condition for /3: -(3/8)/32+2A=0.
In consequence, a difference between the case of A>0 and A<0

also appears in this particular solution; although here if A>0

V is real, unlike the behaviour in (4.1). In spite of this
similarity, our method can not be applied to solutions of (4.2).
If {ffj.) is a family of metrics with lim det(ff (x))=0 for all x,

SV S Vthen from (4.2) we deduce L[ff..]sN (0\)ï^r— t^: ->0, as A-»A
A abed A off.. off» 0

Aab Acd
Thus the corresponding condition iv) (Sect. 2) is not satisfied
for solutions to (4.2). Since L[cr ]->0 as A-»A L[°\] and the
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respective M[«r ] (Sect. 2) can have opposite signs, for A close to
A ; and hence for the equation (4.2) the corresponding Proposition
2 is not valid.

With relation to pure gravity new degrees of freedom are
introduced in the theory of gravity coupled to a scalar field.
Although the latter is independent of pure gravity, one may hope

that the pure gravity's results, about the asymptotic behaviour
of wave functions, are recovered by making 0=i> (tf(x)=0 for all
xeÇ(S)) in the formulas of gravity coupled to a scalar field. If
we admit this "pure gravity recovery postulat" (PGRP), aditional
consequences can be obtained from Theorem 2.

Proposition 3. If the PGRP is admited and A*0, then there is
a neighbourhood U of tf (in the distance d such that, if 0

belongs to U V[ff ,0]-a, • (p(y) )3/2; being a. purely imaginary
(real) if A>0 (resp. A<0).

Proof. Let us suppose that in every neighbourhood of iJ there is
3/2a field 0 such that V[<r ,0]~F. (p(y) with |F.(u)|»u Then we

can construct a sequence of fields 0 ,..,0 with lim 0= ¦&

(in the distance d
IV[ffv,0f]llim ^ —=oo. (4.3)yAa> 3/2(P(y))
IV[cr ,tf]|

Owing to the PGRP lim - *». (4.4)
y (P(y))3/2

Then, since V is continuous, (4.3) and (4.4) are contradictory.
Therefore there exists a neighbourhood U of û such that, for <f>eU

3/2 •V[ff ,0]~a. • (p(y) ; and a. is given by (3.7). In accordance with
Appendix II y (v)=c or y (v)=c-sin( (3/2)v+d) If A>0, in any case,
y (v) and y'(v) are purely imaginary, according to (II.2) and

(II.3); and recalling (II.4) we conclude that y (v) is purelyn
imaginary for all n, and for all v. Hence a, is purely imaginary.
Similarly for A<0. n

We have proved
Theorem 3. Given V a regular solution to the EHJ equation. If

the PGRP is admited, A*0 and ff is a curve belonging to E, with
det(ff fx) )~b(x) (p(y) )3, as y-x». Then there is a neighbourhood V

of i> such that, for 0el7
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V[ffylJ,0] ~ oy(p(y)) as y->».
Being this expression purely imaginary (real) if A>0 (resp. A<0).o

5 APPLICATION TO WAVE FUNCTIONS OF THE UNIVERSE

Since ye(b,oo) »{cr }€_Jf is continuous, if we employ another
coordinates ye(b,co) >{<F }er/f is also continuous, and

lim det(ff [x))=co. Therefore it is reasonable to refer to the curve
y€(b,oo) > ff eJf, in M

Given 0 wave function of the universe; 0 satisfies the Super-
momentum equations (1.2), and hence 0 does not depend on the
coordinates in terms of which ffeM and qeF are expressed. The

action V also satisfies (1.2).
In accordance with the semiclassical approximation

^[°'»<ï]-D[0'/<ï] -exp(iV[ff,q] being D a slowly varying functional.
Therefore, under the hypotheses of Theorem 3, we can hope that for
ff eE there is a neighbourhood of field zero, such that if q

belongs to it, on (ff ,q) 0 exhibits a dissipative (dispersive)
behaviour, as y-x», if A>0 (resp. A<0)

Will the preceding behaviours be valid on a general curve ß in
H, with lim det(/3 )=«?. The answer is negative (see Sect. 6).
However the following rough calculation seems to suggests the
vality of the preceding results for the curves of a family E' more
extensive than E.

If ß <x)<*A (x) as y-x», det(ß )=<A3, and R<*A_1. From the EHJ
yij yv ' ' v yij' y' y y

equation for pure gravity we obtain \-gr-—t—t- * -A A (x)

So if A<0, V * ±f(-A-det(/3 fx)))1/2dx;

if A>0, V * ±if(A-det((3 fx)))1/2dx

And then 0 presents an oscillatory behaviour if A<0.
One can adopt the known interpretation that I0(ff,q)l is

proportional to the probability of finding the metric ff and the
matter field q on S [21]. This probability interpretation runs
into well-known difficulties, owing to the impossibility of
defining a reasonable measure dff-dq on an infinitely dimensional
manifold [14],[11].
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If A<0 a new and additional difficulty appears in the
"integration" |0|2dff-dq, for every 0 regular, because on the
asymptotic region defined by E' 0*(slowly varying functional)x
x(oscillatory functional). In consequence, the preceding
considerations suggest that the possibility A<0 in pure quantum

gravity be rejected. A similar remark (based on the study of
minisuperspace models with A<0) is pointed in [3] and [7].

6 APPLICATION TO MINISUPERSPACES

We study first the behaviour of V along a curve, whose "points"
are metrics of 3-spheres. The curve ff defined in Example 2

(Sect. 2) does not belong to E, because the condition vii) (Sect.
3) is not satisfied for this curve. Therefore the preceding
results can not be applied to this case.

If (a is diagonal matrix, the N fa) non zero areab aB c 8

N (a>=(l/2)a -a ; N =N =-N =(l/2)a-a (a*b)
aaaa aa aa abab abba aabb aa bb

Hence, if o-(x)= z (x) -a(x)

»-«',> M^) Mfa - «>/.).;-z fa-ifaf
v yaby v ycd' a v yaa'

+ (1/2) 2 • a a 2 ¦= * ¦=— - -rr ¦ t-zy / aa bbl 6<T 0<T 6<T 6<T I
~~> v yab yab yaa ybb'a*b

Setting - a r(x) • - where e is an arbitrary element of
yab Jet

v yab' v ycd' v yee7

vx) -z<a«>rm>a +Ea^a^)(2(rm)2-rmrm)-
a*b

On the other hand -f-2- VLiXL «_V_.Va .rÒZ /loff I ab off /aa yaa
y '—|V yab' yee «—'

a

v yab' v ycd' v y'
r(x)

SyX) s TF~^ T2-

Hence, on {cr _}, the EHJ equation for V isyab
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-(l/2)z2(x)s|x)[5|-^y) + z3(x)det( aft))JRy(x)-2A-

(l/2)ff^x)0Jx)0Jx)-(l/2)m202(x)) - (V2)[j|(^-j 0.

If (aab)

fl
0

0

2sin x

0

0

sin x sin i>

and z (x)=y (see Example 2),

R (x) z"1 (x) And as y-x» we obtain the relation

(l/2)z2(x)sjx) (gfjsy) +h(x)z3(x) (2A+m202(x))

-(1/2) [S0(X)J (6.1)

Being h(x)=det(a (x)). The relation (6.1) is similar to (3.1).ab

For pure gravity

1*3,00 J _4A.M2£l.zjx)
»J*>

Let us assume that, as y-x», s(x)-»s(x) >0.

C(S)

(6.2)

Then V[z ] - c

C(S)

detff (x)
s (x)

y

1/2
dx.

That is, V[y] ~ ±iy (constant), if A>0

V[y] - ±y (constant), if A<0. (The constant is real)
If we admit the PGRP, V[y,0] ~ ±iy3G[0], if A>0

V[y,0] - ±y3G[0], if A<0;

for 0 in a neighbourhood of the field zero. (And being G a real
functional).
Hence, for A<0, 0[y,0] D-exp(±iy3G[0] as y-x». (6.3)
If we suppose that 0 is real, in order to represent its asymptotic
behaviour, we must form a real linear combination of the two
behaviours (6.3).

0[y,0] s 3iD exp(iy3G[0]) + a2D exp(-iy3G[0]
D COS(y G[0] + J[0]), as y-X».

This is the type of asymptotic behaviour obtained by using
minisuperspace models in [1,2,4,6-9].

For A>0 we have 0[y,0] * D exp(-(y3)G[0] On the other hand

the volume of the 3-geometry is proportional to y ; therefore we

reproduce the result of [3].
The supposition (6.2) is a boundary condition on the functional
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derivatives of V. This condition holds if, for example, V is a

symmetric functional of its variables ff (in this case r =1).ab yab

If V depended on only one "metrical" variable the condition (6.2)
would be trivial also. Therefore in the minisuperspace model this
condition for the wave functions has no significance.

We consider now a curve whose points are spatially homogeneous
metrics. In the parametrization due to Misner [22], one can write
a spatially homogeneous 3-metric as ff=e" (e p) -dx dx with

ab
(/3ab)=diag(/3 +

+ 31/2ß_, <3
+ - 31/2/3_, -2/3

+ If ff is a such curve

er =e ^y'a where a =fe P^y'l This curve does not belongyab yab yab v 'ab
to E either.

Using the notations of preceding example

"~<V [&¦) (,^) (l/2)exp,-4S, [&-)%,
v yab' v ycd' v yee'

Since det(ff )=exp(-6Q) and 3R =0, the EHJ equation for pure
gravity reads

(l/2)exp(-4C2y) [*XJ.rjx) + 2Aexp(-6ny)=0 (6.4)

2^ dy 'j Sff(x£rJabCg —^. I :_;.., r(x)dx.
C(S)

5 VLet us assume that -=—-.—r does not depend on x, for all y.a.b.

Then r(x) is constant as function of x, and
do-

37 V°KC(S)) 6ff8V(X )I-d?-rya^0)
yee 0 *—'

dV
iy

yi - - a b

The equation (6.4) can be written
s\-Mp) +4Aexp(-6£5 )=0, where

y lay J y

r -exp(4fi
s y- y-

-, s g -exp(4fiy f *—¦ f J/-I da -, -,2 y y

(VOIK.S,,)^ (-2 f Vb+ ^-]rJ
a b

If as y-x», s -»s (being s a real number) ;
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for s>0 V - ±
1/2

V - ±i

f 1^- detffi dt if A<0

f 4A il/2Hp- detffi dt if A>0.
1/2 <6-5>

(Analogously for s<0)
Those behaviours are valid if V satisfies

5 V
a) xrr (vi ^S independent of x, for all a,b,y. (6.6)5o- a£>

Y (a r )2+Va a (2(r
Lt yaa yaa / yaa ybb ^ yab

2-r ryaa ybb I

i_ \ -, a * bb) As y-X», ^ - IS

(L, dy yab dy J yabj
positive. (6-7)

Since ff is spatially homogeneous, it is admissible to demand

that the realistic solutions to the EHJ equation satisfy (6.6). On

the other hand (6.7) is a mathematical boundary condition on the
functional derivatives without physical meaning.

Thus, if we choose Q such that lim Q(y)=-co, we have found a

curve, which does not belong to the family E' (Sect.5).
In a Bianchi I minisuperspace model, the function V depend on

three "metrical" variables Q, ß ß ; therefore the condition
(6.7) will have significance in this minisuperspace, unlike the
preceding example.

By replacing in the EHJ equation the functional derivatives by
3 Vpartial derivatives, and removing ^ if a*b, we obtain the

ab

corresponding equation in the Bianchi I minisuperspace model,
ff =exp(-2fH2/3++2(3)1/2ß_), ff =exp(-2n+2/3+-2(3)1/2/3_)

„„-^(-ttMOj. „,,.,ÎX- -12"(-2| g- <3,-.§y. etc.

«.». *F âF - <v3>dh. fFf-Ifa^ IF IF) ¦

ab cd v v aa' *—' aa bb'a*b
g V

(the terms with ^——, a*b, have been removed)
ab

By means of a straightforward calculation we get
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Thus the EHJ equation in this minisuperspace model reads

-(-frJM-rjM-S-J'- -a8Ae"6D <6-sl

(This is the equation that is obtained also by using variational
principles applied to the action integral, p. 808, and 1186 [13]).

Given a curve in the minisuperspace (£3(y) ,ß(y) ,ß (y) such that
lim il -co.
y->co y

dv avfdn d<3+ dß- ,ì (av (avi
d7 än[ä7 + dT miy) + dT m<y>J > where [w;\ '[mj. ,ln±(y) •

2 y y

From (6.8) we get fg-1 s -48Aexp(-6£2 with
y y

-1 + m2 (y) + m2 (y)
S s

y
dn dß. dß ,2up ¦..

aly) + "dT m-(y)J

Let us assume that as y-*«, s -*k>0. (This supposition is the
preceding condition (6.7) expressed in the minisuperspace). Then

v - ± f -i 11/2
-48Ak detfft dt, for A<0

V - ±i I) -i 11/2
48Ak detfft dt, for A>0.

for k<0.
In the case of m(y) and m(y) are real as y-x», then for A<0

V(y) is real as y-x», if the boundary condition m + m >1

V(y) is purely imaginary as y-*», if m + m <1.
Similarly for A>0.

In short, the curves defined in these examples do not belong to
E' ; and we must impose boundary conditions on the solutions to
deduce, on these curves, the behaviours that have been obtained
along the curves of E, without imposing any boundary conditions.

(On ff eE the term N --^- -J%- turns into (l/2)z2[|—^| and R*
y abed Sff Sff ' ' ' ylSZ I ffab cd v y'

turns into 1/z ; then the behaviour of V on ff is only determined
y y

by the structure of the EHJ equation).

APPENDIX I
We shall study in this Appendix the Example 1 of Section 2. Now
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fffx)=T (x)+z (x)(T (x)+A fx)), with rank(xfx))=1 and t<x>*0
for all xeÇ(S).

Taking into account that {ff .)€-M and that rank(r )=1, a

straightforward calculation proves
Proposition A.l det(ff fx) )=z2(x) f (x)+z3(x)h(x) where

h(x)=det(x (x)+A (x))>0, for all xeÇ(S). n

Lemma N (ff)=N (cr)=N (ff)=N (cr) for all a,b,c,d and forabed ' abdd ' bacd ' cdaB '
all ff.

By using the Lemma it is easy to prove
Proposition A.2 N (x) (l/2)r x _,

d
abed ab cd

We introduce in this example the notation employed in Sect. 2.
Each A is an element of D2.,-. (see Sect.l), and the distance d'ab Ç(i>)
makes 1 Tdz.,c.s|M a metric space. We suppose that {x and z have

i*J C(S) 1J

been fixed; and by means of A we denote the family {A )e| |£,.,„..U ,<j US)
So o\ sr +z • (x +A and 0={A|{o\ }«>-#) • We have the familyAy 1 J i J y

v i J i }' ' x 'x Ayl ' Ç ' 1

zero A ={\ =0), and A belongs to Ö.
0 l i J " 0 *

On the other hand
N (ff N f(l+Z )X + z AÌ (1+Z )2N (X) + z2 N (A) +

abed v y' abed V v y' y ' v y' abedx ' y abed v '
+ (1/2)Z (1+Z (X A +A X +X A +A x -x A -A xv ' ' yx y' v ae bd ae db ad be ad be ab cd ab cd'

N (ff) =(1/2) (1+z )2-(t (T,A,Z)) + j (T,A,Zabcdv y' v ' ' x y' v abedv y' ' Jabcdv ' ' y'

Being j (t,A,z (1/2) (1+z )z(x +A (x +A and* Jabcdx y y *¦ ab ab' *¦ cd cd'

t (T,A,Z 2fl+z]"2(N (ff )-jabcdv y *¦ y' abed v y' Jabcd'

By using the Proposition A.2 we obtain
t (r,A,z z2(l+z )~2-(A A +AA -AAÌ +

abed y v v v' V ac bd ad be ab cd'
.-I

y y ^ y' ^ ac bd ad bc ab cd'

+ z (l+z l'-frA +At +tA + A x -TA - A x -
y v y' v a c b d acbd adbc adbc abed ac bd-'

-fr A + A X + A A (1.1)*-abcd abed ab cd' *

As consequence of (I.l), given e>0 there are {^..} with |A (x) I

small enough such that It (x,A,z |<e| (r +\ (x +A j) I forabed y ab ab cd cd

all x and y. That is, there exists a deleted neighbourhood B of
A such that, if A belongs to B

^abcd^AyW^-^bcd^AyX^^^^Jd+Z^2!^^^^^!^.^^!.
So we have
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Proposition A.3. The family {j satisfies on {o\ } theabed Ay
condition iii) of the Section 2.

3.r ffacffbd((i/2)f ui+...)+a (re -rf -••¦)]•
y y y [* ' ' *• *„*>*„* ' y«*- yda ybc Jax ax

Taking into account that z (x) p(y)-£5(x)

a2ff a2fn- (t + a
yac v ac ac '

b d
~ P(y) b d ' as **>•

dxbdxd axb axd

Since rank(Tfx)) 1, then ffab ~ taction (x)
^ ag ^y

y

(3ff
¦> ,- 3ff \_*£!+.. If IÄ+..1 -(funct.)z.

axa JI axc J y

Hence R (x) ~ £Hg2|i°Hlj£J Thus the family {o\ } satisfies the
y z (x) -1 Ay'

condition v) of Sect. 3. The property vi) holds, as consequence of
the Proposition A.l. On the other hand, given {A }

ff

(S-)- («f-K«„>.»«*• v' A V X vah'y' A * A y ab

^¦-^(àFKsFl-'v^d-)2^)'V. yab' v ycd' v y' A

Therefore the condition vii) holds for {o\ and {j ,_ }.Ay abed

Finally, if vsup |A (x)|=0(e), then det(ff (x))=0(e2) and
X, i J i j Ay

R (x)mc' and for each y. For the case of pure gravity, if V is
solution to the EHJ equation, we have L[o\ ]=e ; consequently
this family of curves {<r satisfies the condition iv) in the

Ay
case of pure gravity. If we admit the PGRP, iv) holds also for
gravity coupled to a scalar field.

APPENDIX II
In order to solve the equation

(9/4)H2+[g) -(4A+m202)h

for fields 0 with |0(x)| small, we use a perturbation method.
First we suppose A*0.
We define y s h-1/2H, and e^m2. The equation (3.4) may be

written (9/4) -y2+ i^\ -(4A+ev2).
00

We express y Y en-y (II. 1)
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and obtain (y£)2+(9/4) (yQ)2=-4A, 2y£yi'+(9/4)2yoyi=-v2,
n n dy
£y, y' + (9/4)£yy-0, for n>l. Where y' -^.

J=0 j=0
The equation (y') +(9/4) (y =-4A has the solutions y (v)=c, and

yo(v) c-sin((3/2)v+d), being d a constant;

cs±(4/3) (-A)1/2 if A<0, and cs±(4/3) iA1/2 for A>0.
We analyse now the case y (v)=c-sin((3/2)v+d)

We impose y(0)=y (0), y (0)=0 for n>0.

The equation y|=-(9/4)yo(y^)"1y -(l/2)v2(y^)"1 has the "resolvent"

R(v,vo) cos((3/2)v+d)-(cos((3/2)vo+d))"1

Hence y (v)=-cos((3/2)v + d) • [ x2 (3c-cos2((3/2)r + d))_1dr (II.2)J
o

y((v)=(3c)_1(3/2)-sin((3/2)v + d) • f x2 (cos (3/2) x + d) "2dr -J
o

-(3c)_1-v2(cos((3/2)v +d))_1 (II.3)
For n>l, we have y;=-(9/4)yo(y^)-1yn+(2y^)"1fn;

f=-(y' y' + ...+y'y' +(9/4) (y y+...+yy
Hence yn(v) (3c)"1cos((3/2)v+d) • J fn(r) (cos((3/2)T+d))"2dr. (II.4)

o

To study the convergence of (II.1) we need the following
Lemma Let -{a \ be the following sequence of complex numbers:

a=b,... a =a a +...+ a a for n>l. Then la |s|b|n- |3n~41
1 n n-1 1 1 n-1 ' ' n ¦ ' ' [ tl j '

for n>l; and l_^m sup ¦
n ,a(27/4) |b|

' n-1 I

Proof a =a a =bb, a =a a +a a =(bb)b+b(bb)=2b3211 ' 32112v/ v/
a4=a3ai+a2a2+aia3= (bb) b+b (bb) b+ (bb) (bb) +b (bb) b+b (bb) =5b4.

It can be displayed in a diagram

(2+l)+l ((1+1)+1)+1
3+1

(l+2)+l (1+(1+1))+1

a4 2+2 (1+1) + (1+1)

l+(2+l) 1+((1+1)+1)
1+3

l+(l+2) 1+(1+(1+1))
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The number of branches in this diagram is equal to the coefficient
of b In general, each term b" which appears in the development
of a can be thought as a sequence of n "ones" separated by means

of n-2 brackets. We can construct ln ^n~ ' "sequences" which

have n "ones" and 2(n-2) strokes of brackets. Hence —— s

for n>l. And

1 n— 1 '

Let T be a real number>0, and Ke[0,»] satisfying
maxfjyj(v) |,|yt(v) |) =s K., for all ve[-T,T].

Proposition A.4 The series (II.1) is absolutely convergent for
each ve[-T,T], if e<4-(27K )_1.

Proof. Owing to the Lemma

lfn(T)l - lYi_1(T)yî(T)+**-+yi(T)yJ-i(T)l +

+ !lyn.1^)y1m+---+y1(^)yn.1^)l * (3""4)(|yì^)ln+ fl^ool").
|C (x) | |y,'(T)|n + (9/4) |y (r)|n

lim sup ¦ - s (27/4) lim —-*• lfn-faTH n4° ly^x)!""1 + (9/4)|yi(r)r-1
(27/4)max(|y-;(T)|,|yi(T) |) * (27/4)KT- (II.5)

From (II.4), taking into account (II.5), we deduce

|y„ooi
l^m sup |y (v) i * (27/4)KT, for each ve[-T,T].

Now we consider the other possibility, y (v)=c.
Then y =-(2/9)v2(y )"x, and y =(2/9) (y )_1f We have analogously

l*„(v)|
l^m sup -r^ |

s (27/4)max(|yi(v) | |yj(v) |), and the series
' n-1 '

(II.1) is absolutely convergent for all ve[-T,T], if c<4(27KT)_1,
with KT ^^(maxfjy^v) |,|Yi'(v)|)).

We return to equation (3.4), and we have
Theorem A.1 The solutions to

(9/4)(H(0(x))2 + (gf^y) -(4A + m202(x))h(x)
00

can be written H(0(x)) Y m2n(h(x))*/2yn(0(x)
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provided that |0(x)|<T for all xeÇ(S), and 27m2KT<4, with
KT=[-f??i (max | ya (v) |, \y[(v) |)) (besides KT is<» if T>0 is small

enough). Moreover

y (v)=c or y (v)=c-sin((3/2)v + d), (d constant), if A*0.

y (v) (constant)-exp(±(3/2) iv), if A=0.
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