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Relativistic dynamics for the spin \ particle

by C. Piron and F. Reuse1)

Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

(13. X. 1977)

Abstract. We develop a model for the interacting spin j particle in the context of Relativistic
Dynamics, a theory for which quantum states are given by rays in L2 (R4, d*x) and the evolution is labelled by
an invariant parameter. We propose a new definition of spin j in Relativity coming directly from the
information given by the Stern-Gerlach apparatus. This leads us to introduce a continuous superselection
rule and a family of Hilbert spaces isomorphic to C2 ® L2 (HP, d*x). We exhibit a representation for
which the state transforms like a Dirac four-spinor and we prove the existence of covariant position and
time self-adjoint operators. An explicit equation for the evolution of an interacting particle with external
electromagnetic field is proposed. We state the results of this model applied to the hydrogen atom. Finally
the Bargmann, Michel and Teledgi equation for the precession of the spin is shown to follow from this
evolution equation as a quasi classical approximation.

1. Introduction

In a previous article 'Relativistic Dynamics' [1] we proposed a model for the
spinless relativistic particle and a quantization method free from the usual difficulties
associated with the Klein-Gordon equation. This article is the continuation of [1].
We formulate here our model for the spin \ case.

At first let us recall our point of view. Each particle as a classical object is assimilated

to a point in the four-dimensional space-time. So in our theory space-time plays
the same role as the three-dimensional space in Newton's theory. To be able to
describe the motion of this point we introduce a new variable x which is just a parameter
labelling events during the evolution. It is not an observable like the fourth coordinate
t, which is an observable associated with a clock. This parameter t plays the role of the
Newtonian time ; we therefore call t the historical time in contrast to t, a geometrical
time.

Our quantum model for a spinless particle proposed in [1] is the following.
The states are described by the Hilbert space of the four-dimensional square-

integrable functions \j/(x) ij/(x, t) with the scalar product

<4>,(p) d3x dtip*(x, t)(p(x, t).
R4

The Lorentz transformations A act on the states by unitary transformations U(A)

(U(A)il,)(x) HA-1x)

l) Supported by the Swiss National Science Foundation.
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where

(Ax)" A»x\ p, v 1,2,3,4,

gflAß,K,=g„,v, and gßV (1, 1, 1, -c2).
The observables are the position-time ^ (q, /) given by the multiplication operators

q"ip(x) x"\ji(x)
and the momentum-energy/)" (p, E/c2) given by

Mix) ihg»vdMx),

where dv denotes the partial derivative with respect to xv.
The evolution of this particle is described by the Schrödinger equation

ihdzxj>z K^z
and for a charged particle of charge e in an electromagnetic field we have proposed [1]

1

2M;
where the constant M denotes the mass of the particle. By virtue of the generalized

K ^TJff^iP" - e^(q))(p* - eA\q)) (1)

Ehrenfest theorem, a four-dimensional wave packet, sufficiently small, follows the
trajectory of a classical charged particle (this is the correspondence principle).
The wave packet must be small enough in such a way that the electromagnetic field
is more or less homogeneous in the region where \j/(x) is large.

2. The spin \ particle

A particle with spin is characterized by new observables compatible with jf and
q". In the usual formalism this is done by replacing the one-component wave function
ijf(x) by an «-component one

Mx)
<l/x(x)

>„(*)_
The scalar product is given by

<<A, <p> d3x dt\j/+(x, t)(p(x, f)
R4

d3xdt £ ip*(x, t)(pt(x, t)
Jr4 ;=i

and the Lorentz covariance by

(U(A)i//)(x) D(A)il,(A-1x)
where D(A) is an irreducible unitary representation of the Lorentz group (more
exactly of SL(2, C), on the «-component vector space.

But such a model leads to the following difficulty : since each such non-trivial
representation is infinite-dimensional, « is infinite and the corresponding spin also.
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This result is in disagreement with experiments and the well-established degeneracy
of order two for electrons in atoms or metals.

To overcome that difficulty we must introduce a super-selection rule, i.e. a

family of Hilbert spaces [2], Let us consider the Stern-Gerlach apparatus defining
the spin observable and more precisely the symmetry of the magnetic field of this
apparatus. Such a magnetic field is characterized by a strong gradient. It defines not
only the space direction of the spin but also a unique time-like direction, the direction
of the time given by the frame where the field is purely magnetic. Then the state of the
spin \ particle is characterized by a direction in space (the spin) and a time-like four-
vector «" with n4 > 0 and g^rhp — c2.

We postulate that this four-vector n" is a super-selection rule and we introduce
a family of Hilbert spaces Hn indexed by «". The Lorentz group acts on this family
according to the representation defined by [3] :

(U(A)ip)n(x) D(n, A)^A.1„(A-1x) (2)

where D(n, A) D(L~ l(n)AL(A~ ln)), L(n) are boosts such that

L(n)n0 n with ng (0, 0, 0, 1)

and D the usual 2x2 unitary projective representation of the rotation group
corresponding to a spin \.

In other words, to every time-like unit vector n" is associated a Hilbert space Hn
of two-component wave functions which is identical to <E2 ® L2(IR4, d3x dt) and the
Lorentz transformations applies Hn onto HAn by (2).

For «" «g the spin observable is given by the four matrices

WI =\o\ /=1,2,3 and W4 0

where a' are the Pauli matrices. For any n" we can define

W* L(nX Wla (3)

and so «„ W* 0. This definition is justified by the following physical considerations.
Suppose a localised state is given in the usual representation of the Pauli matrices as

ViW2 cos 0/2"

f(x, t).Ux)
sin 0/2

One can easily verify that such a state is an eigenstate with eigenvalue + \ for the
observable

where s" (sin 0 cos q>, sin 0 sin cp, cos 0, 0) and s'" L(«)"iv. In other words the
observable s' W% corresponds to a measurement of the spin with a Stern-Gerlach
apparatus whose time direction is given by «" and the (space-like) direction of the
magnetic field given by s'*.

Let us now check the covariance of W%. We have

D(n, A)W£-lnD-\n, A) L(A~inXD(n, A)W;oD~l(n, A)

L(A~inYv(L- 1(n)AL(A'1n));uWn^o

A;^L(nypW^ A;1"W: (A)



Vol. 51,1978 Relativistic dynamics for the spin j particle 149

since for any rotation R

D(R)aiD~i(R) =Rjuaf
Then we get the expected transformation law for such spin observables as it is easy to
see from our physical interpretation.

On the other hand we have the following commutation rules :

IWS, Wn L(n)l,lMX\_Wi, W:'J

L(n)l,L(n)W<>gv"'cpkax W°nonl

W*9****,&& (5)

where efivpÀ +1 for pvpk an even or odd permutation of 1, 2, 3,4 and 0 otherwise.
The spin observables can be defined in another way which is in fact the usual one.

For an infinitesimal Lorentz transformation

A? *J + co-'g^, oo
pv -covp

let us write the corresponding D(n, A) in the form

£>(«, A) / - ;|s,r<v-
We have

Wn,„ KvA'p»A- (6)

To prove this formula we first remark that it is compatible with the law of
transformation under the Lorentz group. In fact we have [4]

Xo Ç^H2°iivpXk-'n " i _. Xp Y,"Pn à

where

s:> + •K- n"
d

dn

and

D(n,A)HZ>nD-l(n,A) A;lvArlpS^
Then we have just to check the equality in (6) for n" n% and this is obvious since

^»o — tP
where i,j, k are cyclic permutations of 1, 2, 3.

To compare our model with that of Dirac, we want to reformulate it as closely
as possible to Dirac's theory. More precisely we want to change our two-component
representation in a four-component representation in such a way that the new wave
function transforms under the Lorentz group as a Dirac four-spinor. Let us realize
the Lorentz group as elements of SL(2<C), and write A and L(ri) for the corresponding
2x2 matrices. In this notation the law of transformation (2) can be written as

(U(A)il,)An(x) L-l(An)AL(n)<l,n(A-lx).

Alternatively we can choose the adjoint representation A~ (A" ')f and write:

(U(A)iP)An(x) L~-\An)A~L~(n)ilin(A-1x)
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since

L~ ~ \An)A~ L~ (n) L-\An)AL(n)eSU(2).
Given \l/„(x), we define a four-component wave function as follows :

4t„(x)
1 : L(n)

'

L~(n)
\j/n(x).

(7)

The transformation law of such an object is then

(Ü(A)$)n(x)
A 0
0 A" h^niA-'x)

and the scalar product becomes

<^n^(P„> d3x dtij/l(x, t)
0 I
1 0

<P„(x, 0-

We recognize \j/„(x) as a Dirac four-spinor. Performing an additional
transformation given by

rn(x)
i

V2
/ /

Wnix), (8)

we obtain what corresponds to the usual Pauli-Dirac representation of large and
small components The scalar product is then given by

(«A«, O d3x dt\j/l(x, t)(pn(x, t)

d3xdt^(x,t)ß(p?(x,t)
(9)

R4

where

-/ 0"

'-u _,.
and the transformation law under the Lorentz group is

(UD(A)xl7D\(x) S(AWP.in(A-1x)

with

S(A) \
I I
I I

Introducing further

"0 0

<r 0

A 0

LO A~

y ßa. and y4 ß/c

(10)

(H)

(12)
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we find the usual relations for Dirac y matrices, i.e.

[/,/]+ -vv,
5"1(A)/5(A) A^y"

and

5t(A)i3 ^-1(A).
Then the 'current density' is given by

where i?„D(x) \j/Dt(x)ß transforms like a four-vector:

(UD(A)xS7D)n(x)y\UD(A)^D)n(x)

AW?-ln(A-ix)7y°-in(A-lx).
In this Pauli-Dirac representation the observables q" and/?" are defined by

selfadjoint operators

q»if>?(x) x^D(x)
and

p^D(x) -ihg^dJD(x)
which are the same as those, only formally defined, in the usual Dirac theory. More-

Dover according to (5) the spin observables WPU are defined by

WD — ±p 9vpnA — -r vvvPnx

since

si" \ If, yp]

are the well-known generators of the Dirac four-spinor transformation S(A).
Explicitly we have

W? i("42 - m a ot/c)

and

"ff 0"
WD4 - in-S with E

0 ff
(13)

Finally choosing as in the canonical formalism a pure Lorentz transformation
for the boost L(n) we successively find

(«4+ l)/-n-<r/c
L(«) —v/2 («4 + 1)
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and

^(x) («4 + l)"1'2
(«4 + mn(xj

_(n-a/c)ij/n(x) _

(14)

Let us now discuss the dynamics. In the case of the free particle of spin \ the
dynamics is the same as the spinless particle. Then

Kn 2M^PV 2M
D (15)

and the four-vector «" is a constant of motion. For the spin 0 case, the usual theory,
more precisely the Klein-Gordon equation, is interpreted here as an eigenstate
equation

K0il/(x) - \Mc2\j/(x).

This fact suggests a change of representation : the four-dimensional Fourier transform

followed by the change of variables in the subspace K0 < 0 given by

\l>(p) (2nh)~2c

HP) ^f(p, m)

R4
i^(jc) exp — ig¦ /7"'x1/h) d3x dt

(p2 + m2c2)m

The corresponding scalar product is

iKp, sign(«i)(p2 + m2c2y,2/c)

<0,f> dm d3pg*(p, m)/(p, m) {cp, ij/}.
R3

The constant of motion

* «-*(£' + '£
decomposed in this new representation turns out to be just ih dp, i.e. the Newton-
Wigner position operator [1].

The same is true for the spin \ case. We can define through the same way the new
representation in the subspace K0 < 0. The corresponding scalar product is

<dnfn> dm
R3

d3pgl(p, w)/„(p, m) (cpn< i/r„>.

Then the Newton-Wigner position operator is given by the same formula as
before and corresponds to the same constant of motion q,.

The comparison ofour theory with the Wigner theory where the states of the free
particle are described by an irreducible unitary projective representation of the
Poincaré group is easy. A Wigner state for a particle of mass M defined for given
momentum and spin corresponds in our model to an eigenstate of K0 for the eigenvalue

—\Mc2 and the same given momentum and spin and a time direction «"
parallel to p*. Strictly speaking, the two theories are completely equivalent only for
such special states.
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To compare more closely the two theories let us consider in the canonical
formalism a Wigner state <p(p) corresponding to a momentum sharply defined (with
an uncertainty or mean square deviation <r(p2) « M2c2). According to the Foldy-
Wouthuysen transformation such a state corresponds in the Pauli-Dirac representation

to the four-spinor

M-ll2(p* + M)- 1/2 V + m)<kp)
_(<T -P/C)(p(p)

where p4 (p2 + M2c2)il2/c > 0. This Dirac spinor can be approximatively
identified in the Pauli-Dirac formulation of our model (14) with

(«4 + l)p(p)
_(ff-n/c)<p(p)

_

iïD(p) (n4+l)-1'2

where for «" we have chosen
* d3D »"

-r <pHp)^(pìv).
R3 P M

In other words such a sufficiently sharp state of the Wigner theory can be
identified with a corresponding eigenstate of K0 for the eigenvalue —\Mc2 in our
theory. For «" n% such a state can be identified with the 'large' component of the
usual Dirac theory.

3. The spin \ particle interacting with an external electromagnetic field

Let us consider now the case of the spin \ particle in an external electromagnetic
field Ap(x) (A(x), — V(x)). The Schrödinger operator is given by the corresponding

one for the spin 0 case [1] modified by the terms due to the spin interaction with
the electromagnetic field. Especially for the electron (or positron) we propose

K
1

2M 9^ÌP" eA*(q))(p" - eA\q))

g-^iP> - eA^F^qW: (16)

+
92iHl

8Mc4 FllMnvF»iq)n'>
ffsP-o

n"Fpv(qW:

where F^x) Ô^Av(x) - dvAß(x) and F^(x) \epvpXF"\x), i.e.:

B (F23,F31,F12) (Fl4,F24,F34)
E (FXA,F24,F3A) (F23,F3\F12).

The electric charge of the particle being e, p0 denotes the usual Bohr magneton
eh/2M and gx, g2 and g3 are dimensionless phenomenological constants.

Let us now discuss this expression of K. Since K is a Lorentz invariant we may
consider only the case «" ng. Clearly the first term is responsible for the Lorentz
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forces on the charged particle and the others are just perturbations. The second term,
which can be written as

" M? ((P " eA(?))W«o A E^ + (-E~ eV(q))WnoB(q)) (17)

describes a spin-orbit coupling. It is formally self-adjoint since

[/>„ - eAß(q), P»{q)1 -ih df»\q) 0

by virtue of the homogeneous Maxwell equations. The third term

É?EJ<" (18)

is a contribution to K due to the spin-orbit coupling. Finally the fourth term

-g3p0WnoB(q) (19)

is the only possible Lorentz invariant term coupling the magnetic field and the spin
variables.

In view of the expressions (17) and (19) it is clear that for the particle at rest in a

purely magnetic field, one has

K^ -XMc2_{gi +g3)WnoB
and by definition gx + g3 is the g-factor of the electron magnetic moment. We have
chosen factors in (17), (18) and (19) in such a way that#i, g2 andg3 are approximately
equal to 1 for the electron. In fact application of our model in the hydrogen atom
case [5] leads for gx g2 1 to the following energy spectrum which coincides
with the results of Dirac [6] up to terms of order a4

A a2 a4 / n 3\

n, I and j are the usual quantum numbers for energy levels in hydrogen atom and a is
the fine structure constant. For gx and g2 different from 1 we find

En,o, l/a - K x, Xl2
Mc2 a~ (i±f± + g-±f±y n > 2

i.e. the Lamb shift [6].
To completely determine the evolution of the state we still need an equation for

«". If the evolution is induced by automorphisms such an equation is of the form

„» /"(«) (20)

with the condition /"(«)«„ 0 due to the constraint n"np - c2. Physically our
comparison with Dirac's theory suggests that the evolution is such that n" tends to be

parallel to </?">• in many cases the direction is practically the same as the one given
by <<j") since we have:

r \ [*> «*] -ju (p" - eA"(q) - ^° F%(q)Vir\ (21)

In general such an evolution is not of the form (20) and gives rise to some irreversible
process like radiation.
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As an application we consider the evolution of the spin in an electromagnetic
field which is not necessary homogeneous. More precisely from the expression (16)
of K and from the definition of Wjf we can write an expression for the derivative
Wjf. According to the formalism of continuous superselection rules [7] we have

*;-£[*,»?] +w (22)

where

W lim "(i+^t ^ dMnWWlo

is the usual derivative with respect to x if the isomorphism between the Hilbert spaces
Hn(z) and Hn(z+5z) is the identity. This is the case for «" «g if L(n0 + on) is a pure
Lorentz transformation, i.e.

L(n0 + ònX =ò"v + «<S«V - ôn"n0v)/c2

as is easy to check (since n^3nß 0). Then we successively obtain

dzL(n(x)X\m=no («g«0v - «Xv)/c2
and

dzw^ K(n0vw;0)/c2 (23)

since n0llW£o 0.

Performing a Lorentz transformation L(ri)£ on

W:o ~ [_K, W& + K(n0vWS0)/c2 (24)

we find

*î l-h \K, WP\ + n"(nvW:)/c2. (25)

Finally a straightforward calculation of the commutator in (25) leads to the following
equation

- Fl(q)W':np(pO - eA»(q)) + Fl(q)nxWnp(p> - eA>(q))}
(26)

+ ^r°{n"FpX(qW:n" + c2F>k(q) W;}(hVo
he

+ n»(hvW;)/c2

From this general expression of Wjf we are able to justify the BMT equation [8] as a
semi-classical approximation.

Let us consider a wave packet around the mass shell and sharply defined in
space-time, momentum-energy and spin. For such a state we can approximate
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(FpM> by Fpv Fpvdq» and then write:

"" * ìf <P" ~ eA>1{q)y - <r> (27)

and

f,f <$"> ^ <~ [*, <n> * ^v"«v- (28)

Performing these approximations in (26) and rearranging the terms, we find the
following equation which is the BMT equation for the precession of the polarisation
of particles moving in an electromagnetic field

WX ^ {gF! WI + (g- 2)n»n»Fpv WI}. (29)
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