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Three particle bound states in even AP(¢), models

R. Neves da Silva')

Départment de Physique Théorique, Université de Genéve, 1211 Genéve 4, Switzerland

(12. II. 1981)

Abstract. We discuss the existence of three particle bound states in even weakly coupled AP(¢),
models. It is shown that, in models possessing a two particle bound state, a three particle bound state
may also occur, depending on certain properties of the three-body Bethe—Salpeter kernel. We consider
a specific class of models in which a three particle bound state does occur.
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Introduction

In this work we shall be concerned with the spectrum of the mass operator in
weakly coupled even AP(¢), models, where P(x)=Yr_o Coix**, Con>0.

These models are defined by a set of distributions, known as the Schwinger
functions, satisfying a number of axioms, the Osterwalder—Schrader axioms. It is
by now well known (see [OS]) that from a set of Schwinger functions satisfying
these axioms one can construct, by analytic continuation, a set of tempered
distributions satisfying the so called Wightman axioms. The reconstruction
theorem [SW] then provides us with a Hilbert space #, a representation U(a, A)
of the Poincaré group (a is a translation, A is a Lorentz rotation); a local and
covariant field ¢(x) and a unique state () invariant under U(a, A), called the
vacuum state which is cyclic for the field ¢. -

The infinitesimal generators of U(a, 1), with a =(a,, d) are denoted P,, P,
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132 R. Neves da Silva H.P. A.

the energy and momentum operators. The mass operator is defined by M =
(P3- BT~

The Schwinger functions associated to a given P(¢), model are constructed
by means of the following limiting procedure.

Let du, denote the Gaussian measure on ¥'(R?*) with mean zero and
covariance C(x—y)=(-A+m3) (x, y) (x =(x° x')eR?). Then we have:

_[cb(xo "+t ¢(x,) exp [—z\]'dzx :P(d(x)): h(x)] dpo

Sn(A-a X1+« xn) = lim

h—1

Iexp [—/\jd2x :P(¢(x)): h(x)] dug

where Wick order is defined with respect to C(x —y).
More generally, with A;(x)=:¢’: (x), one has:

[ A - A ) e[ -2 dx P60: (o) | s

(Ajl(xl) e Ajn(xn)) = 311111

J'exp [—)tjdzx :P(p(x)): h(x)] duo

These functions are constructed by the cluster expansion of Glimm, Jaffe and
Spencer and satisfy the Osterwalder—Schrader axioms [GJS1, 2].

Concerning these models, the results which are known about the spectrum of
the mass operator are, among others:

i) there is an isolated point m(A) corresponding to the mass of the lightest
particle described by the field ¢, m(A)>0 [GJIS1, 2].

ii) for even models, the mass spectrum is discrete and of finite multiplicity
below 2m(A) [SZ].

iii) again for even models, the coefficient C, of the :¢*: term decides on the
presence or absence of two-particle bound states: if C,>0, there is no
spectrum below 2m(A) in the even subspace of # and if C,<0 there is
exactly one point mg(A) in the interval (m(A), 2m(A)) corresponding to a
two-particle bound state. Furthermore, there is no other spectrum up to
3m(A)—¢ [DE, DE2].

iv) for general P(¢), models, a similar result has been obtained in [K], where
conditions are given that enable one to decide on the presence or absence
of two-particle bound state (see also [GJ3]).

Our purpose is to carry further the analysis of the mass spectrum in even
models, in such a way that one could study the existence of three-particle bound
ststes. These bound states show up as points in the spectrum of the mass operator
restricted to the odd subspace of # and for weak coupling they should lie very
close to (and below) 3m(A).

The method we use to undertake such an analysis relies heavily on the work
of Spencer and Zirilli [SZ], Dimock and Eckmann [DE, DE2] and Koch [K]. This
method makes abundant use of analyticity properties of the functions involved.

Most important for our purposes is the three-body Bethe-Salpeter kernel
K5(A, k, p1, P2, 91, q2)_(for a definition see Chapter I; for a longer motivation, see
[GJ1,2]). Let also S$(A, k, p;, p,) denote the connected four point Schwinger
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function (in the 1— 3 channel, which means that in x-space we choose as
variables 7=x;—3(x,+x5+x,), £&1=%,—Xs, &;=%3—X,, and k, p,, p, are the
associated momenta). Further, R;(A, k, p1, P2, 41, q2) i the 2-particle irreducible
(2p.i.) six point function (in an even model, we can consider the 1p.i. six point
function which is automatically 2p.i.), and let

Ls(A, k, py, p2) = S5(A, k)“‘jdpi dpsSS(A, k, pt, Py)R3(A, k, —p4, —D5, P1s D2)-

Before stating our main result, we shall consider the two-body problem. Let
K5(A, x4, x5, X3, X,) denote the two-body Bethe-Salpeter kernel and define

Roa(X, X1, X2, X3, X4) = Sa(A, X1 —X3)S2(A, X5 — X4) + S2(A, X1 —%4)S2(A, x5 — X3).

Consider also R(A, x;, X5, X3, x,) defined by the equation R~ = Ry, + 3K, or,
alternatively, by R =Ry, —3R,,K,R, and let R(A, k', p, q) denote its Fourier
transform in the variables o =3(x; +x, — x5 —x,), £ =X, — X, N = X3— X4. We know
from [DE] that, in a model possessing a two particle bound state, R(A, k', p, q)
has a pole at k' =(img(A), 0).

Remark. The function analysed in [DE] coincides with the function R, to be
defined in Chapter I. For this function one writes R;"' = Rg; + K,, the two-body
Bethe-Salpeter equation. Nevertheless, the combinatorics of the three body
problem is such that the relevant kernel for us turn out to be R, defined with the
factor 3 multiplying K,. One can however easily convince oneself that poles of
R,(A, k) are in one-to-one correspondence to poles of R(A, k'). In particular, if
mi(A) is the two particle bound state pole of R,(A, k) then the corresponding
pole of R(A, k') is at mg(A) and we have

A
me(A)—mg(A) =2ma’im (m ) +0(\3)
with
a, = ath(A = 0, k’ = (21m, O), 0, 0).
Let now

1 = (1o, 1) €C?,
—i(mg—m?*—3(m —mg)?)
2(m + mB) ’

Mo= p1=0.

The main result to be proven in our work is the following

Theorem. Consider a weakly coupled even AP(¢), model having a two-
particle bound state. Assume that:

i) 87\1(3(A = 0: ko = i(m + mB), L, “’/23 &, ”‘/2) == (5] 7I: 0

ii) ,Ls(A =0,k°=i(m+mg), n, u/2) #0

Then we have that a, >0 implies that there is no three-particle bound state,
and a,<0 implies that there is exactly one three-particle bound state. Further-

more, there is no other spectrum in the odd subspace of # in the interval
(m(r), 3m(A)).
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This result is proven in two steps. The first one is to show that the 2p.i.
six-point function R;(A, k, p;, g;) has a singularity that will be physical or unphysi-
cal depending on the sign of a, as explained in the theorem. The second one is to
analyse the two-point function by means of R;(A, k) and L;(A, k). Given the
conditions of the theorem, we can show that a physical singularity of R3(A, k)
always induces a singularity of the two-point function. This singularity is what we
call a three-particle bound state because, as we shall see, it lies just below the
three-particle threshold 3m. Since it is a pole of the two-point function, we see
that the field itself makes a transition from the vacuum to states consisting of one
such a bound state.

In fact, the situation is as follows: if k9(A)=1ik,(A) is the singularity of
R;(A, k), it turns out that k() is a zero of S,(A, k). The pole of S,(A, k) is very
close to this zero, say at k9(A) = ims(\) and we have that ms(A)>k;(A). One gets
for S,(A, k) the following Lehmann representation:

Z(A) Z5(A)? ” 1
rm) K+ my) LW (@)

We can draw the graph of S,(A, k)= S,(A, k = (i, 0)) as follows, according to
this formula

S~2(A’ k) =

Sy(A.x) , l
: ;
|
!
|
l
| |
| |
| |
I [
| |
| |
1 I
| | ms()
| [ ey,
im(4) | (2)+mg(2)
| ()
| |
| |
' |
l I
' |
' [
' |
i :/
{ |
Figure 1

k1(A): the pole of R5(A, k), m5(A): the three-particle bound state, m(A)+mg(A): the threshold of one
m-particle plus one mg-particle, 3m(XA): the three-particle threshold.

We sketch briefly the reasons why R;(A, k) can have a singularity provided
the model under consideration has a two-particle bound state.
We shall use the notation X(A, )= X(A, k =(ik, 0)) for any kernel X. We
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come back for a while to the two-body problem and the Bethe-Salpeter equation:
RZ(Aa K, pa CI)

= Ru(A, k, p, @) — jdp' dq'Ryx(A, &, p, PV K>(A, k, —P', —q')R,(A, k, 4, q).

In the approximation sometimes called ‘the ladder approximation’, which has
been extensively used on a large number of problems, one substitutes for K, its
lowest order contribution in A. Let us consider a polynomial having a term of the
form C, :¢*:, in such a way that there is a first order contribution «; to K,. It is
given by a; = A - C, - const., where const. stands for a positive constant.

In this case, the above equation can be explicitly solved and one gets, with

rOO(Av K) = ."dp dqROZ(Aa K, p, Q):
f2(A, k)= de dqR,(A, K, p, q) = roo(A, K)(l_alroo'*‘a%r%o_‘ i r)

= roo(A, K)(1+aqreo(A, k).

One can also use that

= iK\ = K
Realhs 0, @) =485 (0, p+2)3, (1, -2 560 +a)

and the Lehmann spectral formula for $, to obtain:

roo(A, kK)=Z(A)* % Idp[(p —%()2 + mz];l [(p +i2ﬁ)2 + mz]_1 +p5(A, k)

1
=4Z(M)*(4m?>—«k?> V2. = arcsin 4 p>(A, k)
K 2m

where p,(A, k) is holomorphic and bounded for 0 <« <3m. So ryo(A, k) is singular
as kK — 2m. Since a;~0(\), we see that singularities of f,(A, k) for small A can
only occur for k near 2m. Furthermore, such a singularity can only occur if &, <0
(and so C,<0), otherwise 1+ a;ry(A, ) is always bounded away from zero. But
if a;<0, there always exists a solution kg(A) of 1+ a;ry(X, k) =0 which corres-
ponds to the two-particle bound state.

A rigorous analysis of this problem faces the question of knowing whether
this result remains valid when the full kernel K,(A, k, p, q) is considered. The
answer to this question, which turns out to be positive, is essentially the first part
of the paper by Dimock and Eckmann [DE].

The corresponding situation in the three-body problem is a bit more compli-
cated. The three-body Bethe-Salpeter kernel K; is defined, in analogy with K, as
the connected part of R3': K;=R;"'— R53 where the kernel R,5 plays here the
role of Ry, in the two-body problem. The analysis of the analytic structure of
R,p(A, k) is the subject of Chapter II below, and for the purposes of this
introduction we only need to know that it describes the two-particle rescattering
processes, that is, processes described by graphs in which at most two of the
particles interact at any given vertex. Among the relevant graphs, two of them will
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interest us for the moment:

i) the graph describing three free particles, call it Rg;. It is given by
R3(A, x5, X2, X3, ¥15 Y2, ¥3) ~ S2(A, X1 = y1)S2(A, X5~ ¥2)S2(A, x3—y;) and it
is drawn R,; ===, each line corresponding to a propagator S,.

ii) the graphs describing a process where only two of the particles interact,
call it b(A, xy, X2, X3, Y1, Y2, ¥3) ~ S2(A, X1 —y1)R(A, x5, X3, ¥2, y3) Where in
this example particle 2 and 3 interact (the R factor) and particle 1 remains
free (the S, factor). It is drawn b = —a— where I — corresponds to
R

Let s00(A, k) =[dp, dp, dq, dq:R,5(A, K, Py, P2, 41, 42). Correspondingly we
deﬁne: Sg)lﬂ)(/\: K) = jdpl dqiROS(Aa K, D;, ql) and S%)ZD)(Aa K) = J-dp: thb(As K, Dis qi)-

The result concerning the analyticity properties of s{g(A, k) is quite standard.
It corresponds to a graph like

\ /—\ /
Xfig — - — i i
! \

xI/3 */3

Figure 2

where dashed lines correspond to amputated lines. This graph has a kinematical
singularity at the threshold k = 3m in the form of a square root branch point. But
unlike the analogous case in the two-particle problem, the function is bounded on
a neighbourhood of k =3m. Thus the mechanism described above for the
formation of two particle bound states does not seem to apply.

Concerning si3(A, k), we must use the result of [DE] on the two-particle
problem. There it is proven that, in case there is no two-particle bound state,
R(A, k', p, q) is analytic and uniformly bounded in ' for fixed A on a neighbour-
hood of «'=2m. This implies that s{5(A, k) in this case is also analytic and
bounded on a neighbourhood of k =3m.

Refering to the two-body problem, we note that a bound state could occur
because ryo(A, k) was not bounded on a neighbourhood of the threshold k =3m.
We will now see that, provided there exists a two-particle bound state, the function
s$B(A, k) becomes unbounded on a neighbourhood of the threshold m + mg(A).
This implies that soo(A, k) is also unbounded as k — m +mg(A) and we will see
that this singularity is sufficient to generate a pole of R;(A, k) by a mechanism
analogous to the one responsible for a two-particle bound state.

Consider then a model possessing a two-particle bound state. In such a
model, the function R(A, ") has the form

Zs(A)

5 h(A, p)h(A, @) +ps(A, k', p, )

R A, '9 bl =
( K p q) _K12+mB

with p;(A, k) analytic and bounded around «’=2m. As before, the term ps(A, k')

makes a contribution to s{3(A, k) which is bounded around x =3m. The term of

interest to us is the other one, describing the propagator of the bound state. We
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show (see Appendix A) that

" iK 2ik —
b(A, &, p1, P2, 41, q2) ~ Sz()l, P1 +—)R(/\, Py, iy P2, &4”512) 8(p1+qy)

3 3° 2 2
so that the contribution of the bound state term of R is
1 1
SB0, 1) = Z0Zs ()?  dpy dpa day dgy 5+
(p1+-3—) +m? (pl——3—) +mp
X h()\, —Tpl-!- pz)h(/\, %‘*‘ Ch) 8(p1+qu)
2 2442 1 1
=Z(A)Y'Zg(A\)*A*| dp, " ) N2
IK 2 2ik 2
(p1+-—) +m (pl*—) +mpg
. 3 3
with
A= Idph(;\, p).

But this last integral shows the characteristic behaviour of a two-particle threshold
(in two space-time dimensions), namely

1 1

jdp( +i:<)2+ ) ( 2i:c)2+ }
p 3 m p 3 mpg
with t4(k) bounded away from zero and analytic near m + mg(A). We see that in
this case the threshold (m + mg) corresponding to a free particle of mass m and a
free particle of mass my behaves in such a way as to make s&(A, «) unbounded as
k — (m +mg). Now consider again the three-body Bethe-Salpeter equation in the
ladder approximation. Assume also that the interaction polynomial has a Cg :¢°:
term, so that the first order contribution to K;(A, k) can be written as a,=
A - Cg - const. where const. stands again for a positive constant. We can solve
explicitly the equation to get:

= (=2 +(m+mg)?) 15(k)

f3(A, k)= Idpi dq;R3(A, K, Di, G;) = Seo(A, k)(1+ azS00(A, k).

Our previous discussion shows that in models possessing a two-particle bound
state the function sy4(A, k) is unbounded as k — (m +mg). This implies that, for
small A, there is a solution of 1+ a,S¢0(A, k) =0 near (and below) k =m+mg
provided a,<0 (and so C¢<0). This solution ultimately corresponds to the
three-particle bound state of the model. The preceding discussion permits us to
say that in some sense this three-particle bound state is really a bound state of
two-particles, one of them being the particle of mass m, the other one the
two-particle bound state of mass mg.

The rigorous proof of this result has to deal with two things: that the main
contribution to R,z (A, k) is indeed the one picked above (namely, the propagator
of the two-particle bound state) and that the consideration of the full kernel K,



138 R. Neves da Silva H P A.

does not change things too much. This is, essentially, the content of the following
pages.

I. Preliminaries

The particles described by a quantum field model correspond to the point
spectrum of the mass operator M = (P3—P?)"?. This spectrum can in turn be
analysed by looking at the singularities (in momentum space) of the Schwinger
functions defining the model (we briefly sketch this connection in Chapter I'V). On
the other hand, the way to carry out such an analysis of Schwinger functions is to
study irreducible functions and then tracing back their analytical properties to the
Schwinger functions. The equations defining functions which are suitably irreduci-
ble in all channels are equations of the Bethe-Salpeter type. We shall be
concerned with these equations in the case of the two" and the three-body
problem. The basic objects of the analysis are.defined recursively as follows (A is
any product of Euclidean fields):

‘Rn(/\-yxla---axn, y1a"',yn)

={(x1) D)1 —Py—P,— - -—P,_1)d(y) - - * d(yn))
P.A= Idx1 cordx,dyyc dy,(1-Po—+ =P, _1)@(x1) - d(x,)

XRA, Xq, oo Y Kb (yy) -+ - d(y))(A—Py—- - - —P,_1)A).

The kernels R, (A, x,y) x={xy,..., X%}, Y={y1,..., Y.}) are expected to be
(n —1)-particle irreducible in the channel x —y (this in fact can be proven for
weakly coupled AP(¢), by the method of Spencer, see [CD]), which amounts to
say, loosely speaking, that we have a bound of the form

XX Zyl ]

n n
where m = m(A) is the mass of the lightest particle created by the field ¢ (~ the
decay rate of the two-point Schwinger function) and &€ =&(A) goes to zero as
A — 0. The above bound implies analyticity in the energy-variable k up to
n(m—¢). We can increase the degree of irreducibility by one unit if we take the

Inverse:
Xx T }

|R,. (A, X, ¥)| < const. exp [—n(m—a)

n

|IR,.*(A, X, y)| = const. exp [ (n+1D(m—¢g)|-
where R, (A, x,y) is defined by

JdX'R;‘(A, x, X)R,(,x,y) =[] 6(x—y)

i=1
For weak coupling, this decay of R, is also established in [CD]. Nevertheless,
R;' is not connected. Its connected part, K, (A,X,y), is known as the n-body
Bethe—Salpeter kernel.
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From now on, we specialize our discussion to the cases n =2, 3. The case
n=2 is well-known, so we mostly discuss the case n=3. In this case, let
K;(A, x,y) be the connected part of R3'(A, x, y). In other words, K;=R3'—R33
where R3g, which will be soon defined, is precisely the non-connected part of
R3'. We will see that R5} can be expressed in terms of K, and K; (=R7"), the
Bethe-Salpeter kernels corresponding to the two and one-particle problem,
respectively. Its inverse, R,5(A, x,y), describes the so-called two-particle rescat-
tering processes. The equation

K;=R3'- R} (I.1)
is the three-body Bethe-Salpeter equation. It can be equivalently written as

R;=R,5 —R,5K;R; (1.2)
with a formal solution

R;=(1+ stKs)_les (I.3)

We will be mostly dealing with the equation in this last form (see Chapter
III). For the moment, note that we can analyse the analytical structure of R,
from (I.3) once the corresponding analytical structure of R,z and Kj; is known.
According to its definition, one expects K; to have nice analytical properties (in
weakly coupled AP(¢), these results on K; can be proven by the method of
Spencer, see [CD] and Chapter III below). The study of R,g is the subject of
Chapter II. Once the analytical structure of R; is known, we are able to face the
analysis of the Schwinger function, in particular the two-point function. These are
more directly connected to the mass spectrum, as shown in Chapter IV.

In the remainder of this chapter, we define the kernel R,z (A, x,y) and state
the equations in momentum space. At the end we review some general facts about
the two-body problem.

To define R,z we have to introduce the following functions:

RA(A, x4, X3, Y1, ¥2) =((x) @ (x2)(1 =Py —P1) b (y1) d(¥2))
Roz(A, X1, X2, Y1, ¥2) = Ri(A, x1 — y1)R1(A, X2~ y,)
+ Ry(A, X1 — ¥2)R1(A, X, — Y1) %
R3(A, x4, X, X3, Y1, ¥2, ¥3) (L.4)
=(d(x) b (x2)d(x3)(1 —Py— P, —P,)$(y1)d(y2) ¢ (v3))
Ros(A, x1, X2, X3, Y1, Y25 ¥3)

= Z Ri(A, x;— y)R (A, x5 — Yj)Rl(l\, X3~ Vi)
where = ranges over the six permutations (i, j, k) of (1,2, 3),

K>(A, x4, X3, Y1, ¥2) = REI(/\, X1, X25 Y1, Yz)_Razl(A, X1, X2, Y1, ¥2)
which is the two-body Bethe-Salpeter kernel. Let a =(1, 2), (1, 3), (2, 3) label

%) In an even theory, R;(A, x—y)=S,(A, x—y). We will use indistinctly both notations since we
shall be dealing with even models.
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pairs of initial or final particles. We define:

M, (A, X1, X3, X3, V1, Y2, ¥3)
== Ril(ka X — Yj)KZ(A: xoq! xaza yB1’ sz)’ l¢ a, ]¢ 35 (IS)

1
MO, x,y) =5 Zﬂ M (A, x,y)

We have now all the ingredients to define:

R35(\, X, ¥)=Ro3(A, x,¥) + M(A, X, ). (1.6)
Note that (1.6) is equivalent to (using operator notation):

R = Rg3— RopsMR,5 (L.7)
which has a formal solution:

R,5 =(1+RysM) 'Ry;. (I.8)

We will not prove here that the kernel R;5 so defined is the non-connected
part of R;'. A discussion and a proof of this point can be found in [CD], [GJ1],
[GJ2] to which we refer the reader.

We note that the three-body Bethe-Salpeter equation (I.2) can be realized on
a space of functions f(x;, x,, X;) symmetric under permutation of variables. In this
case, we have the following simplification:

Rys(M, x,y) = 63Rl(A, X1 = YR1(A, x2— ¥2)R1(A, X3—y3)
MOLx,y)= L M(A,x.) (L.53)
M\, x, ¥) =3RT' A, % — YKo, Xaps Xays Yo Ya)»  iE @
a=(1,2),Q1,3),(2,3).
We introduce the variables:
E1=x1— X, M=Y1—Y2
€2 =X~ X3 RA=Ya=""Y3

and consider again the equation (I.2):

T=3(x1 + X+ X3— Y1~ ¥2—¥3)

R3(As X, y) = R2B (/\9 X, Y) - Idx’dy,R?_B (A:r X, X,)K3(/\-a x’3 y')RS(Aa y’a y)

Introduce also:

f’—xi x5 mMi=yi—vh =3(x{+x5+x5—yi—y5—y5)
E=x4—x% mh=y5—v} =%(y1+yz+y3 Y1i— Y2~ ¥3)

Note that the transformation x',y' — &/, 0/, 7/, 7" has Jacobian one.
We use the translation invariance of the kernels to write:

R3(A-3 T, gis 7]:) = RZB (A-, T, gis Tlt) o J'dgf dn!' dT’ dT”RZB (A: T T’ - 7"7 gi, S:)

X K3(Aa Tl; 61’5 Tlf)Rs()\, 7"3 7?:» Th) (19)
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Let py, P2, 41, 42, k be the momenta conjugate to &, &, My, My, T respectively.?)
We take the Fourier transform of each of the above kernels.*) Let:

R;(M\ k, p;, ) = (217)_5J.d§ dn; dr
Xexp [i(kT+p1& + P26+ qimi + @2n2]Rs(A, 7, &, M)
K3(A’ ka Pi ql) = (277)_3 dé; dn, dr

X exp [i(kT+p1&; +paéatqim +aam)IKs(A, 7, &, my)
RZB (Aa k’ pi! ql) = (2’”)*5 d‘f, dn; dT

xexp [i(k7T+pi&1+ P26+ qimi +@2m2) IR (A, 7, &, M)

Using the fact that the integral (1.9) is a convolution in the 7-variables, and
the T — —7 invariance, we can write the equation in momentum space:

R\, k, pi, ¢) = Ryog (A, k, py, ;) — Idp{ dq!R,z (A, k, p;, PY)

X KB(/\'a k; ﬁ_p{D q:)RS(/\a ka _“q:a q:)
or, as operators:
R3(A, k) =R,p (/\-5 k)_RZB (A, k)K3(/\, k)Rs(/\, k)- (1-10)

We consider this as an equation for operators acting on a space of functions
f(q1, g>) invariant under the transformations

— —Qqq+ - ;
PRSP e (L11)
d2—> (> 2741742

which express the symmetry under permutations of the functions in x-space.
Following [SZ] and [DE], we realize equation (1.10) on a space of analytic
functions. For p;=(p, p{"), p,= (%, ps"), consider the Hardy space Aj; of
functions f(p,, p,) invariant under (I.11) and analytic in the domain |Im p{®|,
lIm p|<3m(A\)— e =85, |Im pV|, |Im pP|<im(A)—e =6, with norm given
by:
”f”ﬁxs = &uP(a)j dp; dp, |w(p, +io)w(p, + iax)f(p1 + iay, pa+ias,)|?

oyt <8,
o Z(t )<8i(3)

where
w(p)=(p*+16m?) >

We realize thus equation (I.10) as an equation in £(A,, A¥), with A¥ the
dual of A; and £(A,, A¥) standing for the set of bounded maps from A, to A3,

%)  Note that p, and p, are not the relative momenta between particles 1 and 2, 2 and 3,
respectively. Instead, letting ry, r,, r; denote the momenta of particles 1, 2, 3, respectively, we
have: k=r +r,+r3, 2(k/3)—py=ry+rs, k/I3—p,=rs.

%) We shall NOT distinguish the kernels in momentum space from the kernels in position space.
The argument of the function should make clear this point.
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Remark 1.1. The index 3 in A; indicates that this is the adequate space for
studying three-particle processes. In 8> we use the index to stress its connection
to A; (we will soon have analogous definitions with an index 2).

We begin our review of the two-body problem by considering again the
equation defining R(A, x4, X5, V1, ¥»), namely R™!'= Ry, +3K,. Changing to the
variables o =3(x; + X, — y1— ¥,»), £ =X, — X,, 1 =y, — ¥,, we take the Fourier trans-
form:

R, K',p,q)= (Zﬂ)_sjda dé dne!* o MOR(A, a0, £ 1)
K>\ k', p, q)= (2w)_ljd0 dé dne'® e PE KL (A, 0, € M) (1.12)

ROZ(As k” p; q) = (21T)—3jd0' d‘f dnei(k'a+p£+qn)R02(/\, g, éa TI)-

In momentum space, the equation defining R reads:
R(A k', p, q)

= ROZ(A’ k'a pa Q)—3jdp’ dq'Roz(/\, k'a P, P')Kz(/\, k’a —p’s q')R(Av k" _q'5 Q)

or, as operators,
R(Aa k') = R02(/\, k’)_BRO'Z(Aa k’)KZ(Aa k’)R(/\s k’)- (1'13)

The kernel R(A, k') will arise in the next chapter when considering R,5. We
will see that an essential point in the analysis of R,z is the study of a process
where one of the particles, say particle 1, does not interact with the other two.
Such a process is described by a kernel

bl(/\-’ X, y) = Rl(/\, X1, YI)R(I\a X2, X3, y2a y3)'

In momentum space, we have

k 2k =
b,(A, k, p1, P2, 91, 42) ~ 8(py +Q1)R1(A: §+P1)R()\, ?_Pl, 'Epl'*'Pz, %"' Q2) .

Hence, matrix elements of b,(A, k) are given by integrals of the form

(d’la bl(/\a k)d’Z)A;

k 2k p
- Jldlel(’\’ §+ Pl) Idpz dq,y, (Pl, %L,. Pz)R(/\, 3 P1, P2, Q2)llfz (Pl: ‘271" Cb)

Since ; € A;, we have that, for fixed p,, ¢, (q)=¥:(p;, p1/2+q) are func-
tions in A,, where A, is the Hardy space of functions f(q)=f(—q) analytic in
lIm g9 <3Gm —¢) =86, Im q|<i(Em —¢) = 86® with norm given by

Il = sup, [ lw(a-+ia)f(a-+icol

<82

This is the motivation to realize equation (I.12) in the space A, (which is
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defined with 8 =18, i =0, 1). This fact, together with the factor 3 multiplying
K, in the definition of R, introduces slight but harmless changes in the results of
[DE] and [K].

Remark 1.2. With respect to the norms on A3 and A,, we have the following
result: let ¢(py, po) € A;. Define 4, (p2) € A, by ¥, (p2) = ¥(py, p1/2+p,). Then

sup 3)lW(P1) H%IHAJ =0(1) ||111"A3.

[Imp{*| <8

This follows from Cauchy’s theorem.

We next present some results about R(A, k'). These results are best expressed
in terms of a new variables, {, which we now introduce. For k] real, let
{=v4m(\)®+k’??+k!?. We think of this transformation as a conformal map of
the kf-complex plane. The physical sheet of the kj-plane is mapped onto Re {>0.
Functions analytically continued across the imaginary axis to Re { <0 correspond,
in the k{-variable, to functions continued to a second sheet of the energy-plane.
One defines:

D =1{k}:0<Im kh<Sm,Im ki ¢ [vV4m*+ k2, 5m)}
G ={¢{: L =Vam>+ kP + k22, ke D)
B' =% U -9 U (connecting line) (I.14)

D(B)={{:LeD',Re {>—B}

D(B)={k}:VAm>*+k 2+ ki>= (e D (B)}.

We use the notation f(¢)=f(k’) when ¢ =v4m?>+ k2 + k.

We have also the following definitions:

NN A1 N 1
Rl(A: P) - S2(/\9 p) - 271_ (p2+ m(/\)2+ Lm_s dp)\(a) p2+ a2)

Roa(A, k', p, @)= Ros(A, k', p) 8(p+q)

Q k’ & k’ ' '
= 4m8, (0 5+ 0)8: (A 5 —p) 50+ )= pos(h, K +pah, K.

With g, € AT given by (¢, g,)a, = ¥(p),
Po1(A, k’) = roo(k')z()\)480(', 80>A2

1 k' 2 -1 (k' 2 -1
)= [ (o) o] [ (5 r) ]
T 2 2
o (4m2+ k12)~1/2r0(k:)
with ro(k’) holomorphic and bounded for kje 9,

and

ro(k’ = (2im, 0)) = % :

According to this decomposition of Ry,(A, k'), we have:
T(A, k') =3K5(A, k' )Rox(A, k') = T1(A, k') + TH(A, k).
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We state the following lemma:

Lemma L1. R(), £)=p,(A, {)+p2(A, {) and there exists a C™ function {;(A)
with values in 9 (8 —2¢) such that (L—¢,(M)p1(A, &) and p,(\, O e L(A,, AT
are C* in A =0 small and holomorphic in D (8¥—2¢) together with their \-
derivatives. Furthermore,

P2\, ) = hoa(A, (L + T, )
and p, is the rank-one operator given by

F(A, £)
§ - 51(/\)
and {,(\) is the solution of

L)+ Fo(A, HOON(L+ T2, L))+ 3Ko(N, L1(A)) g0, €0a, =0
and we have

p1(A, )= A+ TFN, O) "eol, A+ TFA, ) eoda,

(E= L0, )
L+, O+ o0, D) - 3KaX, e €0l

We note that this is Lemma 27 in [K], with the slight modifications caused by our
choice of A, and the factor 3 multiplying K,. The modifications brought about by
A, are:
i) in the definition of the domain 9, we have 0<Im k) <%m instead of
0<Imkb<3(m—e)
ii) the region of holomorphy in Lemma 1.1 is (6P —2¢) with 8P =
1+ 3(m—¢g) instead of 8, =%(m—¢) in Lemma 27 of [K].
These are harmless changes for what follows. U]

F(A, §) =

Remark 1.3. The pole £;(A) of R(A, &) is close to ¢ =0 and it is always real.
Negative values of {;(A) do not correspond to poles on the physical sheet of the
ko-plane. In what follows, we will be always considering models for which
{1(A)>0. These are the models that have a two-particle bound state.

Coming back to p,(A, {), we shall need a further decomposition of it. Let

H & ) =(1+T(, )70, -) (1.15)

We can write

FA, )

p = : § . 1.16
pl(A: €7 ps q) c _ gl(/\) H(Aa gs p)H()% g& CI) ( )
We define
b0 & p ) =28 A) iy E ), A, L), 9) (1.17)
{—&4(A)
and

P3(A, ) =p1(A, D= p(A, D). (I.18)
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We have:

Lemma L.2. The operator ps(A, ) e L(A,, A¥) is holomorphic and bounded in

B8P —2¢). It is C* in A =0 small and the \-derivatives are also holomorphic and
bounded in 9 (8% —2¢).

Proof. Given the properties of p;(A, {) in Lemma I.1, the result follows from
the fact that, given a function f({) holomorphic and bounded uniformly in a
domain %, and given a point ¢; of 9, then

fO=fE)+Z-L)f

with f(Z) holomorphic and bounded uniformly in &. The bound on f(¢) depends,
in general, on ¢, if {; can approach a singularity of f({). This is not the case here,
since {,(A) is close to zero and p,(A, {) is holomorphic on a disc (of radius
8¢ —2¢) around the origin. O

We come back to the k’-variable and close this chapter stating some results
about the operators p,(A, k') and ps(A, k').

Lemma L.3. Let ¢ € A, .(={d € A,: |[d|h.. = SUPEmpoi<se [ (P)| < }). Let
g2(¢: d’: Ay k') = (d’: p2(/\, k')lp)Az

( = szp d*qé(p)¥(q)p-(\, k', p, q))
and
g3(¢$ lp) Aa k,) = (Cb’ P3(A, k')‘p)Az'

Let also k be real and 0=1Im ki <3m. (The factor 5/3 is arbitrary. All we need is
that Im k{, be bounded away from the threshold 2m).
Then

D) (82, % A, k)| =O(1)((Re k§)* + k7 + 1) {|llo.o Wl a,
|g3(d, ¥, A, KN =O(1)(Re k> + kP +1)7 [l pllz.o [0]a,
If kb is in D (8P —2¢) (see (1.14)), then:
dg
dk!,
Proof. The proof of ii) follows from the fact that &.(¢, ¥, A, ) is holomorphic
in 9(8Y—2¢). Using that

_Ei.gi.——_‘.i.gi d{ _dé,- ’ 2 r2 2\—1/2

and that (dg/d¢{) is bounded uniformly in % (8% —2¢), we have the result.

The proof of i) for g; is immediate from its definition. The proof for g,
follows from:

(D, poa(A, kr)'-l’)Az =0(1)((Re k6)2 o+ k'12 +1)7! |l¢ﬂzm "'f’"A2 for 0<Im kj§ <§m,
O

i) | (6, % A, K) | =0D)@m>+ k2 + k) 2 bl lWlla, =23,



146 R. Neves da Silva H.P. A.

I1. The two-body rescattering kernel

Our starting point is the equation defining R,z (see (1.7) and (1.8)):

RZB - R03(1 + MR03)_1. (II. 1)
We define
3
a(A, x,y)=MRp(\,x,¥)= 2, a;(A,x,y) (IL.2)
iL,i=1

with

a; (A, x,y)= %5 (x; — y) K5 Ro2(A, Xeys Xazs Y81 YBQ),

a={1,2,31\{i}, B={L2,3}\{j
Let also

b;(A, x,¥) = Rp3G+a;) '(A, x,y) (11.3)
Recalling that

R™'=Rg +3K,
we can write

b (A, x,¥)=27R, (A, x; — ¥;)R(A, X, Xe,» Ya,5 ¥8,) (I1.4)
a and  as above. With these definitions, we have

Ruxy=(2 bi'0xy) . (IL5)

i,j=1

We now introduce the 1, &, n; variables and consider equation (I.7) in momentum
space:

R2B (A, k, pi: (L) = ROB(A: k: pi, ql) - jdp: dQ:ROZ'(/\y k: pi9 p:)

X M(/\a k’ _-pl” p:)RZB(/\y ka —ql") ql)
with

R03(A’9 ka Pi» ql) = (ZW)SIdT dgl. d"h

X exp [i(kT+p1&; + P26+ qimi +q2m2) IRes(A, 7, &, 1)
and '

MO\ k. p, 4)=2m) [ dr d dn,

xexp [i(kT +p1&1+ P26+ qimi+ @em)M(A, 7, &, ;).
One can also verify that

k k k
Ros(A, k, pi, 4:) =6 - 4m°R,; (’\’ 37 Pl)Rl ()" 3 bt Pz)Rl ()\, 3 Pz)

X8(p1+qy) 8(pat+q), - (I1.6)
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27 k 2k i
My, (A, k, pi, g;) =79 R, 1(/\a §+P1)K2(l\, 3 " Po —'52‘1’"‘?2, %1‘*' ‘h)

X8(p1+qy). ) (IL.7)

See the Appendix A for a derivation of these formulas.
Using the fact that R7Y(A, k/3+p;) = (47*R,(A, k/3+p,)) ", one gets for a,:

41 k k
all(/\-s k’ Pis ql) = _3— 6(p1 + ql)Rl (A, 5"’ P1 + Pz)R1 (A, -3-— pz)

2k -
><K2(A, 5P —5‘33+p2, %+q2) : (IL.8)

The analogous expression for by, is:

k 2k —
b, k, pi 4:) =27 - 2«6(p1+q1)R1(A, §+p1)R('\, 3 " Pv _§l+pz’%+qz)

(I1.9)

with R(A, k', p, q) defined in (I1.12).

The expressions for general g, b; are obtained by the following rule, which
corresponds to symmetrization in x—y-space. We make the convention that the
first index correspond to the p-variables, the second to the g-variables.

index 2: replace p;— —p;+p, p2—>p2 O G1—=>— G112, 2> Q2 (I1.10)
index 3: replace p, < —p, or q;< —(q, '

in the expressions (I1.8), (I1.9) for a,; and b,;.

In what follows, we will be mainly concerned with b,, since a general b;; is
obtained through the rule (I1.10). We take also k' = 0 (this corresponds to analyse
the problem in the center of mass system) so that k-dependence becomes
k°-dependence.

The form in which we will be dealing with equation (IL.1) is the following.
The variable k° plays the role of a parameter and we write:

3 -1

R,s(\, k%) = ( Z b (A, k(’)) (I1.11)
ij=1

considering R,z (A, k°) as an operator in £(A,, A¥).

We note that the individual b;(A, k°) are not operators on £(As;, A%)
because they do not preserve the invariance properties of functions in A;. This is
the reason why we introduce a space of functions A% which is the same as A;
except that functions in A% need not be invariant under the transformations
(I.11).

We now proceed to the analysis of b;;(A, k°). Let

Asa={ocAslpla,.= s |6y P2l <, j=1,2,i=0,1}

Impf|<3l

and let ¢, e A}, pe Aj...

%)  We use M;; =M, with a =p={2,3}.



148 R. Neves da Silva

The objects under analysis will be matrix elements of b;;(A, k°):

(¢, b1 (A, KO)) = jdp1 dp, dq, dq,¢(p1, p2)

X by1(A, k°, Dy, P2y =41, —42)¥(q1, 42)-
Using (I1.9), we have:
k
(b, by (A, KO)) = 54WIdP1R1()\, 5"" P1)Idpz dq,d(p1, p2)
2k -
XR()\,—:;‘ P1 2p +P2, 2 %)‘l‘(pb az)
or, equivalently,

(8, b1 K= 54 dpyR (1, 5+ 1 ) [ dps dases, )

2k
X R(Ay _3— —P1, P2, Cb) ‘I’pl(“qZ)
where we have defined |

G0 =0(ps 24p2), a0 =0(pr B+ as).

Remark 11.1. If ¢, y € A5, we can check that
&p(—P2) =&, (P2), U, (—q2) =1,,(q2) so that &, ¢, € A,

H.P. A.

(I1.12)

(I1.13)

Our strategy in analysing b,,(A, k°) is the following: we break it into several
pieces, all of them regular (=bounded) near the thresholds 3m or m + mg with
the exception of the last one, which is a rank-one operator singular at the
threshold m+ mg. This one (Wthh is analogous to s&(A, k°) defined in the
Introduction) enables us to pursue the analysis of R; in Chapter III along the lines

of a modified ladder approximation as explained in the Introduction.
The first two pieces are defined according to

Z(\)? * 1
RMD=5- (Fr+ [ dota)—).

Let J(A, k°) ={(¢, by (A, kO¢) =T, (A, k®) + (A, k°) with

Lo, k°)=27jdp1f a5 (0) —

m-—e k 2 2

X J.dpz dqqu,,l(pz)«llpl(—qz)R(1l ~ P Pos qz)
1

k “ g

2k
X Idpz dq2¢pl(p2)tbp1(—qz)R(f\, 3 “Pu P2 Q2) .

'3

LA, k%) = 27Z(A)2Idp1

(I1.4)

The kind of result we are interested in is illustrated by our first two lemmas.
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Lemma IL1. Let ¢, yc AL, ¢p€As... Then I (A, k°) defined in (I1.14) is
holomorphic in 0<Im k°<%m and in this region it satisfies, uniformly in A =0
small and k°:

1A, k) =0(1) |$lla,.. la,-

Lemma IL2. Let ¢, e AL, ¢p€AL,. Then I (A, k°) defined in (I1.14) is
holomorphic in k°c € ={k°: |Re k°|>4m 0<Imk°<Im}U{k’: 0<Im k®<2m}.
In addition, in this region we have, uniformly in k° and A =0 small:

[, k) =0(1) |9]la,.. 1#la,-

Proof of II.1. We show that the integral in (II.14) can be analytically
continued in 0<Im k°<Zm, satlsfymg the bound. To see this, note that [(k/3+
py)>+a*l™" is holomorphic in |Im (k%3 +p{®)|<3(m—¢g) (i) and h(k° p)=
§ dp, dq2¢p1(p2)lllp1( 42)R(A, 2k/3—p,, P2, q2) is holomorphic in 0<
Im (2k°/3—-p{?) <2m —e. (ii)

We can thus deform contmuously the contour of the p{®-integration (for
instance up to Im p{® =2m) i 1n such a way that (i) and (ii) above always hold for
any k° such that 0<Im k°<

To show the uniform bound, note that we can choose the contour in such a
way that, for 0<Im k°<Im
0 0
Im (k3 +p‘°)) <2m  0<Im (%—p“’))<§m.

so that

k 2 J-1 kO 2 1
[(5“"1?1) +a® 50(1)[(R (3 p(o))) +p(11)2+1] , for a>3m-—se,

I 0l =0 (Re (2~ p0)) + 02 1] a0l

The last inequality follows from Lemma 1.3.
Hence

1A, k) =0(1) |[§lla,.. 14,

( Re (0))2+ (1)2+ 1)2/3
X J-dpl 7o . (Re pi P1 = _
() () P
where we have used that

sup (W) o] =0(1) [4ll,, - see Remark 1.1

()l

and that { dp,(a)<1.
Since the integral above is bounded uniformly in Re k°, we get the result.

O

Proof of 11.2. The idea is the same as in I.1. We can deform the contour of
the p{”-integration in order to avoid the singularities of the integrand. This is
possible because, if |Re k° =4m or if 0 <Im k°< 2m, the singularities never pinch
together.
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haa i S

This situation is pictured in the above figure. « and a are the singularities of
[(k/3+ p,)?+ m?], which move as indicated when we go from Im k°=0 to Im k°=
Im. ap and ag are the singularities of R(A, k°), which also move as indicated. I is
the deformed contour. Note that this is possible since |v|=(Re k°) is bounded
away from zero. [

Remark 11.2. We have obtained a region of holomorphy going up to 3m but
we remark that we could obtain 4m—g by refining our proof. Since Zm is
sufficient for our purposes, we do not pursue this point further.

We are left with analysing J,(A, k°) in the region around the interval
(2m, 3m). Next we break again J, in two pieces:

Jz(/\, ko) = J21()l, ko) +]22(/\, ko)

Bl K =21202]
pVl=4m (__+p1) +m

jdpz dqu-’pl(Pz) ll'm( ‘b)R()l,

2k
?_ply P2, 42 (IL.15)

J22(A, k®) = 272()\)21 dp,

rean (& m)

X jdpz dQ2¢p,(Pz)¢pl(“‘42)R()\, 3 P1> P2 Ch) .
We have the following result:

Lemma IL.3. Let ¢, dxeA deAL,.. Then J(A, k° defined in (II.15) is
holomorphic in 0<Im k°<Zim and it satlsﬁes in this region the uniform A, k°
bound:

212, kO =0(1) | a,.. [¥la,.
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Proof. This can be proven in exactly the same way as Lemma II.1 (note that
both [(k°/3+p®)?+p*+m?*T' and R0, 2k°3-p®, p), p,,q.) are
holomorphic for 0 <Im k°<Zm and |p{"|=4m).

We further split J,,(A, k°), this time according to:

R K',p,a)=p\, k', p,q)+p2(A, k', p, @) +p3(A, k', D, q)
(see Lemma I.1 and (1.17), (1.18)). Define
122()‘, ko) = 1221()\, k0)+I222(A, ko),

1
Taih k=227 dpy
p{V|=4m (_3_+ pl) e m2

2k
X jdp2 dqz by, (—a2) ¥, (p2)(p2 + p3) (A, 3~ Pu P2 Qz) (I1.16)

1
Ja22(A, k) =27Z(A )2j o dp, k 2

2k
X jdpz dQZ¢p1(P2)'lfp1(—‘CI2)P(A, _3'_171, P2, Ch) .

Let

€ ={k°:0<Imk°<Zm,Im k°¢[3m,2m), |k°|>2m} ©) (I1.17)

The restriction Im k°¢[3m,Zm) is due to the fact that J,,(A, k% has a
branch point at k°=3im. Nevertheless, it remains bounded as k®— 3im. This is
the result of our next lemma.

Lemma IL4. Let ¢, b Ay, ¢ Al.. Then J, (A, k°) defined in (I1.16) is
holomorphic for k° in €. In this region it also satisfies, uniformly in k® and A =0
small:

|T221(A, kKO <@(1) ||¢"A3_,,, lll|.a.,-

Proof. By Lemma IL.2, we only consider the region |Re k°|=<4m. In this case,
we decompose the p{¥-integral in two parts:

dov o L=|  dpy

Ipi”|>6m

J221=I1 +IZ: with .[1: j

p{®l<6m

It is clear that, in I, both [(k/3+ p;)*+m?]™! and (p,+ p3)(A, 2k/3—p4, P2, 42)
are holomorphic for |Im k°| <Zm. Using Lemma I1.3, i), we have

Idpz dqxb,,(p2) ¥, (—q2) (2 + ps)()\, %’—(~ D1, P2, qz) |

2k° 2 -1
<o) (Re (Z-p) )+ +1] I Mol

%)  The restriction |k® > 2m will be needed later, when defining the rank-one operator &,(A, k°), see
(I1.20) and the comments following it.
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then

|L|=0(1) ||¢]|a,_. I,
(p(10)2+p(11)2+ 1)2/3

* j ptisam P10 2% o\ o,
Ip;[>6m [(Re e p‘lo)) +p{P%+ 1][(Re = P p((’)) +pf*+ 1]

where we have used that supj, ,o<so|wW(py) [lg, lla,|=O) [|l¢la,. Since the in-
tegral is finite, the uniform bound follows. Consider now I,. Keeping the
pP-integration real, we see that the integrand is an analytic function of k®c 4. It

suffices then to show the bound. But this follows from
(Dp, (P21 P, )4, =0O(1) "(bp;“Ag,m “'*pplqus
sup  |w(p) [ty [la.| = 0(1) [,

[Imp P| <8¢

and
k 2 2 = -1
otaam 9P1 | \3+P1 )+ lw(p)| ™' <o O
lp{”|=6m

It remains to analyse J,,,(A, k%) given in (I1.16). We remind the reader that (see
(I.15), (I.17) and Remark 1.3):

F(A, £1(A))
(‘ 51(/\)
where ¢;(A) is the pole of R(A, ). Let

mg(A) =v4m(A)*— ¢, (V)2 (I1.18)

We will see that J,,,(A, k°) is not bounded as k® — i(m + mg) but one can show
that its singular part is contained in a rank-one operator which we now turn to

define. For H(A, £,(A, -) defined in (I1.15), let £,(A, k®) € AZ* be defined by:
(¢3 gl(Aa ko)) = (bgl(“’(ko))’

PN LD q) = H(, &), p)HA, L(A), q)

deilpy) = Idpz¢(p1, gt Pz)H (A, &(A), p2) (I1.19)
for
¢ (p1, po) € As(or A;) and l-l-(ko): (Ho(ko), 0)eC?,
with (I1.20)
1 k02
P'vo(ko) —2k0 (mB 2+T)X:_’2m(|koi)

and x-..(|k°]) denotes the characteristic function of {k°:|k° =2m}.
It follows that wo(k®) is holomorphic for |k°>2m, and that |Im py(k°)|<
3(m—e¢) for 0<Im k°<Zm (with k°=u +iv, we have

Y ean kD[ s2m—e)

u’+v

2 2
mg—m*—
3

0| — v
lIm “‘O(k )| ‘2(u2+v2) (
for |v|<im and vu*+v*=2m).
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The function x-,,, spoils the holomorphy on a disc of radius 2m about the
origin in the k°-plane. But since the region of interest to us is a neighbourhood of
k®=3im, we shall not mind about this point. Note also that

(6, 100, k1= | [ dpa{wk), 252+ p, )1 + 721, 2)0, o

=[(A+TFO, £))  uae)O)]
=0 1+ TEN, £))  dugeolla,
=0(1) [l o)la,

=0(1) “‘b"As

so that &,(A, k% e A%* for [Im k°|<Zm, |A| small, as asserted above.
We are now able to define the rank-one operator. Let y;,(A, k%) € L(A}4, AL¥)
be defined by:

Y, KO =27Z(A)? - 2L,(A) - B\, LA, kOe, (A, kO (e (k®)  (IL.21)
for ¢re A4 (or A;) and

e 0(py) = . dqz«b(pl, 92—1— qz)FI (A, £1(A), q2),

B 2 -1 2 -1
t(A, k)= dpl[(’—chpl) +m2] [(%—pl) +mé] :
cpl(l)lE4m 3 3

We analyse (A, k°) in Lemma II.7 below. By now we consider, for ¢, € A4,
beAl:

J*(/\a kO) = Jr222(A"; ko) - ((ba 'Yll(A-s ko)‘b)' (1123)

We are going to show that J*(A, k°) is bounded as k — i(m+mjg) (and can
even be continued across the cut [i(m+mg), ©), see below). This result justifies
our previous claim that the singular part of J,,,(A, k°) (and so that of by;(A, k°)) is
contained in a rank-one operator, namely v;;(A, k°) (and Lemma II.7 will show
that +y,, is indeed singular at k®=i(m + mg)). On the other hand, it is possible to
show that J*(A, k°) has a square root branch point at k°=i(m+mg) but, as
remarked above, it is bounded on a neighbourhood of it. This suggests that
changing to @’ =+vk°2+(m + mg)? would remove this singularity and this is indeed
the case. Nevertheless there remains the branch point at k°=3im or, in the
w'-variable, at o'==xin(A), with n(A\)=+v9m?>—(m+mg)>. Since n(A)— 0 as
A — 0, we must be careful. The way we have chosen to deal with this problem is
the following. We define a new variable

1 02 2
w—;?"('A—)\/k +(m+mg)?,
with
nA)=vIm?>—(m+mg)? (11.24)

(We choose the square root with positive real part). This is defined for any A >0
and since the transformation is also a scaling, the branch point at k°=3im

(I1.22)
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remains fixed at w = +i. Of course, we loose differentiability at A =0. Let also

B={k®:0<Imk°<Im,Imk°¢[(m+mg),Im), |k°|>2m}

1 (k()z

@:{w;w Y

+(m+mg)>)Y? ke %}.

(IL.25)

The transformation k®— w is a conformal map of B onto 9. Let also

B=BU-BU (connecting line).

Imk®

%

Figure 4

J

Imw

®
(=) |

Re w

b Im @

Note that if a function f(k°) can be analytically continued across the imaginary
axis at m+mp <Im k°®<Zm then f(w)=f(k°) for @ =[1/q(A)](k°%+ (m +mg)»)'?
is holomorphic in 9’ (this is the case of J(A, k%) and J,;(A, k°). On the other
hand, if a function f(k°) is holomorphic in %€ then f(w)= f(k°) is holomorphic in

R, where

Br=RB\{w:0 =iy areal, |a|>1}.

This is the case for J,,;(A, k°).

(I1.26)

We have one last definition before stating our result on J*(A, k°). Let

BB)={lweB :|Reo|+|Imw|<B if Rew<0}

(I1.27)

B-(B)={weB:|Re w|+|Imw|<B if Rew<O)
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We write J*(A, k°) in the following way:
J*(As ko) 31222(}\3 ko)_((b’ 'Yll(A3 ko)d’) = II(A3 k0)+12(A-& kO)
LA, k%) =27Z(A)* - 24, (A) - F(A; L1(A)

g L{D|s4m ar ‘[(§+ 4 ‘)2 i mz]“‘
<[ (B-p1) +ma] (hoo - )

h(p,)= Jdpz dQ2¢p,(P2)"’pl(‘Q2)H(/\, (M), Pz)I:I()l, £1(A), q2)

= e (p1)e 9 (ps)
L\, k% =27Z(A2#(A, L))

k 2 —1
Xj dpl[(—ﬂn) +m"’]
pVl=4m 3

’ [((%—’f- p) +am?) 4+ cl(n]_lh(pl)
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(IL.28)

(I1.29)

(I1.30)

(I1.31)

Lemma IL5. Let ¢, ycAl, e AL, Then I,(A, w) defined in (I11.29) is
holomorphic in B([8—2¢e]/m(A)) and in this domain it satisfies, uniformly in

and A >0 small:

|j1(/\, w)|=0(1) ”d’uAg_m “'J’"A3-

Lemma IL6. Let ¢, Y A, Ye Al Then LA, ®) defined in (I1.31) is
holomorphic in B and in this domain it satisfies, uniformly in  and A >0 small:

1L, 0)|=0Q1) |¢lla, ¥]la..
Proof of I1.5: Let c(A\)=27Z(A\)2- 2&,(A) - F(A, & (V).
II(A’ ko) = Ill(’\: kO) + I12(/\"9 ’kO)’

k 2 -1
Ii(A, k0)=c(/\)j dpl[(“+P1) +m2]
pVl=4m 3
2k 2 " -1 W . o
% 3 P +mg| (h(p?’, pi’)— h(ro(k®), P1")),

k 2 ~1
I5(A, kO)=C(!\)I dpl[(“"Pl) +m2]
pl=4m 3

’ [(%’f_ pl)z ; mﬁ]_l(h(uo(ko), ) = h(pa(k%), 0)).
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In the first term we put:
1 1

KV o, 2k V.
§+P1 +m 3 P +mpg

B 1 11
- 02 2 2k \?
maz—m? %—Zkop“’) (§+p1) +m? (?—pl) +mjp

so that we can write
h(p, p{") — h(po(k), p”)
L, kO =c(X j d
11 ) (A) . P1 2k0(ﬂvo(k0) p(o))

1 £ |
X e
[(]“C+ )2+m2 (2k‘" )2+ 2]
3 D1 3 P1 Mmpg

and each of the two resulting terms can be analytically continued to 0<Im k°<
$m by suitable shifting the contour of the p{”- -integration. Note that fio(w) is
holomorphic in #’ and this implies that I,,(A, ») is holomorphic in this region.
The uniform bound follows by noting that
sup |w(py)(h(p”, pi°) — h(po(k®), P =0(1) [|4lla,.. 9],

[Imp{P| <83

(P +py" + 1P

and that the integrals
,[(1) dpl ko -
P k) - p P (04 Re ) 4o 41
and

dp P+ p*+1)¥3
potmam O (oK)~ pPL(pP —3Re kO + p + 1]

are uniformly bounded, since we can suppose |p\® — uo(k®)|>1 and |Re k°|<4m
~ (see Lemma I1.2).

Consider now the term I;,(), k°). We can do the p{¥-integration by residues,
obtaining, with g(a)=+pP?+a?:

I>(A, k°)=C(A)WI dpiP(h(po(k®), pi”) — h(poe(K®), 0))

p(Vj=dm

1
8 [g(m) [-k°+ i(g(mg)+g(m)[-k°—i(g(mg)—g(m))]
1 1
 2(ms) KO+ i(g(mg)+ g(m)Ik°+i(g(mp)— g(m)]

s cmj A (oK), p) — h(uo(K), 0))

p{Vl=4m
[ ; k®+mf—m?>+2ik°g(m)
gm) (kZ2+m2—m2)?+4k2(pD>+m?)
L k”+m?—mp+2ik°g(mp) ]
g(ms) (K%+m?—mE) +ak(p +m3) ]
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Note that
(k?+mg —m??+4k%mj = (kO +(m + mp)>)(k**+ (mg —m)?)
= (k”?+m?—m3)’+4k”m?

so that the imaginary terms cancel and we are left with

Lo k) = - cm[ . APk, p*) — h(uo(k?), 0)
p{Vl=4m
[ 1 k02+ m]23 _ m2
g(m) (k02+(m3 + m)z)(k02+(m3 _ m)z) +4k02p(11)2

1 k®+m?*—m3 ]
T elmg) (K7 (mp + Pk + (mB m)?) + 4k (p{M?
We introduce the w-variable:
k?+(mg +m)*>=n(A)’e?

k°2+(m,3——m)2= dm'mp— 0> _ (@) ,_m , _ mpg
4k dmrmpP-o® 7 TR T a0y
4k02 =S1((D),
k%2 +m?—m3
4k02 ESz((l)).
We have, thus:
I\, @)= - C(/\)j dpiP(h(fio(w), pi”) — h(fo(@), 0))
p{Vl=4m
5% [ s1(w) n Sz(w) ]
g(m)n(A\)’w’s(w)+pi?]  g(mp)n(A)’@’s(w)+piH?

Both terms are analysed in exactly the same way. Note that s,(w) and s,(w) are
holomorphic and bounded on a large disc centered at w =0 (in fact they are

holomorphic on a disc of radius (m + mg)n(A)™"). Write the denominators in the
form:

1 1 1 1 ]
(/\)2(1)28((0)[)(1)2 2p(1)[ (1)‘5‘17](/\)&)81/2(&)) p(l)—i'n()t)wsllz(w) )

Choose the determination of s/*(w)=u +iv for which u>0. We claim that
(see the proof in Appendix B), with @ =x +iy:
i) if x>0, vy <0.
i) if x <O, vy >0.
iii) so<|s'*(w)|<1, some s5,>0.
We analyse the term (p{" +in(A)ws*(w)):

(pi" +in(M)ws (@)™ = (pf" + n(A)i(xu —vy) = n(A)(xv +yu)) ™
= (pO+il, +1,)

If x >0, the denominator never vanishes since xu —yv > 0. If x =0, then v =0 and
l;=0, and so there is a real zero p{” =n(A)yu on the integration path. So the
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integral defining I;,(A, ) is a holomorphic function of w for x = Re w > 0. But we
can take advantage of the holomorphy of h(fiy(w), p") to deform the contour of
the p{"-integration and analytically continue I,,(A, @) to the left half-plane. This
is done according to the picture below.

(1)

L Im p|(1) Im P

-4m 4m
R e e e e = Rp p.tY
-4m 4m Rep;()) = P

61(5)—5

Figure 5

We can now go with o to the left half-plane as long as |I;|< 87 —2¢. A very crude
bound is |l;]=(lx|+|y])n(A) and so we can analytically continue I,,(A, w) to the
left half-plane in the domain

6(13)—28}
n(A)

(in the case of (pi"—in(A)ws"*(w)) the contour is deformed in the opposite
sense). This defines an analytic continuation of I,,(A, @) to B8 —2e]/m(r)).
The uniform bound follows as in the case of I,(A, w). This completes the proof.

O

Proof of Lemma I11.6. We have to show that I,(A, k°) is holomorphic and
satisfies the bound for k°c €. This implies holomorphy in $B%. As in the proof of
Lemma I1.4, we consider separately the regions |p\”|=6m. In the region |p{”|>
6m, both functions in the integrand are holomorphic in €. The bound is also easy
to show. In the region |p{”| <6m, we note that the integrand is analytic in k°c 6
and that

| k g 12k 2 ~1/2
I*”fl)‘£4mdp1[(g+pl) +m2] [(_3‘_171) +4m2] <o

Ip{Pl=6m

{w:Rew<0, IRe o]+ |Im w|<

uniformly in k®e €. Since we always choose the determination of the square root
which has positive real part, this also proves our result for (2k/3—p,)*+4m?)"*+
(M) once we note that £;(A)>0. O

Our next task is the analysis of the singular part, y;;(A, k°). From its
definition (see (I1.21)) we can see that its analytical properties are those of t(A, k°)
defined in (I1.22). We state our result on t(A, k°).

Lemma IL7. Let t(\, ) be defined by (I11.22) aﬁd set
1
nM)e

(N, )= to(A, @).
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Then ty(A, ®) is holomorphic in B([8 —2e]/m(N)) and in this domain it is
uniformly bounded in  and A >0 small. We have also:
1

A()A.,Oz 2. —_——
o, ) = \/m(/\)mB()l)

Proof. We use the same notation as in Lemma ILS. Performing the p{"-
integration by residues we get, as before:

*) k)= WI dpy”

p{V|=4m

[ K2+ m3—m?

o ;
gL+ (mp + mP)(+ (mg —m)) +4k2p% '"B]

Again we introduce the w-variable, obtaining:
2 s;(w)
t(A, w)= ’n’j dp(l)[
p=am  LgM)[N(A)’0?s(w)+p§?
4 $;(w) ]
g(mg)[n(A)’w’s(w)+pi?
Now write the denominators as:

1 1
nA) w?s(w)+ p(l)2 2in(A)ws'*(w)

1 1
[ (1)—‘171()\)0)81/2(0)) p 1)+in(/\)ws”2(w)]'

From this representation, it is clear that we can repeat the proof of Lemma IL5 to
show the holomorphy of (A, @) in B[P —2e]/n(\)).

On the other hand, for k° =ik, (mg —m) <k <(mg +m), we can explicitly do
the integral marked (*) above. We use

j.dx ! = arctg a —c a’>c?
(x2+ Vx> +a? C\/a —c? cvx?+a? ’
and obtain:

t(A, ix) = m(—k>+(mg + m)>) V3 (k> — (mg —m)*>) ™2

(k*—mz+m?p® 1

(k2= (mg —m»V2(—k>+ (mg +m)»"> VpP*+m?1_,,

X [arctg

+m<—>mB].

When k = m + mg(w — 0), the last factor goes to 27, so
1 _ 2

to(A, 0) =272 -
° \/4mmB \/mmB
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since (k*>—(mg—m)>)™"*—= (4mmg) "? as k — (m+mg). This completes the
proof. (O

This lemma completes also the analysis of b;;(A, k°). There remain the other
b, (A, k°), defined by the rule (I1.10). It is clear that by a change of variables, all
results on by,(A, k° carry over to b;(A, k°). Let us see briefly what things look
like. Define

d’gl)(Pz) = 4’(?1, %'*‘ Pl) ’

dP(p,) = ¢(—%1-+p2, %Jr pz) , (I1.32)

¢y (py) = ‘b(_%—Pz, “Pl) ,

with analogous definitions for ¢'(g,). The index i in ¢, ¢’ refers to the
channel. Our previous ¢,,, ¢, coincide with ¢{, ¢V
One can verify that

(¢s bij (/\-5 k 0)"’)

k ) 2k .
= 547TJ.dP1R1(/\9 §+P1)jdpz dqzd>§,’3(p2)R(A, ‘3—_ P1, P2, fb)ll’gl(_ch)- (I1.33)

For 6(p,, p,)€ A4, we define g, (A, ke L(AL, AY), i=1,2,3:
(8, (A, k%) =B (n(k)),

— . " 11.34
Oe;(py) = Idpzﬂgf(pz)H(A, £1(A), p2) ( )

and, as in (IL21), &6(p,) = f dp,0©(—p)H(, £,(A), po).
Let also

YA, KOG =27Z(A) - 2Z,(A) + F(A, LA, KO)e: (A, KO (r(k®)  (IL35)
and
a; (A, k%= b;; (A, k°)— Vi (A, k). (I1.36)

Then our previous lemmas and the above definitions imply the following theorem:

Theorem IL1. Let n(A\)=vIm2—(m+mg(A))? and let also ¢, e AL, de

5. Then (¢, a&;(A, ®)¢) and n(A)w{d, ¥,;(A, w)§¥) are holomorphic functions in

w € B-([8—2¢]/m(N)). Furthermore, in this region we have, uniformly in @ and
A >0 small:

Ke, 6 (A, @)Y} =0(1) | $]la,.. l¥la,.

Proof. Follows from the preceding discussion. [J
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We turn to the discussion of R,z (A, k°). Recall (I1.11)
3 -1
Res(0, k9 =( L 570, 49)
K
Write this in the form (we omit sometimes the A, k°-dependence)

3 =il
R>p =%(b11+b12+ b13)[( Z bﬁl) ) 'sli(b11+b12+b13)] :

i,ji=1

We have as a first result:

Lemma IL8. On the space As, the following identities hold:
. i) (b;11+b;21+bi31) t % * (b11+b12+b13) =1

ii) (bi_ll B bi—zl + bi_31 ' % *(b11+bia+bi3)=1 +0(A l‘”Da i=2,3.

Proof

i) it suffices to remark that b,, = b;, = b;3 acting on As,.

il) we write

(bi_ll * bi_21 + bfal ' % *(by1+ bt bis)

= (bi-_11 + bEzl + bi_Sl ’ % * (bi1+ biz+ b;3)
+(bi' +b5 +b3) - 5+ (byy+bia+by3— by — bin—b;3).

As in i) above, the first term equals 1 when acting on A;. In the second, we note
that, on A,,

(bil' +b5 +b33") « 5+ (byy— by + by — by +bi3—b;3)
=(bi1 +b +b35") 5 (a1~ Fap—op a3 — ay3).
Now we remark that each b;' is O(lw|) as |w|— 0. Then it suffices to show,
to complete the proof, that a;—a; = O(X). But this follows from b,;—b;=

O(A/|w|) since each b;(A, k°) is C” in A for A =0 small and they coincide at A = 0.
O

From Lemma I1.8, we can conclude that, acting on A, [}, b5") - by, +
bi,+b13)T ' =3+ O(A |®|) and we have the following result on R, (A, k°).

Write
RZB A w)= él(f\s w)+ éz()\, w),
Bi(A, @)y =2ZA )L (MFW, LD, 0)8,(A, @) (IL.37)

X (19 (f(@)) + 520 (i1 (@) + 259 (i (@))]
For € A, we have:

B0, @) = E*(\, ) (Vo) &1\, ©)e (i () (I1.38)
with
E*¥(A, @) =6ZA 2L AR, L) T(A, @). (I1.39)

Theorem II.2. Let &, yc€As, ¢EAs.. Then (¢, B\, 0)¢) and
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n(M)w{d, B1(A, @)¢) are holomorphic in w € B[ —2€]/n()). In this region we
have, uniformly in @ and A >0 small.

Kd)’ B2(/\9 (l.))l’l)] = 0(1) “¢|IA3_°° "d’“Aa‘

Proof. Follows from the preceding considerations. [

III. The analysis of R;(A, k%) and S,(A, k°)

The analysis of R5(A, k°) has two main ingredients: the knowledge of the
analytic structure of R,g(A, k) and K;(A, k°). These two things are not really
independent since in defining K; we have extracted from R3' all of its non-
connected part (namely R33). So in K5 = R5'— R53 we expect that in addition to
three-particle irreducibility (in the x — y channel) we have also connectedness in
all channels. This is indeed what can be proven in models to which Spencer’s
method of t-derivatives applies, as it is the case for weakly coupled AP(¢),
models. In [CD], Corollary 2.1, it is shown that the suitable ¢-derivatives of
K;(A, t) (in fact it is proven for K,, n=1) vanish at t =0 so as to give, applying
Spencer’s method, the decay:

3lA, X, Xp, X3, V1, V2, V3)|= CXPL—aMmM —€) " 3[X1 TX2TX37 Y17 Y27Y3
|K5(A, x4, x )|=0(1) exp [-(4 ) 31X+ X+ x3— Y1~ y2— ¥l
—(m— e)(|x, — x5| +|x; = x3| + |y — y2l +|y2— yaD]-

(IT1.1)

This result can be translated in p-space by saying that K5(A, k°, p1, P2, 41> 42)
is holomorphic in

|Im k°|<4m —¢,

|[Im p§”}, [Im p3”, [Im q{”), |Im q5”| <3m —¢ = 8§, (I11.2)

[Im p3"), [Im p5Pl, [Tm q{"], [Im g5"| <im — & = 8.

Note that holomorphy in the p, q variables expresses the connectedness of K,
and is in some sense equivalent to it (see [B]).

For our purposes we need some results on K; going a little further, namely:

i) K5(A, k%, p,, q;) is bounded in the region (I11.2).

ii) Ks(A, k% p, q) is a C function of A =0 small.

These two properties can be derived from the representation of K3 as a
convergent Neumann series:

K;=(1+R35G3) 'R33G3R33, G;=R;—Rgg.

If C(x—y) denotes the free covariance and C3;'=C'QC '®C™?, the
singularities of C3'G; and of C3'G5C3"! are isolated using integration by parts, as
in [S] and [K]. We sketch a proof of this in Appendix D.

Note that K;(A, k, p;, ©) € A, since it is invariant under the transformations
(I.11) and it is bounded (in fact |K5(A, k%, p,, ¢;|= O(A), since K5(0, k°, p,, q¢;)) =0).

Given these properties, we are able to study the analytic structure of
R;(A, k°). Recall equation (1.10):

R3(As ko) = RZB (/\’ ko)ﬂRZB (Aa ko)Kﬁ'}(/\s kO)R‘_’&(Aa ko)'
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Let
VA, k%) = K5\, k)Rz5 (A, k°). (I11.3)
According to the decomposition of R,5 given in (I1.37), we decompose also:
V(A k% = V() k%) + V(A k9,
Vi(A, k%) = K;5(A, kK9)B:(A, k°), i=1,2.

Since K, is holomorphic and bounded, we can apply Theorem II.2 to conclude
that V,(A, k°) is a rank-one operator in £(A;) given explicitly by, for any ¢ € Aj;:

(V1A @)$)(p1, P2) = E*(A, 0)(n(M)w) e ¢ (4 () K*(\, @, py, p2) (ILL5)
with K*(A, @, p1, p,) € A, given by:

(I11.4)

K*(/\, ®, P1, P2) = IdQ2K3 (/\, ®, P1, P2, (w), %w_)+ Q2)I:I(/\a &i(A), q,) (I11.6)

We quote a first result.

Proposition IIL1. The operators n(A)wV;(A, ®) and V,(A, ®) are holomorphic
in weBc([6%—2¢]/n(A)). Furthermore, we have in this domain

V2, @)|=O0).

Proof. Given the properties of B:(\, ®) and B,(A, @) in Theorem II.2, and the
fact that |K5(A, o, p;, ¢;)|= O(A), the result follows as in Theorem II.3 of [DE].
' O

As a preparation for the main theorem, we prove here the following:

Lemma 1. Let V,(\, o) be defined in (IIL.5). Then we have |lwVi(\, »)| =
O(\) for w e B8 —2e)/m(A)).

Proof. Given that |K;(A, )|=O(X), the result follows once we prove that
¢*(A, @)m(A) " Y|=0O(1). But this is a consequence of ¢ (A)n(A)"'=O0(1).

Recall now that
R3(A, k) =R,z (\, k) (1+K3(A, k)Ryp (A, k)"
=R\, k)1 =V (A, KO+ V,(A, k).
Turn to the w-variable:
R3(\, @)= Ry5(X, 0)(1+(1+ Vo(A, 0)) 7' Vi, ) '(1+ VoA, @) 7,

where the existence of (1+ V,(A, w))™! follows from ||V,(A, @)]|=O() for we
B[ —2e]n(A)), see Proposition IIL.1. It follows that R4()A, @) is meromor-
phic in B89 —2¢]) n(1)), with poles at those values of @ where the trace of the
rank-one operator (1+ V,(A, )) ' V;(A, @) is equal to —1. Let

Fl(Aa Cl)) =Tr [(1 + V2(A5 w))_l Vl(/\’ (U)]

é*(/\, (0) P

= AAm e1do(fi(@)) (IIL7)
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where we have defined ;€ Aj;:
lp() = (1 + V2(/\~’ w))dlf‘(*(’\, (0). (III'S)
We write, explicitly:

0D = [dpa dpt dps das O, 60, p2)

x(1+V,)" ()l o, i(w), _5“_(2£’_)__ P2, — P4, —-pa) (II1.9)

X Ro(h 0. 3, 0, 2244, )AL, 1,0, a0,

Lemma IIL2.

i) HQA, £1(A), ") =8()+04,(A).

i) (1+ Vz)#l(/\, @, P1; P2, 41, 42) = 8(p1—q1) 8(p2—q2) + O(A).
Proof

i) follows from

HQ, £(A), ) =1+ THA, L(A) 70, )

and || T(A, £&;(A))l£ca,y = Oa,(A), see (1.15) and [DE].
ii) follows from Proposition I11.1. [

We can state now our first theorem:

Theorem IIL1. F,(\, w)=—1 has one real solution w,(A) in B89 -
2e]/m(N)). In addition, we have that K5(A, w =0, {(0), @(0)/2, i(0), £(0)/2)=0
implies w,(A)=0 respectively.

Proof. Since |F1(/\ ®)=<O( |o|™) (this is a consequence of Lemma III.1),
the solutions of F;(A, )=—1 can only occur for small |w|. We look thus for
solutions inside the curve y={w:|w|=r} for a fixed and small r. Let G,(\, w) =
wF, (A, ®) and note that F(\, ) =—1 is equivalent to G,(}, ®) + o = 0. Consider,
then:

HQ\, 0)=G,(\, ©)+o =(G,(\, 0)+0)+(G,(\, ) — G,(A, 0))
EPIl(z\, w)+I:12(/\, ).

We see that H;(), ) has a real zero at wo;(A) = —G(), 0). Remark also that,
by Lemma IIL.2, and for A small, K;(A, 0, @(0), i(0)/2, i(0), (0)/2) =0 implies
G;(X,0)=0 and so wg;,(A) S0, respectively (this follows because é*(A, 0)n(A)~ ' is
positive). Let @y;(A)>0 and consider the semi-circle y; U v,, with

vi={w:|lw|=r,Re 0 >0},
Yo={w:w=iy,-r=y=<r}.

On L, using that G, (A, @) is holomorphic inside a circle of unit radius, contained
c([6?—2e)/n(A)), we have |H,y(A, w)|=r/2 for sufficiently small A. Also
le()\ ®)|>r/2 for A sufficiently small, so that on v,, |Ho(A, ®)| =12 <|H,(A, ®)|.
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On the other hand, we have the bound
IH (), )| <O |o])

uniformly for |w|=<r, so that on v,
|H>(\, )| <|y|<|H,(A, ®)|

for A sufficiently small.

So |H,(A, )| < |H,(A, ®)| on v, Uy, and by Rouché’s theorem, H(A, ) has a
unique zero @,(A)>0 inside vy, U v,. Since the zero is unique, it is real. If wq; <0
we use the same argument to show that w,(A)<0. O

One last result we shall need about R;(\, ») is the following:
Theorem 2. R,(A, w)=36,(A, ®)+6,(A, ®) with (0 — (1)) 6:(A, ®) and
>\, w)e L(A;, A¥) holomorphic in @ e@c([ﬁ(‘” 2e]/n(A)). Furthermore,
61\, @) =d(\, 0) (@ —0;A) 1+ VFQ, 0) ', ©)
%, (1+ VEQ, @) 188, ),
G2\, @) = Bo(A, @)1+ V,(\, @) 7,
and

w—o;0) ¢*, )

dA w)=2 TG, @) n))

Proof. Since (1+V2(/\ ®)) 'V,(A, ») is rank-one, we have, with Tr(1+
Va(h, 0)) 'V, (A, 0) = Fy(A, @) # —1.

[1+(1+ VoA, @) Vi, ) ' =1—(1+ VoA, 0)) ' Vi(A, @)1+ Ei(A, )]
Hence we can write R,;(A, o) as follows:
Ry=R,s(1+(1+ V) V) (1+ V) !
=Rop(1-(1+ V) ' V(1 +E) ) (1+ V)

(1+V2) 1V1(1+V2) 1
= 1——
=B,(1+ Vz) B, 1+F,
A (1+V2)_1V1(1+V2)“1) 5 ( (1+ V)V,
- . +
+Bl(1 1+F, Bi\1- 1+F,
1+ Vz) Vl(l + Vz)*
1+F1

)(1 + V)t

A

=02~

'CD>

2
6*
+ =
Nn(A)(o + oF);)
where we have used that:

Bl(l +ﬁ1 *'(1 + Vz)_lvl) = 31

&1L, oX(1+ V), 8,0, @)
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since, for a general :
A%

31(1 + Vz)_l Vllll = 31(1 + Vz)_l : 'r](c)l)w EI;F(@(W))K*(/\, ), see (ITL.5),
A* - "
(‘;) @@ Bido  (o=(1+ V) 'R*, see (IILY)),
&% \2 )
-(=55 ) E @) e @) o).
On the other hand,
o*
31(1 +F1)'«l' 31""*‘1:1 ) 81‘!’(#(0’))81()\ w)
.«* e
= B+ (o) BRI @)E, ),
Returning to Rs:
~ - 6* A A Sy v—1 . a
R;= 0'2“'7]@)((0 +wﬁ'1) (81()\, w)— Bao)(1+ Vz) > 81(% w))
=ty 1B+ T RIE N, o)L+ 027, 40, @)
since
Batho= Bo(1+ Vo) 'K* = B,(1+ V) 'K38,(\, @)
. &* e e
R3 = 0-2+T,(A)(0) +wﬁ1) (1 Es V’Zk) lel(A, (1))( ’ (1 + V=2k) 81(/\'5 (1)))

where we have used that
1< éz(l T+ Vz)_lﬁs =(1+ Vg‘)_l, with V’zk = ézﬁs-

Note finally that o +®EF;(A, )= H(A, o) is holomorphic in B8 —2&]/n(A))
and has a unique zero ®,(A), so that we can write

¢*(A, o)
n(A\) @+ oF; (A, w)) > w1(/\) d(A, ®)
with
A\, w)= w-o;(0) &M\ w)

w+owF,A o) nQ)

holomorphic in B-([6—2e)n(A)). O

The spectrum of the energy-momentum operator is directly connected to the
Schwinger functions via the Osterwalder—Schrader theorem [OS]. Up to now, we
have studied the 2-particle irreducible six-point function and we must now carry
out our results to the Schwinger functions. We shall see that one way of doing so
is to look at the two-point Schwinger function, S,(A, x —y). Let S;(A, k°) be its
Fourier transform, and let C(k®) = (k**+m3)™! (as before, we put k' =0). Define
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also the one particle irreducible two point function K,(A, k°) by:

. Kl(As ko) = S~2(I\-’ kO)—l - C(ko)_la
or
S>(A, k%) = C(k%) — C(KOK,(A, k)S,(A, kO). (I11.10)

In an even theory, we have Spencer’s result [S] that K;(A, k°) is holomorphic
and bounded by O(X) for |Im k°|<3m — €. From this result we can conclude the
existence of a pole of S,(A, k%)= (1+C(k")K,(A, k) *C(k°) because 1+
C(k")K;(A, k° has a zero at some value k°=im(\) near the pole of C(k®) at
k°*=—m3. This pole corresponds to the mass of the lightest particle described by
the theory. We shall now see that 1+ C(k®)K;(A, k% =0 can have a solution near
k® = —(m +mg)* because of a pole of K,(A, k°). We begin our study of K;(A, k°)
in x-space, considering:

jdx’C“(x —x'Np(xNp(y))=8(x—y)— AP (x)d(y))

=8(x—y) = AC(x— yXP"(x)) + AzIdX'(P'(X)P'(X'))C(X' ==y}

This follows by integration by parts, and we use P(x) as a shorthand notation
for P(¢(x)), and P is the Wick-ordered interaction polynomial. The primes on P
stand for derivatives. We have also:

K, C=8;'C-1
=(1-C7'8,)S8;'C(1-C'S,))+(1-C1S,)

=3[z, dzs dzP (Db (20)S3 (21, 2)Clza~ 2P () (1)
32| dx PP (NG - )+ ACG -y P ()
= /\Zjdh dz, dzs(P'(x)(21))S3 (21, 22){d(2,)P'(23))C(z5—y)

- Azjdx’(P'(x)P'(x'))C(x'— y)+AC(x — yXP"(x)),
where we have used
MdzsClzs 2P )0 = Ajdz3<¢(zz)P'(z3)>C(z3 _y)

= —((22)d(y)) + C(z,—y).
We can express K in the following way (recall the definition of P,, in Chapter I):
Ki(A, x—y) ==AXP'(x)(1-P)P'(y))+ X 8(x — y){P"(x)). (IIT.11)
At this point we use the fact that P is even to rewrite K, as:
Ki(A, x—y)= _A2<P’(x)P3P’(Y)) —AXP'(x)(1-Po—P,—P,—P;)P'(y))
+A 8(x —y)P"(x)), (I11.12)
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since P,P'=P,P'=0 for even P.

We define:
B;(A, x—y)=—-A*P'(x)P5P'(y)).
D,(A, x—y)=—AXP'(x)(1-P,— P, —P,—P;)P'(y)), (I11.13)

Dy(A, x —y) = A 8(x — y){P"(x)).
We write explicitly B,(A, x —y):

Bi(A, x—y)= —/\2de1 dz, dz; dz} dz} dz5(P'(x)(1 - P1)$(21)b(22)(25))

X R3\ (24, 24, 23, 24, 25, 25X (21) d(25) b (25)(1 —P,)P'(y))
and we let

L3(A, X, ¥1, Y2, ¥3) = /\-jdzl dz, dz;(P'(x)(1—P)d(z1)d(2;)d(25))

X R3'(zy, 25, Z3, Y1, Y25 ¥3)- (ITI.14)

With z=(z,, z,, z3), We write:

B\, x—y)=— Idz dZL;(\, x;Z2)Rs(\, 2z, Z)L¥(\, 7’5 v). (I11.15)
Introduce

7=x—3(y1+y2+¥3), E1=Y17 Y2 £=y2—Y;3

and consider the Fourier transform of Ls(A, X;yy, ¥2, ¥3) (=Ls(A, 7, &1, &) by
translation invariance):

Li(A, k, p1, p2) = (217)_2de dé, dfzei(k7+p‘§1+p2§2)L3()\, 7, &1, &)
Similarly, with

T =31+ Y2t ys) =X,  E=¥1—Vs L=V Vs

we Fourier transform L¥(A, v, ¥, Va;x) (=L¥(\, 7, £, &) by translation in-
variance):

L;k(/\, ka pb p2) = (21‘7)—2de dgl d§2ei(k7'+p!§1+p2E2)L=3k(’\’ T,, 513 §2)-

Remark. Using that R3*(A,x,y)=R5'(A,y, x) and that

(P'(x)(1=P1)d(y1)@(y2)d(y3)) = (d(y1)d(y2) b (y3)(1—Py) P'(x))
we can conclude that Ls(A, X; ¥y, V2, ¥3) =L¥\, vy, 2, y3;x), or that
LaSk(A7 T” ‘fl’ 62) = LB(A: —'T” gl: §2)- ThiS lmplleS that L;k(/\’ ka pls p2) =
L3(A, —k, p1, P2).
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Equation (III.15) reads as follows, in momentum space:
B;(A, ko) == deI dp, dq, dgq,Ls(A, ko, P1> P2)Rs(A, ko, —P1> —P2: 41> 92)

XLE(\, k° —q1, —qy), (II1.16)

where we have put as usual k' =0.
Consider also:

2

A
DZ(A’ kO) = —ﬂ

j dre™*(P'()(1—Py—P; — P, — P, P'(0)),
(I11.17)

D;(\, k9) = % L ao=(P"(x))=(P"(0)).

We should know, to go ahead, what are the analyticity properties of D;(A, k°),
D,(A, k°), Ly(A, k° py, po). The result for D, (A, k°) is trivial, since it is a constant.
Kernels like D,(A, k°), defined with the Euclidean projectors P,, are expected to
be 3-particle irreducible. In weakly coupled AP(¢),, where the modified cluster
expansion of Spencer [S] converges, one can show that (see the proof of Theorem
I.1 in [CD]) the suitable t-derivatives of D,(A, t, x, y) vanish at t =0 so as to give
the expected decay:

|D5(A, x —y)|=<const. exp [-(4m —¢) |x — y|].

This property can be translated in momentum space by saying that D,(A, k°)
is holomorphic in |[Im k°|<4m —e.

A similar result can be proven for L;(A, k°, py, p.). This is essentially done in
[CD] (see their proof of Theorem II.1) and the result is again that the suitable
t-derivatives of Ls(A,t, x; yq, V2, ¥3) vanish at t=0 so as to give the decay
(assuming that Spencer’s method works, as is the case in weakly coupled AP(¢),):

|L3(A, x; y1, V2, y3)| <const. exp [—(4m —€) |x —3(y, + y, + y3)|
—(m—e)(ly,— yal +1y2—yaD].

This means that, in momentum space, L;(A, k°, p1, p») is holomorphic in
[Im k% <4m — g, [Im p{®|, {Im p$’| <3(m — &), [Im p§"|, [Im p$°|<i(m —&). Regard-
ing L;(A, k° py, p,), one can prove that it satisfies the following two properties
(the proof is sketched in Appendix D).

i) Ls(A, k° p1, p,) is bounded in the above region.

II1.18
ii) it is a C* function of A for A =0 small. ( )

We have already used similar properties when dealing with K5. As in the case
of K3, these properties in the present case can also be derived by isolating the
singularities of C5' - (¢ (x;)P(x5)P(x5)(1—P,)P'(y)) using integration by parts.

The same technique can also be applied to show that D,(A, k°) is bounded
by O(A?). Introducing the w-variable and taking into account the above dis-
cussion, we conclude that D;(A, w), Dy(A, ®), Ls(A, @, p;) and L¥, o, p;) are
holomorphic and bounded by O(A) in w € B8 —2e]/n(A)).
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We further analyze B,()\, w). Recall Theorem IIL.2 and consider:
B\I(A: (D) = ﬁ(A’ (O) +D3(/\-a (t)),

B, w)=-L;\, @)6,(A, ) L¥, w), (I11.19)
Ds(\, @) =—L;(A, )65\, ©) LX)\, o).
Define also
D\, 0)=D;(A, @)+ D5(A, )+ Ds(A, @) (I11.20)
so that
K\ 0)=B\, 0)+D, o). (II1.21)

Note also that C(k°)=C(w) is holomorphic and uniformly bounded for
w B8 —2¢]/m(N)) since we stay away from k®=im,, the pole of C(k°). We
can summarise the preceding analysis in the following.

Proposition I11.2

i) DA, ®) and (@ —®,(A))B(), ) are holomorphic and uniformly bounded in
0 € B8 —2e1n (). In addition,

DA, @)|=06().

ii) The same for C(w)D(\, w) and (0—0,A\)C(0)B\\, ®), with
|C(@)D(A, @)|=OW0).

These statements are true uniformly in A >0 small. [

Consider the two point function:
gz()\, w)= (1+ é(w)ﬁl (A, W))_lé(w)
=1+ C(@)B(A, 0)+ C(@)D(A, 0) 1C(w)
=1+(1+C(0)D\, ©) 'C(0)B, ©)) (1 + C(w)D(A, 0)) ' C(w)
where we have used that (1+ C(w)D(w)) is bounded away from zero, for small
A>0, so that (1+C(w)D(A, »))~! is holomorphic and uniformly bounded in

w € B([6P—2e]m(A)) and A >0 small.
Define

B, 0)=1+C(w)DQ, 0) *Ce)B), w). (I11.22)

Then it is clear that poles of S,(A, ) correspond to the solutions of E,\, 0)=—1.

Theorem IIL3. Assume 3,Ks(A =0, ® =0, i(0), i(0)/2, 1(0), 4(0)/2) # 0.
Then F5(A, @)+ 1 =0 has one real solution w,(\) which has the same sign as w,(A).

Proof. Consider Ls(A, o, p1, p») and L¥(A, w, p1, p,) € A5 (this follows from i)
and ii) in (II1.18).

Define
[, ©)={1+ VA, ©))'Ls(A, ©), &:(A, @),
I*(\, )= 1+ VZ(A, w)“‘f,if(/\, w), £.(A, w)).
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We can write B(A, ») as follows: (see (IT1.19) and Theorem II1.2)
B\, 0)=—(0—0;A\)d], o)\, 0)I*Q, o).
Let
O\, @)= (1+C(w)D(, ) 1C(w) A, 0)I(A, @) *(A, ®).
Then E,(\, o) +1=0 is equivalent to
J, 0)=0;0)—0+Q(\, 0)=0
or, with J;(A, @) = 0;(A) —w + Q(A, 0)
(A, ©)=Q(\, 0) - O, 0),
T\, @)+ T\, @) =0.
The function J,(A, ) has a real zero at
®ea(A) = w,;(A)+Q(A, 0).
One can also verify that:

i) 18, 0)*(r, 0) = |I(x, O)P>0

ii) d(/\ 0) =[—w;(A)/G,(A, OTE*(A, 0)/n(A)]>0  because w;A)>0e
Gl()l 0)<0 and &*(,0)>0

ii) C(0)<0 |C(0)|<O(1)

iv) (1+C0)D(, 0)"'>0, [(1+C0)D(, 0)) Y= O(1).

The result is that Q(A, 0)< 0. We shall now verify that |Q(A, 0)| <|e@,(A)| so
that wp,(A) has the same sign as @;(A). To see this, note that, by our assumption
on 3,K;, we have G,(A,0)= Av(A), with |v()\)|>v0>0 for small A. On the other
hand, |{(A,0)|=O(), so that |Q(A, 0)|=0(1) |w:1(A)] - OAD/A = O(DA w1 (A)].
For small A, we have then |Q(A, 0)| <|w;()A)|. Assume now that w,(A)>0, so that
wo2(A)>0. Consider again a semi-circle y; U y,,

v1={w :|w|=r, Re ® >0},
Y2={w:w=iy,-r=y=r}

for r fixed and small.
Since Q(A, @) is O(A?), on y; we have:

a r a
B0, ) <2 <R, o)l

In addition, we have the bound for |w|<r:
IO, ©)— O, 0)|=O(\?|w|) (this follows from the holomorphy)
so that on vy, we have:
(A, )| <yl < 1A, ®)|.
Since |J,(A, w)l <|J,(A, ®)| on v; U v,, we conclude by Rouché’s theorem that

J(A, @) has a unique (and real) zero w,(A) >0 inside y; U v,. If ,(A) <0, a similar
argument shows that w,(A)<0. O
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We close this chapter by observing that the physical region of the w-plane is
the half plane Re w>0. So w,(A)>0 lies on the physical region. In order to
decide whether or not this pole of S,(A, w) at w,(A)>0 corresponds to a point in
the mass-spectrum, we have to analyse the residue of S,(A, ) at @ = w,(A). This
is done in the next chapter, together with a brief analysis of the connection of the
mass-spectrum to the poles of the Schwinger functions.

IV. The spectrum of P,

We begin this chapter by showing that the residue of S,(A, ®) at @ = @,()) is
not zero. Then we make the correspondence between the functions already
studied and the four and six point Schwinger functions. Finally we establish the
relation between Schwinger functions and points of the mass spectrum.

In this chapter we shall use the notation k° =ik, and we assume that we are
dealing with a model such that w,(A)>0 (and so w,(A)>0).

Let m3(A) be defined by:

m3(A)* = (m(A) + mg(X))*—n(A)Yw, (V). (Iv.1)
Let also
Z3(A )= K_linffl(n (—x?+ ms(A )2)520, K). (Iv.2)

We have the following result:

Proposition IV.1. Assume Li(A, w =0, i(0), 1(0)/2)# 0. Then Z5(A)*>>0.
Proof. According to the definition of Z5(A)?, this is equivalent to prove that
2w5(A) limm(w —w,(A))S,(A, )>0.

Recall the notation used in the proof of Theorem III.3. We have:
$:(A, @) = (1+ C(@)D(\, 0)) ' C(w)

. (1 —(1+C(w)D (A, 0)) ' C(w) 40 wz)l(_t\;:())f;k(/\, w))_l
0 (A)—w
JA, ) -

But since J(A, ) is holomorphic and has a zero at w,()A), we can write:
JQ, @) = (@ — 0,(M)[J (A, @2(1)) +0(0 — w,(A))].

Note that
9\, @)=-1+9,0(\, )

and that

0.0\, @,(A)|=0O(A2).

=(1+C(@)D(, 0)) ' C(w)
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So, we have
®;(A)—w,(A)
—1 +an(As (D2(A)) |

_ Our condition on L; guarantees that w;(A)—w,(A)>0. On the other hand,
C(w,(A))<0, so that Z;(A)*>>0 as asserted. [

Z3(A)* =20,(M)(1 + C(@,(M\) DA, 0,(A))) ' C(w,(A))

This result shows that ms(A) is the mass of a particle, the three-particle
bound-state. Even though we have not proven any C” property in the A-variable,
we calculate in Appendix C the first correction of my(A) with respect to (m(A)+
mg(A)). In the remainder of this chapter, we show that k,(A)*=
(m(A)+mg(A))>—m(A)*w,(A)? is not a point in the mass-spectrum. The situation
resembles very much the two-particle problem in the case of a non-even model,
where the pole of the 1-particle irreducible four point function is not a point in
the mass-spectrum but rather induces a pole of the two point function, see [K]
and [GJ3].

We shall use the following notation: points of R? are denoted by x = (x°, x*)
and when the (imaginary) time component is zero, we write £ = (0, x').

Considering products of (Euclidean) fields, we define the usual Wick-ordering
and a modified one, where instead of using C(x —y)=§ e**V(k*+m}3) ™' d*k in
the contractions, we use S,(A, x —y). We denote, for example:

1d(x)d(y): = d(x)dp(y) - C(x—y)

IV.3
 (0S(): =)Dy~ S2h, x—) W)
Let
Srﬁr(/\, x,y)=( b (x)P(xz)P(x5): (P (y1)d(y2)d(y3) ) (Iv.4)
with the usual notation (-) for Schwinger functions. Let also
SN %15 %23 X35 2) = (P (x1); (x2); D(x3); P(2))c (IV.5)

where we use the semicolons to indicate truncation as, for instance, in [S]. In an
even model,

(¢ (x1)§ &(x,); ¢ (x3); d(2))c
={(x1) D (x2) D (x3)d(2)) — (P (x1) P (x)X b (x3) P (2))

—(D(x1) P (x3)X D (2) b (x,)) — (D (x1) b (2)X P (x2) P (x3)). (IV.6)
Recall the definition of R,(A, x,y). We claim that

R;(A,x,y)=Ss(A,x,¥)— jdzl dz,SS(A, X415 X,; X33 24)

X 871, 24, 22)ST(A; 225 V13 Y25 ¥3)- (Iv.7)

This can be. explicitly verified using (IV.6) and the definition of : Wick-order:.
Consider also

PRI (32) =PI () ()b (y:) |
- [ 4z dzP ST N, 21, ZHOGIOGIGGIGGN (V)
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One can also verify that:

(P'(x)(1-P)d(y1)d(y2)$(y3)) =(P'(x); ¢(y1); d(y2); d(y3)c
- jdzl dz (P (x)$(21))S7 (A, 21, 2K (22); &(y1); d(y2); & (¥3))c (Iv.9)

We want to express the Schwinger functions SZ(x, y) and S5(x4, X,, X3, 2) in terms
of the functions already studied. This is done in the next proposition:

Proposition IV.2

SS(A; x; Y1 Y25 ¥3) = —(S2L3R3)(A; X, ¥4, Y2, ¥3)
Sg(l\, X, y) = RS(/\’ X, y) + (R3L3S2L§R3)(Aa X, y)

or, in momentum space, with k°= ik,

SE(A: K, q1, 42) = _sz(k, K)J'dp1 dp,L;(A, K, p1, P2)R3(A, K, —p1, —P25 41, 42)

Se\, ki, @) =Rs(\, &, P, q) + Idp{ dq!Rs(A, k, p;, p)

X Ly(A, &, =pDS2(A, )LF(A, k, aDR3(A, k, 41, 4,).
Proof. Recall the definition of Ls(A; x;y) to write:
L3R3(A; x;y) = AP'(x)(1=P1) @ (y) b (y2)$(y3))
= MP'(x); d(y1); ¢(y2); d(y3))c — Ajdzl dz;

X(P'(x)(z1))S2 (A, 21, 22)(P(22); D(¥1); D(¥2); D(y3))c
by (IV.9). Integrating by parts, we have:

/\(P'(x); ¢’(Y1); d’()’z); ¢()’3))c
_ jdzzc-l(x L

and

Mdz P00 0 2 2= KA x - 22

so that
—L;R5(A; x3y)

= szl(C“(x —22) T Ki(A, x — 25) b (22); d(y1); d(y2); b(y3))c

We conclude, then:

STA; %5 15 Y25 ¥3) = —S>LaRs(A, x, ¥4, Y2, ¥a).
By taking Fourier transform, we have the equation in momentum space.
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Consider now

Sg-(ks X, y) = R3(/\’ X, y)
+ Idzl dz,SS(N; 15 X33 X35 21085 (A, 21, 22)ST(A ;5 225 V15 Y25 ¥3).

We use the preceding result to write
Sg‘(ha X, y) = R3(/\’ X, y) + (R3L3SZL;=R3)(A: X, y)

Again by taking the Fourier transform, we have the equation in momentum space.

O

Consider again k;(A) =v(m(A)+mg(1))>*—n(A)’w@,(1)*. Since it is a pole of
K (A, k), it is a zero of S,(A, k). We show in the next proposition that both
SS(\, k) and S7(A, k) are bounded as x — k;(A). This is done in terms of the
w-variable:

Proposition IV.3. ()l o) and SE(\, w) are bounded on a neighbourhood of
w;(A).

Proof. According to the representatlon of SS given in Proposition IV.2, it is
clear that the pole of R;(A, @) at @ =w,(A) is compcnsated by the zero of Sz()t )
at w =w;(A), so that Sff()t (1)) is finite. We analyse S7 in more detail.

Let £(A, ) A¥ be defined by

EM, @) =(1+ V], 0)7'2,(), @)
so that we can write

Rs(\, ©) = (@0~ (A) 7 d(X, @)EQ, @), €A, @)+ (Reg),
where (Reg) stands for terms which are regular at w,(A). Let

[P0, @) ={1+ V2, 0)) LR, 0), £, @)y =(LE(), 0), E(\, 0))
with L§® =L, or L¥. We express the two point function as follows:

$:(\, @) =(1+C(@)K, (A, 0)) ' Clw)

=(1-(0—0;(A)'C(0) dA, ®) (A, @) [*(A, @) +(Reg)) ' Clw)

Note that C(w) d(A, @)[(A, @)[*(A, @) is bounded away from zero as w — w(A).
So

$:(A, ©) = (@ — ;M) C(w) d(A, @)1, @) *(\, @)™
X[1+ (0 — 0;(A))(Reg)] ' C(w)
= (@ =@ (M)A, ©)[(A, @)[*(A, @)™+ (0 —0:(1))*(Reg).
We can thus write, using Proposition IV.2:
S5\, @) = (@—w:(A) 1 d(A, ©)ER, 0), E(, ©))
—(@—w,A) " d, @)X, ©)E, ) - (0 —w1(A))
X (dA, @) (A, @) [*(A, 0))!
H(@—w:(\) A, 0)*(A, @), £, 0)) +(Reg)
= (Reg)
and this proves the proposition. [
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We next want to briefly sketch the connection between the spectrum of the
energy operator and the singularities of Schwinger functions. We will see that the
relevant functions to analyse in order to know the spectrum in the odd subspace
up to energies of order 4m — ¢ are exactly S,(A, k), SS(A, k), Sa(A, «). This result
together with our preceding analysis demonstrates that « = m3(A) and « =m(A)
are the only points, below m(A)+ mg(A), in the spectrum of the energy operator
restricted to the odd subspace of the physical Hilbert space.

This connection is a standard result and relies on the proof by Glimm, Jaffe
and Spencer [GJS1] that the subspace of energy less than n(m(A)—¢) is spanned,
in the physical Hilbert space, by vectors of the form

Q, e™E,¢;(h)Q,  j=n-—1,

where () is the physical vacuum, E, is the orthogonal projection onto the
subspace of energy less than n(m(A)—¢), P, is the energy operator, and

&;(h) = jd;zl e dE (R, R b(E) - d(E): (IV.10)

with h; € L*(R').
In an even P(¢), model, this means that the odd subspace of energy less than
4(m —¢) is spanned by vectors of the form:

e E(¢1(h)Q,  eToE ds(hs)Q.

Since the difference

jdil dx; dx3hs(Xy, X5, X3)(: (X1)(X) P (X3): — (X)) b (X2)(X5):)

is an element of the form ¢,(h,), we can take the :Wick dots: in (IV.10). By
taking into account the invariance of ()} and the covariance of ¢(x) under the
action of the Poincaré group, we can restrict ourselves to the span of

et E & (£)Q, e PP B b4(f5)Q,
where

¢1(f1) = f14(0), f; a constant,
ou(f) = [ dE, B, B 10O (E)S(-E~ B

and f;e L*(R?), with P, the momentum operator.

We consider matrix elements of 8(P;)(P,—«)! and a term which is analytic
in k on a neighbourhood of the real axis for 0 <k <m(A)+ mg(A) will be simply
denoted by (Reg). With (¢, x, f) = e PP E, (¢, (f1) + d5(f5))Q, we have (the sca-
lar product in the physical Hilbert space is denoted by (-, *)):

N(x)=(0(t, x, f), 8(P)(Po—k)'6(s, y, 8))
== J_ dr} L d’TéeT“’K(E4(¢1(fl) + ¢3(fs))ﬂ,

% e_(TE)_‘_S)POei(Tfl_x +V)P1E4(d>1(g1) + dJB(gS))Q)
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i 2 ® 00

= dm, droe™(Ey(¢:1(f1) + ¢5(f3))Q,

¥ Y—s—t

X e Pt IE (1 (81) + d3(83))D)

F oo e +oo

= dry dr oe(HHT")K(Ez;(d’l (f) + d3(f2))Q,

J_oo J_oo

X e_if°lp°+iT1P1E4(¢1(g1) + ¢1(g3) Q2+ (Reg)
where we have used that

ro

y_g—

droe™ ™ (E4(d1(f1) + b3(f3))Q, e 7P P E (d1(81) + ¢3(23) D)

and
rO

droe ™ (E (1 (f1) + ds(f3)Q0, e—lf°ip°+iTlP1E4(¢1(gl) + ¢3(23))Q)

are analytic in « for Re k >0.
Hence

X (b1(g1) + $3(83))Q2) + (Reg)
where we used, with E; =1—E,, that

+oo +oo
N = [ dn [ dre (@) + s )0, € R

j droe™ ((¢1(f1) + ¢3(f3)Q2, e ‘h“lp"H‘r‘P‘Ei(fbl(gl) + b3(23))0)

—00

is analytic in 0<Re k <m(A)+mg(A), since
(o (H)Q, e PP Bz (g) )| =< e || o (N [l ().

According to the Osterwalder-Schrader reconstruction theorem [OS], we get,
with

a ®f3)(P1, p2) = fa(ﬁn P2) € Aj
for f;e C3(R?) and k = (ik, 0) the momentum conjugate to 7:

N(«)= fi- g1§2()\, k) + {1 s, §E(A, K))
+g1{1®fs, ST, k) +(1 @ f3, Ss(A, k)1 @ &3)+ (Reg).
This proves our previous claim that the spectrum of P, can be studied by
means of S,, S5 and S7.
Consider now the value k =ms(A). By the above, it is a point on the
spectrum of P, restricted to the odd subspace of #. A standard analysis (see [K],

cf. also [SZ]) shows that the number of particles with mass ms(A) is bounded by
the rank of the bilinear form :

1 = 5
(£)0= 5= § dilfenSalh, 0+ (s, SEA
Tl

+ g1(fs, §f()\, K))A3+<fss Sg()\a K)83>A3]
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with f=(f,,fs), g=(g, 23)€eRXA; and y a simple curve around m;(A) in the
complex k-plane. Using Proposition IV.2, the fact that R5(A, k) is holomorphic on
a neighbourhood of k = m4(A) and that

’ 1 3
Z3()t)2 = i‘; § dKSz(A, K) % 0,
Y

we get:

{f, &)o= Z3(A)2[f181 —f1(&s, ‘P>A3 — g:(f5, (P>A3 +(g3, (P>A3(f3’ (P)A3]
=Z5(A )z(fl —{f3 ‘P)A3)(g1 —(gs, ¢)A3),

with @(A, py, p2) =J dp!Rs(A, ms, p;, p))Ls(A, ms, —p)€ AT. We conclude that
(f, )0 F 0 unless (f, f), or (g, g)o =0, that is, (-, -), is rank one. As a consequence,
we see that there is only one particle with mass m3(A) associated to the
corresponding point on the energy spectrum.

V. Examples

In this chapter, we consider a class of models which can be discussed by our
method. This class of even theories is the following:

N
P(¢)=—d*+asd®+ Y, azd®,  az,>0. (V.1)
n=4

The existence of a two-particle bound state for these models has been
established in [DE], so that our discussion applies. We next verify that the
assumption in Proposition IV.1 about L5 is always satisfied, namely:

Proposition V.1. Let P(¢) be as in (V.1). Then

1

X L3(/\s K, D, q) =

4
( 211_)2+0()t)

Proof

1
T L% = [ay PRI~ P80 GBHNR A, Y. )

We calculate the lowest order in A of the integrand. Clearly,

(PP (DS (D) (3)
_ [dzl dz,(P'(0)b(21))S5 (21, 2)(D(22) B (YD) (1) (¥3)

is zero in lowest order, since (P'(x)¢(z,)) is zero in lowest order. In the other
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term, only :¢*: contributes in this order. We denote a term of order zero in A by
(*)o or X©.

—4Idy'<:4>3(x): S (YD (¥ (¥5))o (RO 'Y, Y)

=—4- % Idy’C(x —y)Cx—y)NCx -y CHyi —y)C (¥4~ y2)C (¥4
—¥s3)
=—48(x —y1) 6(y1—y2) 8(y2—y3).
By taking the Fourier transform, we obtain our result. []

Having a :¢°: term in the polynomial simplifies the analysis because in this
case we have a first order contribution to K;. Our result is the following:

Theorem V.1. Let P(¢) be as in (V.1). If ag<O0 there is a three-particle bound
state near (and below) the threshold m(A)+mg(A). If ag>0 no such bound state
occurs.

Proof. Our discussion in Chapters III and IV shows that the pole of S,(A, )
is in the physical sheet of the energy-plane if w,(A)>0. On the other hand,
@,(A)>0 is a consequence of Ks(A, 0, i(0), £(0)/2, 4(0), 4(0)/2)<0. This is in
turn equivalent, for small A, to the condition 9,K5(0,0, &(0), @(0)/2, {(0),
{1(0)/2)<0. Clearly, 3,K5(A = 0) is the first order contribution to K5(A). The :¢°:
term in P(¢) guarantees that 9, K5(A = 0) # 0. We shall see that 3,K;(A =0) is in
the form of a positive constant times ag, so that the sign of a¢ decides on the
presence or absence of three-particle bound states as asserted in the theorem.

Let Ry(x,y)=6C(x;—y,)C(x,—y,)C(x3—y;) and let X denote the first
order contribution to X(A). We have:

K$ = R5 (RB-RSIR;*
R{}=~RM® R,
M(l)(X, y)= %(C-l(xl - Yl)K(zl)(xz, X3, Y25 ¥3) |
+C Hxy— y2) K§P(x1, X3, Y1, ¥3) + C (%3 — y2) K5 (x4, X2, Y1, ¥2)).
Because of the —:¢*: term, we can write:
KS(x;, X, yir ¥;) = —68 (x, — x;) 8(x; — v;) 8(y; — ;).
Note that the :¢°: term does not contribute in first order. We conclude:
RG'RIBRG (%, ) =2(C 71 (x, = y1) 8(x2—x3) 8(x3—y2) 8(y2—¥3)
+ Cﬂl(xz —y,) 8(x;—x3) 8(x3—y,) d(y;—y3)
+ C_l(xs —y3) 8(x; —x3) 8(x,— y1) 8(y1—¥2) (V.2)
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We next calculate RY:

R{(x,y)= de<¢(x1)¢(xz)d>(x3)¢(y1)¢(yz)cb(ys)(:cb“(x): —a :d°%(x):))o

~ [ 21 dzs dxt (e ()b (x2)8 (20 2 (x)0
X C™ (21, 22 (22) (Y1) @ (¥2) @ (¥3))o

-~ [z, dzs dxto e (b ()b (z0n

X C Nz, 22X P(22) (Y1) b (¥2) D (¥3) :*(x):)o

Note that there is no contribution in first order to S5*(x, y). The contribution of
the terms in :¢*: can be written, in graphical language:

X1 V1 4 Xo V2 + X3 V3 (V.3)
! | |
3>x<}4. 3>x<}4. 3>x< }4.

since we can see that all contributions of the form

R{(x,y)=

Xp ——X Or y,——Y;

> =<

are cancelled.
If we now amputate each term in (V.3), we have:

- 34!
RalRél)Rb“(x, y)= "6_‘6‘ (C_l(x1 —y1) 8(x3—X3) 8(x3—y,) 8(y2—y3)

+C M (xy— y2) 8(x1— x3) 8(x3— y1) 8(y1— y3)
+ C7H (x5~ y3) 8(x1 — X3) 8(x2—y1) 8(y1—¥2))

which exactly cancels (V.2).
As expected, the :¢*: term does not contribute to K“) So the only contribu-
tion comes from

RO, y)=—a,- (61 =><)

1) _ —-1p(p-1
K(3)——R0 R(3 )RO

and

6!
=ag g—6 8(x1—x3) 8(x5—x3) 8(x3—y,) 8(y;—y2) 8(y2—ya)-

The Fourier transform reads:

” 20
K (k, pi, q;) = ek as

and the theorem follows. [J
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Appendix A
To obtain Rys(A, k, p;, g,):

6
Rosh ki po @) =5 [t dn,

X exp [i(kT+ p1&;+paé&a+qimi+4zm2)]
X Ry(A, x; — Y1) R (A, X, — y2) Ry (A, x3— ¥a).

One changes to the variables

X1=Vi1=w 'r=%(w1+cu2+w3)

2= V2=, with inverse &, =3(w; — @, + ®3)

—V3=w; relations & =3w,— w3+ ws)
ws=&+tm 111”%(”“(91“"1’2‘*'(04)
ws=&+ M, M2 =3(—w; + w3+ ws)

the Jacobian is 3, so that:

6 1
Ros(A, k, Po &)= Qn )5 J.dwl - dwsR;(A, 01)R;(A, @2)R (A, w5)

cenl{oe5 5 el 5 25-9)

k p» qz) (p1 ql) (Pz qz))]
+ws| - —24+22 =42
(322+ St )tes\phy

Now, (1/27)§ dwleim‘QRl(‘ﬂl) = R1(Q)- So,

1
R . a)=6-+— AT <
03(‘\’ ka Di» CL) 6 4R1( 3 3 2)

k P11 41, P2 ‘b)
X e
Rl()‘ 3 2 2 2 2
P2, 42 1
_+ .

) (2m)?

XR (/\ %C— 5 T
xjdau dws GXP[ (“— (pr+a)+32 (p2+q2))]

The last expression is equal to 4 - 47* 8(p, +q;) 8(p,+ g) and the final expression
for Rg; is:

k
Ros(\, k, pi ) =6 - 4% 8(p1 +q1)8(p2 + 42)R, (A, 3" pl)

k k
X Ry (A, 5“‘?1 +P2)R1 ()\, g‘pz) .
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To obtain M,,(A, k, p;, g;) (it is the same for b,,(A, k, p;, ,)):

1 1 |
Mll(/\, k, Pi» qi) =§ . (2_71-.)_3 de dé:; dnie:(k7+plgl+.--)

X RTYA, x1 = y1)Ko(A, X2, X3, Y2, ¥3).
Change to the variables B
X1—y1=w; 7=3(2w,+ @)
X,—X3=w, withinverse & =3(w;—w,—2w,+ws)
Y.~ y3=ws; relations &H=w,
(Xt X3— Yy, - y3) = w4 M1 =3(—w; — w3+ ws)
X1tY1—Y2— Y3=ws M2 = W3

The Jacobian is 3.
Using that

- 1 ,
Ri' Q)=7= je"‘"QRfl(A, @),

i 1 "y
Kz(/\, k’, P q) = 5"’;; dez dw3 d(j)4e!(k wd+pw3+qm2)K2(A, Wy, W3, (1)2)

we have:

1 1 1 _ k P1 Ch)
M A" k’ i’ i =_-_._R 1(A,—+___'
11( P qm) 92 2 1 372 2

x K (/\ ﬂc_p “P1+p _ql+q2)jdwsei(m5/2)(p‘+ql)
2 ’ 3 1> 2 2’ 2

2 _ k 2k -p p

=? 5(P1+Q1)R11(As§+pl)K2()‘, ?—Pl, Tl+P2,“2_1+Q2) .

Appendix B

As explained in the text, w =x+iy and we will prove our result for
|x|<3m’'(\), no restriction on y. This region contains B[P —2e]m(\)).
Write s(w) in the form:

$(@) 4m'mp— w? 4m'mp—x>+y*—2ixy
w ] —
4m’+mp)’—w? 4(m’+mp)*—x>+y*—2ixy

We show, first of all, that |s(w)|<1. To this end, we will compare the modulus of
both terms:

l4m'my—x?+y2—2ixy|> = (@m’mp— x>+ y>)*+ 4x?y?

|4(m’ + mp)> — x>+ y>—2ixy|* = (4(m’+ m}p)*— x>+ y*)* +4x>y>.
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We have therefore:
[4m’mp — x> +y? —2ixy[* — |[4(m’ + mp)*> — x>+ y> - 2ixy|?
=(@dm'mp—x>+y3)?*—(4(m’'+ mp)*— x>+ y?>.
But, for |x|<2vVm’'mk,
dm'mp—x*+y2<4(m’+mp)*—x>+y>?,
so that
ldm’mp— x>+ y?—2ixy|*— |4(m’ + mgp)* — x>+ y* —2ixy[>* <0

and the result follows.
We continue our analysis writing:

s(w)=

(Am'mpg—xy?)(4(m’ + mp)> — x>+ y>) +4x?y? - 8ixy(m’>+ mj + m'mp)
y
(4(m’ + mp)* — x>+ y?)>+4xy?

(B.1)

From this formula, we can also see that |s(w)|>s0, since the real part of s(w)
never vanishes (and is positive) if |x|<2+vm’m}. Considering the region |x|<3m’,
we have our result, since 2vVm’mg ~2v2m’>3 m’

We note again that the real part of s(w) is always positive, and that we
choose the determination of s?(w)= u +iv which has u>0. This implies that v
has the same sign as the imaginary part of s(w).

Looking at (B.1), we see that Im s(w)=—xyf(x, y), where f(x, y) is always
positive. It then follows that:

i) if x>0, Im s(w) has the opposite sign of y, and vy <0.
ii) if x<0, Im s(w) and y have the same sign, and vy > 0.

This completes our proof.

Appendix C

In this appendix we calculate the lowest order in A of n(A)*w,(A)*. Given
that ms(A) =v(m(A)+mg(A))*—n(A)?w,(1)?, we can write

n(A)’w,(A)?
2(m+mg)

We will see that n(A)?w,(A)*>~ O(A*), but this is not the only term contribut-
ing to A*: there is a A® and a A*-term coming from mg(A). Since these terms come
entirely from the two-body problem, we will not calculate them here (in fact,
calculate the A*-term in mg(A) requlres the knowledge of £{(0), £7(0) and £;"(0)
with Z,(A) the pole of R(), {); this is quite a long calculatlon)

We come thus to calculate w,(A). The first order in A is given by d,w,(0), that
is, w,(A)=0,w,(0) - A + O(A?) (it is clear that ®,(0) =0). Recall now the notation
in the proof of Theorem III.3. We have that J(\, @,(A))=0, so that

8,J (0, 0)
a,J(0, 0)

m3(A)=m(A)+mg(A)— +O((n(A)wz(A)).

0 @,(0) = —
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But J(A, @) = 0;(A\)— 0+ Q(), ), and
3,J(0,0)=-1+8,0(0,0)=—1.

So  9,w,(0)= a,J(O 0)=0,w,(0)+3,0(0,0). But OO\, @)=0(?, so that
3,0(0, 0)=0.

The problem is then to calculate d,@,(0). Recall now the notation in the
proof of Theorem IIL.1. We have that w;(A) is the solution of H\, 0,(0))=0
where H\, )= 0 + G,(\, ®)

¥\, @)~

(A) 81‘!‘0(#(0))
E*(A, @) =6Z(A 2L AP, &M (A, ®)

(i) = Idpz dq, dp} dpsH(A, {(V), p2)

Gl(Aa (.0)

5 . L(w ‘
x(1+ Vz)"l()t, o, i(w), #_(2_) — P2, Pl —Pi)

5 . i(w) "
x Ra( 0, 93, b3 (), E22 4.6 ) A, £400), 40

Again we have:

_8HO0,0 .
6501 (0) = 20 = =, H(0, 0= =,61(0, 0,
But
0oy S0 ) B
50G1(0,0) = fim 0,163 (1, w(0), 0, G, i), EEED),

k(A)=mA)+mg(A)
One can verify that

i) lim, _,o £1(A)/m(A) = \f
ii) #(0,0)=m/my, Z(0)*>=
iii) £,(0, 0) = w2/v2m,

where my,=m(0). Note that k(A) — 3my as A — 0, and that w(3m,)=0.
Let a,=0,K;5(0, 3m,, 0, 0, 0, 0). Putting everything together:

27717 6

0 0)=6" —_—
101(0)= mO\/—mo \fjm% 2

Note now that
3 3 2
1) =34 +0(L ()P = - \/;mio a;* A +O(X7)

where a; =3 3,K5(0, 2m,, 0, 0). The net result is that

3 6
n(N)w(A) = — 51a1 f“2a2A2+0(A3)
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and

m30) = Q) + my)(1-97 el st

+0(/\8))

— (m(A) + m “‘”(1‘52 atad*+0019).

0

Appendix D

In this appendix, we show how to isolate the local singularities of K;=
R3'—R3a. It turns out that K5(A, x,y) can be defined by a convergent (for A
small) Neumann series and is locally regular in the sense that it has at most
d-functions singularities. It then follows that its Fourier transform, in the k, p, g;
variables, is a bounded function (integrability at infinity in position space follows
from the exponential decay in the difference variables 7, &, m;).”) The same local
regularity property holds for L;(A; x,’y) and D,(A; x, y) and they are therefore
bounded in momentum space.

We begin by considering again (see (IV.7)):

R;3(A, x,¥) ={d(x1) D (x2)(x3)(1 —P))d(y1) P (y2)$(y3))
=i p(x1)D(x2)P(x3): :d(y)b(y2)b(y3):)

- Idzl dz{(x1); D(x2); P(x3); d(z1))c
XT(zy, 2,{@(22); D (y1); ¢(y2); d(¥3))c

where we have used the notation:
F(le Z2) = SEI(/\-’ zl: 22)-

The technique is to isolate the singularities of C3'R; using integration by parts,
where C;'=C'QC'QC™?, C(x, y) the free covariance.

We consider each term separately. We use the notation C;‘(qb(xl) <o) to
denote [ dxiC '(x;, x{)){p(x%) - - -). We also use

(x1%2 X)) ={d(x)P(x) - - - d(x,)) and P(x)=P($(x)).
Our first result is:
CarCME ] Aon %o Bhe = =3P, ) Pl Plali 2)e
+A2 i 8 (%o, = X, XP'(x); P"(%0)); 2)c - (D.1)

— A 8(x3—xy) 8(x3—x,)(P"(x1)2)
where a ={1, 2, 3}\{i}.

7)  To be precise, we should prove the local regularity properties for the kernel K;(A, t, x, y), defined
with the covariance C(t, x, y) used by Spencer [S] in its modified cluster expansion. We omit the
index t, since it does not play a role in the proof of local regularity.
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This formula, as well as those derived below, is obtained by repeated

use of integration by parts. We give the corresponding result on
CL CLlC (i xyx,x38 1y1y,Y38) in three steps.

1

i) Cilixxa%38 1y1y,Y38)

3

= C5'Ros(A %, 1)+ 2 Colxayid%a; X33 Ve Ve

i=1

A X (P'(00) )23 X33 Ve Yarde + (X2Ya X3 Ya) T (X2 VX XaYer)

i=1
<
+ Z C;l(xl; X2; X33 yz')c()’alyaz)
i=1
— AP (x1)X2X3Y1Y2¥3) + A(P'(x1) X2 X3y, Y2¥3)
+ AP (x1)x3XX2¥1Y2¥3) + A{x2X3 )P (X1) Y1 Y2¥3)-
ii) C;21C;11(Ex1x2x35 1Y1Y2Yai)
3
=C;, C (R03(I\, X, ¥)+ 2, (XY X003 X35 Va5 yaz)c)

i=1

3 -

+ 2, ClC M0y X%1; X35 Yays Yau)c

i=1
3

+ Z C;zlc;,1<x1§ X2; X35 Yi)(:(yalya)
i=1

i=

3
+A Z ((P’(xl))’ﬁc;;(xz; X35 Ya,» y::;)C +(P'(x2)y: Xx1; X3; Ya,> yaz)C)

i=1

— A 8(x1 = %) ({(P"(x1)x3y1y2Y3) —{P"(x1)XX3Y1y2Y3))
+ Az((P'(xl)P'(xz)xﬂl Y2¥3) —{P'(x1) P'(x2)Xx3Y1Y2¥3)
—(P'(x2)x3XP’'(x1) y1Y2¥3) — {P"(x1)x3XP'(x2) y1Y2¥3))

= Z (P'(x1) y: Y(P'(%2) Yoo, XX3 Vo) +{P"(X2) Yo ){X3 Vi, )

i=1

i) Cy, Cy, Cx (i X1X2X3% 1y1¥2¥3i)

2

= C;'CLCi'Rps(A, x, Y)

3
+ Y ClC CiMxyiNXass Xans Y3 Yau)c
ii=1
3

+ 2, Col Col Cr Mxas %25 X35 Y)Yy Voo

i=1

3
A X (P () Ol Cl s X33 Yo Ve

i=1
H{(P'(x2)¥:)Crt Cy MX15 X35 Va3 Yau)o
+{(P'(x3)y)Cx, CiNxX1; X23 Va5 Yo )C)
— A 8(x;—x3) 8(x,— x3)(P"(X1)y1Y2Y3)
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3
+A? Z 8(Xa, = %a,) (P'(x:)P"(x4,) y1¥2¥3) — (P (X JXP'(X:) y1Y2Y3))

i=1

~ V(P (xX)P ()P (x3)y1725)~ 2. (P' ()P (xa ) XP (%) y1Y2¥5))

i=1

+ A% X AP (1) Yor XP'(53) Y, XP' (33) Vi)

where 7 ranges over the six permutations (1, 7., 73) of (1,2, 3). We combine
this last result with (D.1), to get:

C;gl C;gl C;11R3(A9 X, Y)

3
= C;1CICi M Ro3(A, X, Y) + 2, (XX X5 %o Yooi Yo, )c)

=1

3
+’\ Z (Pr(x:)yj>c;alzc;u];(xa1’ xaz; YBl; yﬂz)c

i.j=1

—A8(x;—x5) 8(x3 — x3)(P"(x1)(1 —Py)y;¥2Y3)

+A2 Z 8 (Xg, = Xo, ) (P (x,)P" (%, J(1 = P1) Y1 Y2 ¥3)

i=1

—(P"(x JXP'(x;)(1 = P})y1y2¥3)) — A ((P'(x1) P'(x2) P’ (x3)(1 = P1) y1 Y2 ¥3)

3

- Z (P'(x4, )P (xo )XP' (% )(1 = P1) y1Y,Y3)).

i=1
Define A; by:
AS(A? X, y) = C;31 C;zlc;ll(RIi(A’ X, y) - R03(A’9 X, y)

3
— Y Y% X Yo, Yo, 00)s

i,j=1
so that our formula can be written
R3(/\s X, y) = ROS(Aa X, y)

3
+ Y SN X, VST, %o s Xa2s Vaos Ye,) + G, G, CrAs. (D.2)

iLi=1

We come back for a while to R,5. We have seen (see Chapter I) that on a space
of symmetric functions the operator M(x, y) has the form:

1 3
M(I\, X, y) = 5 z Sgl(Aa X, YE)KZ(A: xala xaza yoq’ Yaz)'

i=1

On the other hand, the Neumann series for R,z can be written:

Ros = ( £ (-1 (RosM)")Ros

=1(n20 (—1)“(i_1 1 @ Rosz)F) Ry
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where we use the notation 1®; Ry, K> = 8(x; — %) R02K2(Xa,> Xey> Yeu» Ya,)- This can
be put in the form:

3
R2B=_2R0+3 Z Sz® R2+b

i=1

S, ® S5+ Rys+b,

I|
AM‘“

L

where we have used that R,— Ry, = S§ and b stands for the sum of all terms on
which the lines ‘cross’, for instance Ry3;M;Ry3sM>R3, €tc.
Turn again to R; and consider (D.2):

3
R3 = R03 + 3 Z (xiYi)<xa1; xaz; yal; ya;)C + CKICX/ZCX3A3

i=1

where we have used that, on symmetric function,
Z (Vi XX’ X3 Va3 Yoo =3 Z (YK X3 X3 Veur} Vo)

Then,
R3 - R2B = Cxlcx2cx3A3 = b.

Consider the above expansion for R,z and, for each term X in this expan-
sion, consider Rg3 XRos. This is a product of the form M; RosM;,Ro3 * - * Ros M.
A factor M; has the form I‘® K, and is potentially singular because of the
I'-factor, which contains a C~' part. Note that if i;=i,="" -—1n, then this T’
factor remains at the end. But this cannot happen if the lines ‘cross’ at least once.
In this case, one can see that all factors I' are cancelled by some factor S,
contained in Rg;, and the net result contains only S, and K, factors. These are
locally regular (in the above sense).

We can therefore conclude that Rg3bRgs is locally regular. In addition it is
exponentially decreasing in x; —x;, y;—V;, X; —¥; (this follows from the fact that
S,(x—vy) and K,(x,, x5, y1, yz) are exponentially decreasmg)

Similarly, consider R03C C,,C,,A;. Using that Ry =¢I'®T'Q®T and that
r=K,+Cc! we get: Ros CxIChC 3A3—A3+A3, where A4 is a sum of terms of
the form de } L 0.(x—x)A5(X,y), and o;(x; — x!) =8(x; —x!) or K;C(x; —x!).
From the form of Aj, we see that both A; and A% are locally regular (in the
above sense) and exponentially decreasing. Furthermore, the y-variables of A,
and A% can be put equal, since they appear truncated or in the combination
(1—P1)y1y2y3, which cancels the singularities at coinciding points. The same is
true of Ry3b. We can thus define, for A small, the inverse (1+ R53G5)”", with
G;=R;— R2b C.C,, A;—b, using that R;5=Rg; +3); ' ®; K,. The worst
term, Ry; G3—R C C,C, As—Ry3b, is analysed in the way sketched above.
The other term is even better since there is only one I'-factor.

Finally, we note that R;§G3R§§ is also locally regular. We consider again the
most singular (potentially) part Ry3G;Ry3: the term Rgo3bR,; was already
discussed above. In the other term, A;Rq; + A3Ry3, one should again integrate
by parts to show that only §-function singularities remain. But this follows again
from the fact that the y-variables in A; appear truncated or in the combination
(1-Py)y1y2ys.
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We conclude, then, that
K;=R3;'-Rz3=(1+R33G;) 'R35G3R55

is defined, as a distribution, by a convergent Neumann series (for A small) and
that it is locally regular and exponentially decreasing. It then follows that its
Fourier transform, in the k, p,, q;-variables, is a bounded function, in fact bounded
by O(A) since G5 is O(M).

The discussion for L, is essentially done, since:

LY x, y)=AjRgl(A, %, ¥)(y4yhy5(1— P P'(x)) dy’

= Afdy’(Ka(A, x, ¥)+ R\, x, )Xyl ysy5(1 —P)P'(x)).

The term with the K;-factor is regular by our previous discussion of K. The other
one is analysed in the same way as C.]C, ) C;{(x;x,%3(1—P,)y1y,y3). This time
we do not worry about terms having a 6(x; —y;) since we will not have a right
multiplication by Rg; as it was the case for G; in defining K.

This completes also our proof that L¥ and L, are bounded by O(A) in
momentum space. -

Concerning D,(A, x —y) =—-A¥P'(x)(1-P,—P, —P,—P;)P'(y)), one can also
easily see, using the above methods and the definition of P,, that a term like
(P'(x)P,P'(y)) is locally regular in the sense we use this expression in this
appendix.
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