Quasiperiodic Kronig-Penney model on a
Fibonacci superlattice

Autor(en):  Wirtz, D./ Soerensen, M.P. / Schneider, T.

Objekttyp:  Article

Zeitschrift:  Helvetica Physica Acta

Band (Jahr): 61 (1988)

Heft 3

PDF erstellt am: 23.05.2024

Persistenter Link: https://doi.org/10.5169/seals-115936

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-115936

Helvetica Physica Acta, Vol. 61 (1988) 345-362 0018-0238/88/030345-18$1.50 + 0.20/0
© 1988 Birkhauser Verlag, Basel

Quasiperiodic Kronig-Penney model on a
Fibonacci superlattice

By D. Wiirtz,") M. P. Soerensen®) and T. Schneider
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Abstract. We study the propagation of electrons in a one-dimensional Krénig-Penney model on
a Fibonacci superlattice. We consider two different models, one with d-function potentials and the
other with finite potential barriers. The nature of the eigenstates, the integrated density of states and
inverse localization length, as well as transmission and reflectance are investigated. In contrast to
periodic arrangements, we observe a self-similar structure in the wavenumber or energy dependence
of the physical quantities exhibiting scaling properties and multifractal behavior.

1. Introduction

The problem of electron propagation through a one-dimensional array of
potential barriers has attracted considerable interest since its introduction more
than half a century ago by Kronig and Penney [1] for a periodic chain. In the last
two decades, much effort has been devoted to the study of static and transport
properties of electrons in disordered systems. Recognition of the importance of
localization has led to many calculations [2] of inverse exponential localization
length, integrated density of states and resistance, leading to a well-understood
scaling theory [3]. Recently, quasiperiodic systems attracted wide attention [4] as
structures being intermediate between truly disordered and periodic ones. Unlike
for random or ordered chains, for which the states are exponentially localized or
extended, quasiperiodic or incommensurate systems exhibit novel features:
Metal-insulator transition for a critical potential strength [5], self-similar, fractal
and multifractal behavior [6], algebraic localization of wavefunctions [7]. Another
interesting feature is the connection to dynamic maps. In fact, transforming the
Schrodinger problem to a tight-binding model, transfer matrix techniques and
renormalization-group concepts can be applied and provide the connection to
nonlinear maps. Energies belonging to the spectrum, scaling properties of the
integrated density of states, wavefunctions and transmission coefficient then
follow from the properties of these maps.
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In this work, we concentrate on quasiperiodic potentials constructed from
two different barriers A and B built together according to the Fibonacci inflation
rule. Such structures can be manufactured by means of the molecular-beam
epitaxy technique [8]. Previously, the tight-binding and J-function potential
versions of the associated Schrodinger problem attracted particular attention.
Here we consider, in view of experimental realizations, the more realistic case of
rectangular potential barriers.

In Section 2, we study the d-potential version of the Kronig—Penney model,
and sketch the basic formalism to calculate properties of interest. Here, we treat
the limit of vanishing barrier width and diverging barrier height with constant
potential strength. Strength and/or spacing of the & potentials are arranged
according to the Fibonacci sequence. The Schrédinger equation for this problem
is then transformed to a Poincaré map, corresponding to a difference equation of
a modified tight-binding model. This is achieved by rewriting the complex
first-order transfer-matrix recursion relation as a real second-order scalar relation
from which the eigenvalue spectrum is obtained by node counting. Using the
transfer-matrix formalism and the Poincaré map, we also evaluate the exponen-
tial growth rate of wavefunctions and the transmission coefficient. At sufficiently
low energies, the numberical results reveal a highly fragmented integrated density
of states, becoming smoother with increasing energy. The occurrence of
band-like behavior in the high-energy domain differs essentially from the
tight-binding model. Nevertheless, in analogy to this model we find scaling
properties, which are traced back to cycles in the trace map of the transfer
matrices.

In Section 3, we turn to the more realistic case of rectangular barriers to
investigate the modifications introduced by the finite-barrier width and height.
Here, we concentrate on systems of finite length. In the domain of narrow
barriers, integrated density of states and transmission agree fairly well with the
O-function model, with potential strength equal to the area of the rectangular
barrier. For broader barriers with a width becoming comparable with the lattice
spacing, quantitative differences appear. Nevertheless, the highly fragmented
structure of the integrated density of states and the self-similar behavior of the
transmission are still maintained and are in qualitative agreement with the
d-function potential model. In Section 4, we discuss and summarize our main
results.

2. O-function model

We first consider the one-dimensional time-independent Schrodinger
equation

v 5 w(x)+ 2 Wub(x —x,)9(x) = Ey(x) (1)

T 2m ox? o

with a Kronig—Penney potential consisting of an array of & functions with
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strength W, at positions x,,. In the following, we consider dimensionless quantities
and measure all energies in units of #*/2m(AL)* and all lengths in units of a mean
lattice spacing AL = L/N, where L is the total length of the system and N the
total number of lattice cells. Note that the potential W, has units of energy/length
since the d-functions d(x — x,) have dimension 1/length. Both potential strengths
W, and distances between the J-functions A, = x,, — x,_, may have either of two
different values (W,, A,) = (W,, A,) or (Wg, Ag), according to the Fibonacci
sequence. This sequence follows from the inflation rule: §,=A, §,=AB,
S;s=ABA, S,=ABAAB, ...,S.,=3535_,. Letters A and B label the elements
with potential strength and intersite distance (W,, A,) and (Wp, Ap),
respectively. The number of elements is given by the Fibonacci numbers
F,., = F_, + F, with initial conditions F,= F, = 1. Alternatively, the sequence can
be obtained from the rule

Ans1 =16, +1/0g], 6,.1=(0,+1/0;):mod 1, (2)

which is more convenient for numerical applications. The rectangular bracket
[...] denotes the integer part, and o =lim,_,. (F,H/F,)“—“(\/§+1)/2 is the
golden mean. The Fibonacci sequence is then obtained by adding element A at
lattice site x,, =x,,_; + A4 if A, equals 1, and element B at position x, =x,_| + Ag
if A, equals 0, starting at n =1 with 8,=0.

For A,= A and W, =W, the Schrédinger equation (1) corresponds to the
periodic 0 —f Kronig—Penney model [1], which has been studied for half a
century and is well documented in textbooks [9] on solid-state physics. For
random potential strength, one obtains a model for random alloys. This model
also has a long history, starting with the pioneering work of Schmidt [10].
Subsequently, it was treated analytically and numerically by many authors. If only
the distances A, are randomly distributed it will describe electrons in a
one-dimensional liquid. In the more general situation, where A, and W, are
random, the Schrodinger equation can be interpreted as a model for a liquid
alloy. Some examples for special kinds of disorder were discussed by Niewen-
huizen [11]. For a review and further references, we refer to [11] and to the
article of Erdoés and Herndon [12]. In the intermediate quasiperiodic case, two
different situations can also be distinguished. Model I: Equally-spaced binary
potentials arranged according to the Fibonacci sequence. Model 11: Identical
potentials with intersite distances given by the Fibonacci sequence. Some
properties of this model have been studied by Kollar and Siito [13], and Hu and
Ting [14].

To evaluate the energy spectrum and the transmission properties, it is
convenient to use the transfer-matrix technique. The transfer matrix, relating the
wavefunctions of adjacent cells, is obtained for a system of N sites as the product
of the individual transfer matrices for each cell. Next, we sketch the derivation of
this formalism for the Fibonacci model. Let us consider the interval x € [x,,, x,,.1],
where the solution of the Schrodinger equation (1) can be written as

wn (x) o Aneik(x—xn) + Bne—ik(x—xn). (3)
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k = VE denotes the wavenumber. Next, we match the wavefunctions on the right
and left of a d-function potential, by imposing continuity of the wavefunction and
discontinuity of its slope. This yields the transfer matrix P”, relating the
amplitudes (A, B,) and (A,,_,, B,_,) for the transfer of an electron from one cell
to the next:

An) (An—l) ( ’111 T2)(An—l)
=Pp” - . 4
(Bn Bn—] gl 52 Bn-l ( )

The elements Pj; of the unimodular transfer matrix P” are given by

W, . . W, _
= (1 - l'éz) exp (ikA,), Ty =l K exp (—ikA,), )
W, ) " W, .
Pz =iz exp(ikA,), 5= (1 & lﬁ) exp (—ikA,),

and the total transfer matrix P, for a lattice with N cells is obtained from

PN=[IF. (6)

For finite chains, the eigenvalue spectrum and the transmission properties
are then obtained as follows: Let the lattice start at x =x,=0 and end at
x = x5 = L. Imposing periodic boundary conditions y,(x =0)= yy(x = L) and
Yo(x =0) = yp(x = L), the total transfer matrix P, must satisfy

(AN; BN) = PN(A()’ Bu) = (A(), B(])- (7)

This equation possesses a non-zero solution for (A, B,) only, when the
determinant det (P, —I) =0, where I is the identity matrix. Using the facts that
det (P) =1 and det (P, — 1) = 0, yields the following relation for the trace of Py:

ITrPy=4(PN+ P =1 ®)

Accordingly, energies satisfying this condition are eigenvalues. Similarly, eigen-
values corresponding to antiperiodic boundary conditions, Ay = —A,, By =—B,,

can be obtained from ; TrP, = —1. The transmission coefficient 7, and the
reflection coefficient p, are defined by
Y o= |B _IPRT @)
YUl IPNPT T A IPRP

75 being the probability that an incident particle is transmitted through the lattice
of size N, and py the probability that the particle is reflected. It can easily be
verified that conservation of probability leads to the relation 7, + py = 1.

Next, we sketch a completely different approach to evaluate the properties of
interest. The goal is to transform the complex matrix recursion relation (4) to a
real scalar difference equation. Here, we adopt ideas of a French group [15] and
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transform the amplitudes (A, B,) into (¢,., ¢,):

(o)== () (0)

where ¢, =1vy,(x,). In analogy to equation (4), we then obtain a recursion
relation for (¢n+1: ¢n)y namely,

(Brer) = 2 )= (P57 PET)( o) an

The transfer matrix P"*' is given by
sin (KA, +kA,.,) W,

Pn 2+l o

sin (kA,,) % Sin (kA+1), (12)
Pn n+l _ Sin (kAn+1)

sin (kA,)

This form is very useful for numerical applications, since the recursion relation
leads to a scalar difference equation

¢n+l nn+1¢n nn+l¢n_l_ (13)
For Model I, where A, = A, ., = A, this formula is further simplified to

Boir+ B ={2cos (kA)+%sm (kA)}qbn. (14)
This equation is formally identical to a tight-binding model ¢,,,, + ¢,,—; = (@ +
V,)¢. with energy w =2cos(kA), and potential V, = W, sin (kA)/k. For this
model, it has been verified [15] that equations (1) and (14) yield identical results
for infinite chains. Thus, the characteristic function yielding the integrated density
of states by node counting, and the inverse localization length [16] can now be
evaluated in terms of a scalar recursion relation. Moreover, the characterization
and classification of the states can be obtained from a simple recursion relation
for the trace of the associated transfer matrix on the Fibonacci sublattice F.
Evaluation of the transfer matrix is not required. On this sublattice, the total
transfer matrix is given by P, ,=P,_ P, Its trace, x, =3 TrP, satisfies the
recursion relation [7]

Xpe1 = 200X — Xy, (15)

with initial conditions, depending on wavenumber k or energy E:

, W, —-W
x_;=cos{hA, —kAB)+—A,)—k——§sir1 (kA4 —kAp),

Wg
xo=cos (kAg) +— o

%4
x,=cos(kA,) + 2—; sin (kA ,).

sin (kAg), (16)
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Equations (12), (14) and (16) are valid for positive energies E. For negative
energies, the cosine and the sine have to be replaced by cosh- and sinh-functions,
respectively. It is well-known and easy to check that the iteration of the trace map
x, has the /-independent invariant,

I=xf +x7+x7 — 2% — L. (17)

I can be evaluated from the initial conditions for the trace map (16) by setting
[ =0. The resulting expressions are rather ugly, but simplify for Model I and
Model 1I to

sin (kA, — kA R))?
Dvogerr = {% 24 ( ?{ B)} ’
. (18)
sin (kA)}2
7k .

In contrast to the usual tight-binding model [7, 17] invariant / depends in the
present case on the wavenumber k. Hence, iterations evolve for different energies
on different surfaces.

From the tight-binding model, it is well-known that for energies in the
spectrum the iterates x; (cyclic or aperiodic) remain bounded. If x; escapes to
infinity with increasing /, we shall have a gap state [7]. This fact and the
observation that the nonlinear trace map yields a strange repeller imply a highly
fragmented Cantor-type spectrum. This expectation is fully confirmed by numeri-
cal results for the integrated density of states N(E) and the inverse localization
length y(E) shown in Fig. 1. Here, we assumed the potential strengths

IModelII = {% (WA - WB)

10
0.8 1
=06
u
0.4 1
u
Z 0.2
(@ [ M5 . || (N 1 57 S . . T S
-1 0] 1 2 3 4 5 6 7 8 9 10
E
Figure 1
Integrated density of states N(E), inverse exponential growth-rate y(E) and invariant I(E) versus
energy E for the d-function Kronig-Penny model with parameters V, = -V, =1and A, =A, =1 for

a chain of length N ~ 10°,
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W, = —Wp = 1. The spectrum can be classified as follows:

i) Energies within a gap which do not belong to the spectrum. The
amplitudes of the wavefunctions grow exponentially with length n. Thus, the
iterates of the trace map escape.

i) Energy values lying on a gap edge, either top or bottom, where the trace
map exhibits a six-cycle or 12-cycle, depending on the parameters of the model.
For the ground state, we observe a two-cycle.

iii) Internal-energy values surrounded in both directions by other energies
belonging to the spectrum. A typical trajectory of the trace map x, is aperiodic,
although periodic ones are also possible.

iv) Band-like behavior is found in the upper energy part of the spectrum. In
this energy region, a generic-energy value leads to a chaotic trajectory of x,. It is
numerically stable over many thousands of iterations. In this energy region,
transmission is almost perfect.

Some of these features are apparent from Fig. 1, showing the integrated
density of states. The invariant /(E) is also depicted, measuring the degree of
fragmentation. With increasing energy FE, invariant [(E) becomes smaller and
vanishes at E = z°. Similarly, the length of the main gaps in N(E) and the main
peak heights in y(E) are seen to decrease with increasing E. We now turn to
some special energies in the spectrum.

The bottom or ground state of the spectrum exhibits a two-cycle (a, b) in the
trace map (15). The values of a and b can be evaluated from the invariant (17)

and the trace map (15),
[=a*+b*>—ab—1,
(19)
a+ b =2ab.

Solving the second equation for b, and inserting it in the first equation for the
invariant / we obtain the following quartic equation:

24 =327 — (1 + 4N+ (1+ Nz — 31+ 1) =0, )

where we have replaced the variable a by z. Since the numerical value for a is
a priori a solution of this equation, b = a/(2a — 1) is also one. The remaining two
solutions are denoted by a and b. Thus, the quartic equation can be written as
(z—a)(z—b)(z—a)(z—b)=0. Performing the multiplications and comparing
the coefficients, we finally obtain

a=y,+Vy.(y:s—1), b=v,=Vy.(ys—1),
a=y_+Vy_(y-—-1), b=y_—Vy_(y_—-1.
v+ depends on the invariant /, and is given by

ye =43 % V25 + 16]). (22)

Besides cycle (a, b), (a, b) also yields a two-cycle. This is easily verified by noting
that both pairs of solutions (a, b) and (a, b) satisfy the invariant and trace map
simultaneously. Linearization of map (15) around the above-mentioned two-cycle

(21)
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leads to three eigenvalues, one equaling unity and the other two given by A*) and
1/A%), where

A = o V@@ 1, a® =11 - 8y,). (23)

Subscript () on @*) means that the (+) solution belongs to cycle (a, b), and the
(-) solution to cycle (a, b), respectively. This fixed-point analysis implies scaling.
Following [6] and [17], scaling predicts for the integrated density of states
N(E* + AE) and energies around E* leading to the two-cycle,

ol X
IN(E* + AE) — N(E*)| ~ (AE)XG(E In |AE|) (24)
with scaling exponent
2In og
[InfA]]

The amplitude is periodic with period S/X, where S is the vertical spacing of the
major gaps on a logarithmic scale. In the present case, S =2In(o,), yielding
the period Ap =In|A|,.- Numerical results depicting these scaling features
are shown in Fig. 2. For potential strengths W,=—-Wgz=1 and uniform
lattice spacing, our estimate for the ground-state energy is E*=E,,=
—0.10373014133295410132683, . . . , yielding I(E*)=1.035---. From equations
(21) and (22), the amplitudes of the two-cycle are (a,b)=
(1.643, ..., 0.7187 - - -) as numerically verified over approximately 50 iterations,
(Fig. 3a). Invoking then equation (23), the eigenvalue A can be evaluated,

-1

w -2+

z

I

w "3

<

+

»

w -4 -

=

L=
__5__
-6 T T I T T T T

1

-0 -9 -8 -7 = -5 -4 -3 -2 -1
In|AE]|

Figure 2

Scaling behavior In|N(E* + AE) — N(E™)| versus In [AE| for E*=E, =
—0.103730141332954101326832 - - - . The potential parameters correspond to those used in Fig. 1.
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Figure 3

Trace map x;, versus length [ for (a) ground-state two-cycle with E=
—0.103730141332954101326832 - - - - ; (b) 12-cycle with E =0; (c) six-cycle (a, —b, —a, b, —a, —b)
with E =2.2375398728152226936768 - - - ;  (d)  six-cycle  (0,0,¢,0,0, —¢c) with E=

2.7822337314782, . . ., and (e) aperiodic solution with E =0.3955867845413755640425979 - - -. The
potential parameters correspond to those used in Fig. 1.

yielding for the period of the scaling function Ap ~2.119 - - - and for the slope
X ~0.4541 - - - . These estimates agree very well with the scaling behavior shown
in Fig. 2.

Another interesting feature appears at zero energy for potential values
W, = —Wy =1 where N(E* =0)=1/0¢. At this point, the trace map leads to a
12-cycle (3, 3,1, =3, =3, %, =1, 3, =3, =1, 1, %) starting exactly with 3 and without
any pre-image. This 12-cycle is depicted in Fig. 3b.

We have also found the six-cycles (a, —b, —a, b, —a, —b) and (0,0,¢,0,0, —c)
as well as aperiodic solutions which are well-known from the tight-binding model.
The amplitudes a, b of the six-cycle (a, —b, —a, b, —a, —b) lead to the first-
mentioned six-cycle following from expressions (19), and are identical to those of
the two-cycle. The scaling exponent ¥ of the integrated density of states,
X=6Ino0s/|In|4||, and the period of the scaling function Ap = |In |A|| are then
obtained from the trace map (15) by linearization around the six-cycle (a, —b, —
a, b, —a, —b). Linearization around the other six-cycle, (0,0,¢, 0,0, —c), leads
to the three eigenvalues 1, A and 1/A, where A = 8c* + 1 + 4c*V4c* + 1. The value
of ¢ can be evaluated from ¢*=1 — 1, where the invariant [ is given by equation
(18). The six-cycle (a, —b, —a, b, —a, —b) is depicted in Fig. 3c, while Fig. 3d
shows the (0,0, ¢, 0, 0, —c) cycle, and Fig. 3d illustrates the aperiodic behavior.
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Next, we turn to the derivation of the transmission coefficient in terms of the
scalar recursion relation (13). Considering

1 1
PN — H P = (TN+1)—1 1—[ {Tn+an(Tn)—l}Tl - (TN+1)_II~,NTI, (26)
n=N n=N
we find that the matrix element P} is related to P} through

((*PY + PR) — = *4v(e* Py + PR))

eikAN+1 — eﬁikAN+1

Py = (27)
Now if we introduce the following initial condition for amplitudes (¢, Po) =
(e“*1, 1), the expression for the matrix element Py can be rewritten in the form
PN = (¢Pn+1 — e™vagy)/2i sin (kAy.,) leading to the following simple expres-
sion for the transmission [18]:

1~ 4|sin (kAyi1)I?

|P}v1 2 |¢N+1 - e_ikAN*‘¢N|2.

Thus, evaluation of the energy dependence of the transmission for a chain of
length N, has been reduced to evaluation of the amplitudes (¢x, ¢n—,) from the
scalar recursion relation (13).

As an example, we consider the transmission coefficient 7, at energy
E =2.2375398728152226936768 - - -. The N-dependence on the real lattice is
depicted in Fig. 4. Superimposed to an average slope, corresponding to
decreasing transmission, there is a periodic structure Sg, =S, , owing to the
six-cycle (a, —b, —a, b, —a, —b) occurring in the trace map at this energy (Fig.

(28)

Tn

F7 Fg F11 F13 F15

In N

Figure 4

Transmission In 7,, versus real system length In N for E =2.2375 - - - where the trace map exhibits the
six-cycle (a, —b, —a, b, —a, —b). Vertical bars mark the Fibonacci sites F. The potential parameters
correspond to those used in Fig. 1.



Vol. 61, 1988 Quasiperiodic Kronig—Penney model on a Fibonacci superlattice 355

Sl
S gy
__ am
e
n

il

an

02 ‘

03-

0.4 4 :
0.5 \
06 ’
e O e e
1‘0“1‘ ’I |||Tu| Illl.| Ll by
40 50

0 10 20 30
N

Figure 5
Transmission 1, versus real system length N for E=2.7822--- where the trace map exhibits the
six-cycle (0,0, ¢, 0,0, —c). Note the negative logarithmic scale.

3c). The period two seen in the transmission is not in disagreement with the
six-cycle, because the transmission is insensitive to the sign of a and b [equation
(9)]. On the real lattice, however, the periodic structure appearing on the
Fibonacci sublattice, is seen to give rise to self-similar behavior. A more
quantitative exposition of the self-similar peak structure in 7 is depicted in Fig. 5
for the six-cycle (0,0, ¢, 0, 0, —¢) occurring at E =2.7822337314782 - - - . Here,
transmission T is seen to be periodic on the Fibonacci sublattice, 75 = £, ,. In
analogy to the tight-binding model discussed in [6] and [19], in the transmission
we observe series of peaks decreasing algebraically on a given sublattice, e.g. on
the sublattice K5+ - -+ Fy,,, or 1+ F+- -+ Fy,+1). The self-similarity of
the peak structure can then be described by a scale transformation, yielding the
scaling law 7y ~ N~ with the scaling exponent 8. Furthermore, on the Fibonacci
sublattice, F, transmission 7., has periodicity six and hence f§ =0. Recognizing
that there are many other sequences, as in th tight-binding model, we expect a
distribution of $-values [6]. Comparing the lower and upper parts of Fig. S, the
self-similar structure is clearly seen. Next, we explore the implications of
self-similarity in the energy window E =2.7822 - - - £ 0.48, where E corresponds
to the value where the trace map exhibits the six-cycle (0,0, ¢, 0, 0, —c). For this
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Figure 6

Transmission t, versus energy E around E =2.7822- - - where the trace map exhibits the six-cycle
(0,0,¢,0,0, —c). N=F;=377 in the upper part and N = F,= 1597 in the lower part. The dotted
vertical line marks £ =2.7822 - - -.

purpose, we calculated the energy dependence of 15 for N=F;=377 and
N = F¢=1597. The results are shown in Fig. 6 and exhibit striking self-
similarities. The resulting scaling behavior can be understood in analogy to that of
the integrated density of states [equation (24)]. Thus, Ty(E* — AE) versus
In |[E* — AE] is a periodic function with period Ap = |In| A ...

3. Rectangular potential barriers

In this section, we extend our study to a rectangular array of barriers. Such a
model represents a first step towards a realistic description of real superlattices.
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Xn Yn Xn+1

Figure 7
Unit cell used to build the Fibonacci superlattice.

The Schrodinger equation then reads

-2V 4y )y = B, 29)

The potential V(x) is constructed from two different elements A and B. The
clements consist of a region of zero potential followed by a region with a
rectangular barrier of width w, 5 and height V, 5. The lattice constants for the
two elements are denoted by A, 5.

We can now follow the procedures outlined in the previous section to derive
matrix and scalar recursion relations for the amplitudes of the wavefunctions, the
trace map and the transmission coefficent. The n-th cell of the Fibonacci lattice is
shown in Fig. 7. In the two subintervals [x,, y,] and [y, X,+1] the Schrodinger
equation (29) has the solutions:

Ipn (x) = Aneik(x_x") + Bne_ik(x‘x")) Xn <x< Yn»

v _AU ik (x—y ) B‘U —ik (x—y ) " (30)
U)n(x) =A,e n’ + n€ " " Yn <X <Xp+1,

where wavenumbers k and k, are given by the formulas k=VE and k, =
VE —-V,, respectively. Matching the wavefunctions, for the elements Pj; of the
unimodular transfer matrix P* we find

+ —
Py = {cos (k,w,) — i%’ sin (an,,)}e”‘"", B —i%’ sin (k,w,)e %%,

(31)

+
B = -1-721 sin (k,w, e, By = {cos (K,W,) + i%’ sin (k,, wn)}e_ikd",

where d,, =y, — x, is the distance between the potential barriers, w, =x,.; — y,
the width of the barriers and A, = d,, + w, the length of the n-th cell, as shown in
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Fig. 7, and n™ is given by n* = —(k,/k £ k/k,). Note that we have assumed no
change in the effective mass when going from one region with zero potential into
a barrier with V(x) # 0.
A real scalar recursion relation ¢, = P7,¢, + P%¢,_, is again obtained by
a transformation of the amplitudes of the wavefunctions (@,+1, ¢,)=
T””(A,,, Bn), where the transformation matrix 7" has matrix elements 77, =
11+ Pay, T, =P+ P35 and T3, =T5,=1. The matrix elements of the promo-
tion matrix P” #*1 connecting the amplitudes ¢, of adjacent sites (¢, ¢,) =
Pt (¢, P 1) are then given by

det Tn+1 Tn Tn+] _ Tn+1
Pn natl Pn Jo Pn o 12 ,
derr LiztFa) det T" (32)
P+t = _det T
det 7"’

and P3"*'=1, P3%"*'=0, leading to a fictitious tight-binding problem with
additional non-constant off-diagonal matrix elements. Note that the whole matrix
P""*! has real elements, which can be expressed in the form of trigonometric and
hyperbolic functions.

The trace-map relation x,,, = 2x,x,_; — x;_, with initial conditions

NANE — NaNz
4

X = {COS (Kawa) cos (kgwg) + $in (K4 Wa) sin (KBWB)}

X cos (kd, — kdg)
+3{nx sin (k4 w4) cos (kpwp) — N5 sin (kzwg) €Os (K W4)}
x sin (kd, — kdpg)

s (33)
Xo=cos (kgwg) cos (kgdg) + — 5 sin (kzwg) sin (kgdy),

o5
X1 =cos (KyWwy) cos (kqad,) P/ 5 A sin (kawy) sin (kady),

and invariant [=x2%, 4+ x3+x?—2x_,xox;—1 allows, as in the case of &
potentials, identification and characterization of the states. Since invariant /
depends on wavenumber k or energy E, we again expect self-similar and
multifractal behavior.

Finally, the transmission coefficient 75 on the real lattice can be evaluated
from the amplitudes (¢4, ¢n) of the scalar recursion relation (13) and (32) with
suitable initial conditions (¢;, ¢,). However, by sitting on the Fibonacci
sublattice it is numerically more convenient to multiply the transfer matrices
P,., =P, P, and to evaluate the transmission directly via equation (9). Note that
formulas (31)-(33) reduce in the limit w,—0, d,—A,,, V,w,— W, and nf—
W, /k to the results (5), (12) and (16), as derived for the d-function potentials.

We have now obtained the recursion relations for all physical quantities of
Fibonacci chains with rectangular potential barriers. Before turning to typical
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1.0

08
"N (E)

Figure 8
Integrated density of states N(E) and inverse localization length y(E) versus energy for the
rectangular barrier model (full curve). For comparison, we included N(E) of the d-function model
(dotted curve). The parameters are: V,=—V, =2, w,=wy=3, A,=Az=1, and W,=-W; =2,
N ~10°

examples, we reconsider a periodic arrangement with periodic boundary condi-
tions. The eigenvalues of a free particle are two-fold degenerate. Thus, a
perturbation may lead to splitting. In the well-known periodic lattice, the
eigenstates with wavenumbers kK = px, p=1, 2, ..., split and energy gaps are
formed. Eigenstates with wavenumber different from pzr do not split. This means
that the trace of the transfer matrix for a periodic lattice oscillates as a function of
E between —2 and 2 in the regions of allowed energies. At energies where
splitting occurs, the absolute value of the trace is larger than 2 and accordingly
the forbidden energy levels can be determined from |3 Tr P| > 1.

Similarly, forbidden energy levels appear in the spectrum of a Fibonacci
superlattice with rectangular barriers. This is illustrated in Fig. 8. For com-
parison, we have included the &-function potential limit. The parameters for the
rectangular potential barriers with equal lattice spacings Ay =Ag=1 are V, =
Vp/2=2, wy=wgz=3% which yields W,=W;/2=1 in the &-function limit.
Although the potential barriers are very far from the J-potential limit, both
integrated density of states and inverse exponential localization length agree
rather well and exhibit the same qualitative behavior.

Finally, we turn to the model with identical potential barriers V, = V; =2.5
and w, = wgz = 0.4, but with different lattice constants: A, =1/0s and Ag = 0.
The lattice constants are chosen in such a way that the mean lattice spacing AL
equals unity. Figure 9 shows N(E) for a lattice of size Fj, =610 in terms of a
histogram, where each vertical bar marks the position of an eigenvalue. These
results clearly reveal the formation of a fragmented integrated density of states in
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Figure 9

Histogram of the integrated density of states N(E) versus energy E for the rectangular barrier model
for a system of length F,, = 610. Each vertical bar marks the position of an energy eigenvalue. The
potential parameters are V, =V;=2.5 w,=wg =04, A, =1/Ag=1/0.
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Figure 10

Energy dependence of x,, (dotted curve) and transmission 7, (full curve) for three different typical
energy regions: (a) near the ground state; (b) in the middle part, and (c) in the upper part of the
spectrum. The other parameters correspond to those used in Fig. 9.
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the infinite system, and strong fragmentation at low energies. To analyze some of
their features and their implications for the trace and transmission, in Fig. 10 we
show the energy dependence of these quantities in three different energy regions,
namely at the bottom, middle and top of the spectrum for F, = 610. Adopting
periodic boundary conditions, the trace x,4(E) depicted in Fig. 10a shows splitting
of all states except for the ground state. The transmission coefficient indicates
resonance tunneling at eigenenergies corresponding to both periodic (x4 =1) and
anti-periodic (x,;4, = —1) boundary conditions. Furthermore, t,, only attains its
maximum value at one of the two split energies and resonance tunneling does not
occur at each split energy. Frequently, resonance tunneling occurs at energies
which are slightly shifted from an exact energy eigenvalue. In cases where the
splitting is weak, 7,4 can attain its maximum between two split energies. This is
peculiar as it corresponds to tunneling in a forbidden gap, but in cases of strong
splitting where we have a clearly formed energy gap this does not happen. As the
energy increases, 7,4 becomes broader as seen in Fig. 10b. In the forbidden gaps,
7,4 decreases rapidly to zero. At the gap edges, the transmission coefficient is less
broad which is consistent with the fact that electrons with energies close to a band
edge are algebraically localized. Finally, Fig. 10c shows x,, and 1., for energy
values in the upper part of the spectrum. We observe band-like behavior where
the transmission coefficient approaches one.

4. Conclusions

Two different models have been considered to investigate the spectrum and
the transmission properties of the Kronig—Penney model on a Fibonacci
superlattice. Specifically, we have treated the &-function type model and a
potential barrier model. The latter is expected to mimic real Fibonacci superlat-
tices which can be fabricated by molecular-beam epitaxy. Using the transfer-
matrix technique, we have reduced the continuous Schrodinger problem to an
associated tight-binding version, allowing further transformation to a real and
scalar recursion relation. Thus, matrix multiplications are eliminated and both
integrated density of states and exponential growth rate are simply determined by
iterating the scalar map. Moreover, the transmission coefficient, determining the
resistance, also follows from the recursion relation. Scaling properties of the
spectrum have been derived from the fixed-point analysis of the two-, six- and
12-cycles in the trace map. The ground state leads to a two-cycle, while at gap
edges, six- and 12-cycles appear. We also found internal energies, surrounded by
cycles, where the trace map exhibits aperiodic behavior under iterations. Finally,
band-like behavior was found at sufficiently high energies, where the barriers
become irrelevant. In contrast to the periodic case, the integrated density of
states is very fragmented for low energies, where the invariant of the trace map is
large. In this region, the system has an infinite number of gaps and energies
belonging to the spectrum having measure zero. Nevertheless, there are many
special energies which belong to the spectrum. At high energies, however, the
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situation is just the opposite. Apparently, the size of the gaps tends to zero, so
that asymptotically almost all the energies belong to the spectrum. Our results for
the transmission revealed interesting self-similar behavior. This feature is absent
in periodic and random superlattices, and suggests interesting applications.
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