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Abstract. Radial magneto-acoustic oscillations in cylindrical plasmas bounded by a solid wall are
investigated accounting for the viscous forces and for the pressure gradients in the MHD-equations. It
is shown that both these effects representing strong singular perturbation at a solid boundary can play
an important role in theoretical analysis of the plasma diagnostic problems. (They allow, for instance,
to explain discrepances, found in [3], between experimental and theoretical values of the transverse
plasma conductivities). It is shown as well that the pressure and viscous effects can influence greatly
the impedance of a cylindrical plasma column bounded by a solid wall and, thus, their proper
evaluation could be of interest also in connection with problems of the plasma heating.

1. Introduction

As it was shown in [1], the presence of a solid wall S surrounding a plasma
can strongly influence magneto-acoustic oscillations (MAQO) excited there since
nearby the wall the plasma velocity ¢ drops rapidly to zero (boundary condition
3(S)=0!) and, as a consequence, the viscous force proportional to a second
derivative of ¢ over a distance counted normally to S, increases rapidly.

Another effect of this kind, which was not accounted for in [1], is due to the
fact that the pressure gradients in the MHD-equations (usually neglected in case
p< B3/8m, B, is an external magnetic field) can be, nevertheless, important, for
the same reason, nearby the wall. It is indeed, well known (see below), that the
pressure gradients are expressed through ¢ (via the continuity equation) as

follows:

ipc2

—Vp =——=graddiv

(0]
(¢, is the sound velocity, p is the mass density, w is the oscillation frequency) and,
hence, at the wall the pressure gradient Vp, similarly to the viscous force,
increases rapidly.

From a purely mathematical standpoint, the neglect of the viscous forces and
of the pressure gradients in the MHD-equations represents itself, in case of
plasmas bounded by a solid wall, a singular perturbation in a sense, that it leads to
the lowering of the order of the differential equations considered. (In case of
radial MAO in a cylindrical plasma column this reduction is equivalent to the
replacement of a fourth order differential equation by a second order equation).

As a result, the “reduced’ equations obtained in this way have solutions which do
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not satisfy the constraints to be imposed on the plasma mass velocity 0 at the wall
S (e.g. §(S)=0). (See a general mathematical discussion of such problems in [2]).
Thus, a solid wall must be considered as a strong singular perturbation, which
manifests itself in the appearance of the “boundary layer” adjoining to S, where
the distributions of the physical quantities pertaining to MAO can differ drasti-
cally from those resulting from the reduced equations obtained by neglecting the
pressure and viscous effects. What is more important, these effects can influence
greatly, as it was found in [1], even the “bulk” plasma parameters, e.g. the
impedance of the plasma column or the ratio of the magnetic fields at its axis and
at the boundary.

In this paper the theory developed in [1] is modified by inclusion of the
pressure gradients in the MHD-equations of the one-fluid approximation. This
generalization, developed in the cylindrical case (Section 3) both for homogene-
ous and non-homogeneous plasmas, proves to be especially important for the fully
ionised plasmas when the viscosity coefficients are relatively small and when the
pressure effects play a predominant role. Application of general formulas ob-
tained in this way to plasma diagnostic problems studied in [3,4] allows to
eliminate some discrepances between experimental and theoretical results (calcu-
lated from the reduced MHD-equations), found in these papers (Section 4).
Besides, as it is shown in Section 5, these boundary effects can influence greatly
the impedance of a plasma column and, hence, their proper evaluation could be of
interest also in problems of supplementary heating of the fusion plasmas.

It must be indicated here, that the influence of the pressure gradients was
considered in an earlier paper [5] devoted to an analysis of MAO in a current
carrying plasma column. On the other hand, in [6] the same problem was studied,
accounting for the viscous forces and with the pressure gradients neglected.
However, in both these papers some additional assumptions were made (transi-
tion from a system of equations (9)—(14) to a second order equation (18) in [5] or
transition from a system of equation (10), (12) to a second order equation (29) in
[6]), which are equivalent to disregarding the singular nature of the perturbation
caused by a solid boundary. Thus, results found in [5], [6] are not always
applicable to MAO in plasmas bounded by a solid wall.

2. Basic equations

We will consider MAO in quasineutral, monoatomic plasmas consisting of
electrons, ions A" (mass m;) and neutral atoms A. The temperatures of the
electrons, T,, and of the heavy particles, T, will be assumed to be constant, but
the densities of charged, n, and of neutral, n, particles will be in general
characterised by some non-homogeneous distributions n(¥), n,(7). Basic linear-
ised MHD-equations of the one-fluid approximation can be written in this case as
follows

1 — —
—ipwf):—Vp+z[jBO]+f (1)

T J
f=o - (E+2[B,]+—p,) @
C ne



570 Yu S. Sayasov H.P.A.

where f=n(A%+1V div §) is the viscous force, m is a viscosity coefficient and o is
a conductivity tensor for the cold plasma. The pressure p in (1) is a sum of partial

pressures p,, p;, p, of electrons, ions and neutrals. Assuming for all of them the
adiabatic law p, ~nJa i.e.

Vpp ==, Zn"‘ or, since p,=n,T,, Vp, =v.T.Vn, (3)
(n, is a particle density, index a stands for electrons e, ions i, or atoms a, the
temperature T, is expressed in energetic units) we get from the continuity
equation iwn, = div (n,,%,) a relation —Vp, = (iy,T./w)V div (n,0,) where n,,
are the unperturbed particle densities. As the electron velocity v, can be rep-
resented in the form ¢, =0 —(j/len) where the current density j satisfies the
condition of quasineutrality div j =0, one can represent Vp, by the formula

~-Vp, = by V div (nd). (4)

The expression for Vp, depends upon the relation between the ion-atom collision
frequency v, and the oscillation frequency w. Assuming v;,>» w one can take
b, =0, =0 (atoms A are completely carried away by the ions A™) and we ob-
tain then -Vp, = (iv,T/w)V div (n,,0). Using also an expression —Vp,=
(iv;T/w)V div (n?), introducing the mass density p=m;(n+n,) and an effective
sound velocity ¢, =[(y/m)T;+ T,x)]"?, x=n/(n+n,) (for y.=v,=7v.=7v) we
have finally

I
—Vp=—V(p.+p;+p,)=— Ve div (pd). (5)
w 5
On the other hand, for »,, €« @ the neutrals are not carried away by the ions (see

e.g. a discussion of the problem in [1]) and we can take now ¢, < 0; or p, < p,. We
find accordingly in this case

—Vp~-V(p, +p,) =-£Vc§ div (pd), (6)

where

'Y 1/2
p = mn, C, = [—(Te+T,-)] .
m.

Formulas (4), (6) are valid also for a fully ionised plasma.

For homogeneous plasmas formulas (5), (6) can be evidently 31mp11ﬁed as
follows:

2
—Vp=i:V div s,
w

Equations (1)—(3), together with definitions (4)—(6), can be reduced to a set of two
equations with mass velocity ¢ and electric vector E considered to be the
unknown quantities. This set of equations forms a closed system provided some
boundary conditions for ¢ and E at the boundary S are specified.
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3. Radial MAO

If MAO are excited by a long coil in a long cylinder of radius a filled with a
plasma whose densities n, n, depend upon the radius r counted from the cylinder
axis, one can assume that all the vectors E, H, o, j are functions of the radius r
only. In this case the non-zero components of these vectors are: azimuthal
component E,, axial component H, radial component v,, azimuthal component
j The basic equations (1)-(3) can be now reduced to a system

—ipwv, = B~ +-mA v+ ——— 7
pe c * & vBo g1 ke ar ror ™)
4iwo 1 1290
AE, =7£(E¢—z UrBO)n By=o T (8)
19 W

where { = ipc%/w and o, is the transverse component of the conductivity tensor o.
The closed system (7)-(8) is to be implemented by the boundary conditions

19
=0 L.l
v,(a)=0, s rE,

=i H, (a)=i= H,, (10)
s € c

where H,, is the field generated by the coil. (We have made use in (7) of the fact
that the viscosity coefficient n depends only slightly upon the densities n, n, and
hence it can be considered to a good approximation as a constant quantity). The
quantity ¢ = (ipc?/w) in (7) plays formally the role of a second viscosity coefficient
{. The formulas (18)-(21) derived in [1] for homogeneous plasmas characterised
by two viscosity coefficients 1, { can be therefore used immediately as solutions of
system (7)—(8) in case n = const, n, = const. We rewrite here the expression (20)
of [1], which corresponds to the assumptions |g,|« 1,

le,] < [e4] (8 My W,
2 1) 1 C‘i » 2 Ci 5
v, = , v, = - A Ca = :
470 . 371 B - Vamp
H,(0) 1 wa 1
N= = , k=—(1+=ie, ),
H, | U-idl” < ca ( 2 ‘81)

= \/;’1 (1

m

Jo, J; are the Bessel functions. Near the first magneto-acoustic resonance
(MAR) @ = wo=(q¢cala), qo= 2.4, Jo(qo) =0, (11) reduces to (see the calculations
leading to the formula (20) in [1]):

0.8 1
e 08 a1 ),
((252) +7) *
Wo
qOVm A) 7
=R (—+— ; (12
¥ © 2caa qo (12
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The maximal value of N corresponding to w = w, is given according to (12) by

N, = 0.8 (13)

Re (qovm +i)
2caa  q,

Expressions (11)-(13) can be readily generalised to the case v;,» » (i.e. with the
mass density p defined as p = m;(n+n,)) for non-homogeneous plasmas. For this
aim we reduce system (7)—(8), introducing the dimensionless variables v =v,/c,
E=E,/B,, r—(r/a) and the functions p=8/a, §=(w./cs), q=wa/ca, f=
(d¢/dr)/(£+3m), to the form

d
—uz(Alwfzai:):E—(l—isl)u (14)

81A1E= _iqz(E_v). (15)

The quantity w can always be considered as small under conditions used in plasma
diagnostic experiments, as shown by the estimations in [1]. We can therefore treat
the left side in (14) as a small perturbation everywhere, except in the immediate
vicinity of the wall S. Dropping the left side in (14), we get the reduced equations
corresponding to the neglect of the pressure and viscous effects: v = E/(1— ig;)

and
2

q
1'_i81

AE+ E=0. (15)

(15) allows a solution
E = Ae(r) (16)

where the function e(r) is regular at r=0, A is a constant. (For a homogeneous
plasma e = J,(kr) with k defined in (11)).

On the other hand, at the boundary r =1 the coefficients in (15), (14) can be
replaced by the constant values corresponding to r=1: p,= (1), &,0=&,(1),

fo=f(1), go=q(1). Performing further a stretching transformation x = (1—r)/u,
we reduce (15), (14) for r— 1 to the system:

_d’v 2dv
T2 T = E-(1—ie)v (17)
d’E _

103" —iqps(E —v).

Dropping in (17) the terms proportional to small parameters u,, ws we get the
boundary layer equation

d? (d2
dx d (1 lS]_O)U) =0 (18)
having a solution v = B+ C exp (—v1—ig;, x). This means that
2
E—‘ '_d_+(1 1810)U=D+C' EXp (_V _i810 x) (19)

dx?
(B, C, D, C' are some constants)
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A solution, which coincides with (19) nearby the boundary and with (16)
elsewhere can be evidently constructed as follows

E=A'e(r)+C exp (—«/1 — i 1~ ) (20)

Mo
(A’, C' are some constants).

It must satisfy the boundary conditions at r =1 (following from (9), (17) and from
the requirements v(1)=0, H(a)= H,,):
14 .o H_,

= 2D
=B mieg—=. A B=—2F ‘ 21)
r or 1 c B, €10

Inserting (20) into (21), we get two equations defining two constants A’, C’ (in the
case |e1o |« 1):

X 7 2
CA'e()+ C == — M0 (Are(1)+ ) (22)
Ko €10
1
ARt € e = iﬁ’aHe",
Mo ¢ By

where h(r)=(1/r)(d(re)/dr) (i.e. h=«kJ,(xr) for a homogeneous plasma with x
defined in (11)). As follows from (22), the coefficient A’ is given, within our
approximations (|e,|« 1, |e,|« |¢,|, by the formula

' _ (iwCA aHex/CBO)

_ Vh(l) 2
A h()—ixee(1)go’ M= V(1) )

This means that the magnetic field distribution outside of the boundary layer can
be defined as

1dre /. H
H, = (B Al —— '—)jz = h 24
“ T ar/ e h(1)—iroe(1)qo ) (24)
The result (24) can be also interpreted in another way. One can state, that the
second order equation
1d dH, (m)2 1
= o r_....+ o
rdr dr 1—ig,

employed usually in plasma diagnostic research (see e.g. [3,4]) must be im-
plemented by a modified boundary condition

H
. ex 26
1—1)\03(1)90/’1(1) (26)
which is to be used instead of H,(a)= H,, and which accounts for the pressure
and viscuous effects, neglected altogether in (25).

H,=0 (25)

Ca

Hz(a) =

4. Comparison with experiment

The measurements of transverse conductivities o, performed in [3] for the
relatively dense, fully ionised and, to a good approximation, homogeneous Argon
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plasma revealed some systematic deviations from the theory [7] (see Fig. 18, 17 in
[3] or Fig. 1 in this paper). Though these deviations lie within the limits of the
experimental errors in [3], it seems desirable to try to explain them, owing to their
systematic character, by some physical effect not accounted for in [3].

Under conditions used in [3] the viscous effects are negligible, but the
pressure effects can lead, according to the present theory, to appreciable correc-
tions. (The parameter |A| in (11), (12) is equal to about 0, 1 under conditions
T=15eV, n=10"°cm™>, B=10*G typical for the experiments [3]). According
to (13) the value of o¢, as defined by the experimental ratio N, for the first MAR,
is given by

2
v,?;—*léﬂ or o{=N, 3¢

do Ny 8cpam

(27)

if the pressure and viscous effects are neglected (A =0). On the other hand, as
follows from (13) in the low-frequency case investigated in [3] (v,, is real) o, is
defined by

1 1
0 0
Vo= =0y 32 172 (28)
T N32T
1-1.25 Nyy|—% R ——
wvmmi f

(we are using here and in the following the assumptions T, = T, = T, y =3 and the
relations: (27), a =4.65cm,

| ¢? [ T ®
R A = > = ’ = 105) .
© 2wv0 omvy f 2

Thus, the pressure effects lead to values of o, which are larger than those
following from (27) by the factor 1/(1—0.068 (N3*T"?/f). Presence of this factor
allows to explain the fact that the values of o, found in [3] appear to be
systematically lower than those given by the theory [7] (see Fig. 1). The pressure
effects, as described by the formula (11), explain as well the overall behaviour of
the experimental curves N(w) in [3] (Fig. 2), without using the fitted o, values
following from the formula N = 1/|Jy(k)|, as was done in [3]. The pressure and
viscous effects also explain the results in [4] where a systematic reduction of the
ratios N(P,) measured as a function of the initial Argon pressure P, was found.
As follows from the formula (11), with viscosity coefficient of the partially ionised
Argon defined by the formula (24) in [1] and with sound velocity defined by
¢, =V (yT/m;)(1+ x) (we take here again T,= T, = T, y =3), the theory accounting
both for the pressure and viscous effects leads to much better agreement with
experiment [4] than the theory disregarding these effects (Fig. 3).

These examples seem to show convincingly that the proper evaluation of the
pressure and viscous effects, in the framework of the theory developed above, can
be often necessary for the analysis of the plasma diagnostic experiments per-
formed with the help of MAO in plasmas bounded by a solid wall.

" 6. Influence of the boundary effects on the impedance of the plasma column

The averagé energy W, (per cm” and sec) absorbed in a plasma column (of
radius a), heated by a HF-field of amplitude H,(a)= H,, can be represented by
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Figure 1

Values A& of the transverse conductivity (referred to oy=1.95(n,/m,), o, /oy, as calculated from
formula (28) with ratios N, taken from the Table II in [3]. The temperatures, measured in [3]
spectroscopically, were taken from the Table III in [3]. Here 7, is the electron-ion collision time and
w, = eBy/m_c. Full line corresponds to a theoretical formula for o, derived in [7] (see also formula (6)
in [3]). @ are the experimental points from [3]. Experimental errors indicated in Fig. 1 stem mainly
from the uncertainty of the spectroscopically measured temperatures. (The same uncertainty affect, of
course, also the points A found with the formula (28)).

the formula
C

8

where W= (c¢/8) |H,,|* is the total energy (per cm? and sec) fed into the plasma
and Z=(E,(a))/(H,,) is a complex impedance. Restricting ourselves to
homogeneous plasmas satisfying the conditions |e |« 1, |e,|« &, for the low-
frequency case (o, is real) and using an expression for E,(a) derived in [1] just
under these conditions

W, Re E,(a)HY,= WRe Z, (29)

E,(a)=iH,, & N1&) (30)

C Jo(K)_ i/\Jl(K)
(k and A are defined in (11)),
we arrive at an explicit formula for Re Z

iJl(K)
Jo(k) —iAJ (k) .

Nearby the first MAR (31) simplifies similarily to (12) and reads as

'Rez=ff¢, ¢ =Re (31)

C 1
ReZ="2¢, ¢=——rd (32)
CIO( 0) + 42
Wq

(wo and y are defined in (12)).
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1 | 1 | | | i 1
0 041 0.2 0.3 W 1076 sec! 04
21T

Figure 2

Distribution N(w) for Argon plasma 2 in [3] found from the formula N = 1/|J,(«)| used in [3] (full line)
and from the formula (11) (dotted line). (Spectroscopical temperature T=1.54eV, n=
6.2+ 10" ¢cm™3, B,=5.4kG, radius a =4.65 cm). The calculations were performed with the value of
the transverse conductivity o, =4.4-10"*cm™' found with these parameters from the theoretical
formula (6) in [3]. @ are the experimental points from [3]. The vertical bar at (w/27)=1.9 - 10° sec™ !
indicates the error due to uncertainty of temperature.
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0.1 d 1 n+n, 5 10

Ng
Figure 3

Ratio N=(H,(0)/H,,)| as a function of the normalised particle density (n+n,)/n, (density n, is
defined by the equation (wa/c,)=2.4, c, = (By//2mp) for a =4.65cm, T=1.6 eV, degree of ionisa-
tion of the Argon plasma x = 0.64, (w/27) = 0.3 MHz, B,=5.65 kG (see Fig. 12b in [4]). Full line was
calculated with the formula N =1/|J,(k)| used in [4], dotted line was calculated from (11) with
viscosity coefficient 7 =2+ 107> Poise. @ are the experimental points from [4].

As follows from (32), the maximal value of W, corresponding to o =wg is
reduced under the influence of the viscous and pressure effects by the factor

9o Vm / (@_vlJ,ReA)

2 caal \2 caa  qo /)
This is a consequence of the reduction of the magnetic and electric fields in the
bulk of the plasma by the same factor (see the formulas (25), (27) in [1]).

An example of calculation of W, with (32) for a fully ionised homogeneous
Hydrogen plasma under conditions similar to those used in [8] (where the

calculations were performed with pressure effects neglected) is presented in Fig. 4.
As shows Fig. 4, the pressure effects lead to a considerable reduction of the
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P (w)
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Figure 4

Function ¢(w)=(c/c,) Re Z for a fully ionised atomic Hydrogen with T=2eV, n=10"%cm3,

B,=10?G, a =10 cm. Full line was calculated from the formula (32) with pressure and viscous effects
neglected (y=1vy,=(qym/2caa), dotted line was calculated from (32) with the pressure effects
accounted for. (The viscous effects are negligibly small in this case).

maximal energy absorbed in the plasma. Besides, the frequency distribution
W, (w) at the first MAR becomes noticeably broader.

In conclusion, we mention that the proper evaluation of the boundary effects
arising as consequence of the presence of a solid wall surrounding a plasma could
also be of interest in connection with the problem of additional heating of fusion
reactors of the tokamac type by magneto-acoustic waves. According to existing
estimations (see e.g. [9]), a layer of relatively cold gas (with temperatures of a few
thousands degrees) must exist nearby the solid wall in such reactors, which,
however, must be highly ionised. Besides, the magnetic field used for the plasma
confinement remains strong at the wall, according to [9]. This means that the
magneto-acoustic waves, if excited in such plasmas, will manifest themselves also
nearby the solid wall and, hence, the boundary effects discussed above may be of
interest also in this case. Of course, only the consequent calculations, allowing for
the realistic distributions of temperatures, densities and confining magnetic fields,
can confirm this conjecture.
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