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Selfadjointness and invariance of the essential spectrum for
the Klein-Gordon equation

by R. Weder1)

Universiteit Leuven and Eidgenössische Technische Hochschule Zürich

(23. VI. 1976)

Abstract. We consider the selfadjointness and the invariance of the essential spectrum of the Hamiltonian

of the Klein-Gordon equation. We prove that the Hamiltonian has a selfadjoint extension such that
the essential spectrum coincides with the spectrum of the unperturbed Hamiltonian. We consider a large
class of electromagnetic and scalar potentials. In particular we can have potentials of Coulomb type if the
coupling constant is not too big. We can even consider magnetic potentials which are divergent at infinity.

1. Introduction

In a previous paper [1] we developed the scattering theory for the Klein-Gordon
equation [2] :

jt - b0 J ip(x, t) X (A - bj)2 + m2 +qs ip(x, t),

x e R", t e R, Dj —i(ô/ÔXj), b0(x) is the electric potential, b,(x), 1 < i < n, the
magnetic potential, and qs(x) is the scalar potential. We followed the usual procedure
of considering an equivalent equation which is first order in time, in the Hubert
space of vector valued functions which have finite energy. We proved existence and
completeness of the wave operators, the intertwining relations and the invariance
principle as well. In this paper we consider the problem of the selfadjointness and the
invariance of the essential spectrum of the Hamiltonian in the case where local
singularities of Coulomb type are allowed.

In Section I (Theorem I) we construct a selfadjoint extension, H, of the Hamiltonian

such that the essential spectrum coincides with — oo, — m] u [m, oo). In
particular we can have singularities of Coulomb type if the coupling constant is not
too big.

In Section II we give conditions in the magnetic field that allow us to perform a
Gauge transformation in the magnetic potential. In particular we consider magnetic
potentials which are divergent at infinity.

Concerning the literature: we will only mention the more recent results [8],
[9] and [10], where a list of references is given.

') Postal address: Celestijnenlaan 200 D, 3030 Heverlee, Belgium.
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Lundberg [8] considers the case n 3, b,(x) 0, 1 ^ i ^ 3 and

i) qs(x) and b%(x) square integrable
ii) b0(x) and qs(x) behave as 0(

iii)

E), e > 0 for \x\ oo

(|V/|2 + m2\f\2) d3x with 0 < a < s,dx(- bl + qf)\f\2 > -a

In [9] Eckardt considers the case n > 3, b,(x) s 0, 1 < i sg n. He assumes (iii)
of [8] and

O Ml,v SUP
\x-y\<l

\p(y)\2\x - y\ -m+4-a dy < oo

where /7 is any one of è2, and qs, and a e (0, 1].

ii) ^„W bC^)!2 I* - y\~m + 4~"dy
|X-)>|<1 |x|->0O

0.

Kako in [10] considers the case n 3 and b,(x), 0 < i' < 3, and qs bounded and
satisfying

i) \b,(x)\ «S C\x\~2-\ 0 < i «S 3

ii) £>t-, 1 ^/^3 are differentiable and \d/dx, b,\ < C|x|~2_£
iii) \qs\ ^ C|x|"2-£.

Our conditions in any one of b„ 0 =S i < n and </s(;t) are weaker than the conditions
of [8], [9] and [10].

In Section II (see also the conclusions) we give a representation of the Klein-
Gordon equation as an equation which is first order in time, with a Hamiltonian
which is selfadjoint in a Hilbert space, with positive metric, where a position operator
and a (positive probabitity density is defined (it is often said in the literature that
such a representation does not exist). We prove also that if the wave operators exist
the scattering matrix is free of Klein paradox. It seems that this representation has

not been noticed before in the literature. In fact the Hamiltonian contains a square-
root operator which is usually rejected as intractable or expanded in series in the
text books on quantum mechanics.

II. Selfadjointness and essential spectrum

We consider the Klein-Gordon equation [2] with electro-magnetic potential
b,(x), 0 ^ i =S « and scalar potential qs(x) :

i jt - b0(x) ip(x, t)

X 6 tei D,

X (D, - bj)2 + m2 +qs
_i=l
,_d_

dX;

ip(x, t) (1.1)

As in-[l] we consider an equivalent equation which is first order in time, we define

Pi /f/i Hx, t),f2 ijt^ix, t) and /= '' '
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Then (1.1) is equivalent to the following equation i(d/di)f hf, where

D(h) {fe CS'2 | Ifi e SA2 and Qf2 e TA2}

"0 1

(1.2)

h'j Q_

q(x) - qs - bl,

I £ (D, - bj)2 + m2 + q(x),

2bn

Cq is the space of infinitely differentiable functions of compact support on IR", and
CS'2 cs®c%.

Let us first consider the free case, i.e., qs(x) 0, b,(x) 0, 0 =S i:^ n. As is
well known the energy integral

W) d"x-[Y, \D,ip\2 +m2\iP\2 +
dt * (1.3)

is conserved in time. We associate with (1.3) a scalar product, the 'energy scalar
product'

(/, g)0 Y (A/i, Affi) + m2(fu gf) + (f2, gf) fg e CA' (1.4)

Let Jf0 be the completion of Cq'2 with this norm.
Let S denote the space of Schwartz, and Hs the Sobolev space of order j,sel,

i.e., the completion of Cjf with the norm \\f\\, ||(1 + C2)s/2Ff\\,fe C$ where F
denotes the Fourier transform, and || || the TA2 norm.

The norm (1.3) is equivalent with the norm of Hx ® TA2, and they coincide as
sets. In this case the Klein-Gordon equation is equal to

iJtf=H0f, Hn
0 1

-A + m2 0
(1.5)

We denote by cr(A), ae(A), and oac(A) the spectrum, the essential spectrum and the
absolutely continuous spectrum of a selfadjoint operator A, [3]. We have

Theorem 1. H0 is selfadjoint in Afa with domain D(H0) H2 ® Hx and is
essentially selfadjoint on Cjf'2. It is absolutely continuous and cj(H0) (— oo, — m]
u [m, oo).

Proof: See [1] Q.E.D.

Let us consider again the interacting case. The energy of the field is given by

E(iP) \d"x\Z \(D, - bj)iP\2 + (m2 + q)\iP\2 + dr (1.6)

where q(x) qs - b20.

As in the free case we associate with the energy integral a sesquilinear form, 'the
energy sesquilinear form'

(/, 9)e î ((A - *,)/i,(A - bj)gx) + ((m2 + q)fu gf) + (f2, gf) (1.7)

f,geCA-
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The operator h is symmetric in the energy sesquilinear form, i.e.,

(hf,g)E (fhg)E, fgeD(h),
but the form (•, -)E will not be positive in general.

We will introduce an assumption assuring that the energy sesquilinear form is

positive :

A0 : There is a constant e > 0 such that

q-(x)\Ax)\2 d"x < £ WD-JW2 + (m2 - s)\\f\2, fe Q
i= 1

by q± we denote the positive and negative parts of q(x).

Lemma 1.2. IfA 0 is satisfied we have

(f-f)A e iifufi) + A2J2)), fzCjf'2

Proof: See [1] Lemma 2.1. Q.E.D.

Then •, • )E is a norm. We denote by 3tfE the completion of Cq '2 with that norm.
Before we give a necessary and sufficient condition for A0 to be satisfied let us

see what it means for an electric potential of Coulomb type, i.e., qs(x) 0 and
b0(x) e/\x\.

A0is satisfied if

e2 -rj \f(x)\2 dx ^ (k2 + X)\Ff(k)\2 d"k, feC%
\x

but by Hardy's inequality for n ^ 3

-^ \f(x)\2 d"x < (~TV f^2^^)!2 d-k,

Then A0 is satisfied if |e| =S (n — 2)/2.
It is known that the constant in Hardy's inequality is the best possible. In the

usual system ofunities this means, for« 3,Z ^ 68.5, where Z is the atomic number.
Let us define [5]

Bx(q) inf sup -
tll>0 x Y

\qiy)\o2,xix - y)\p(y)dy,

where o2l(x) is the inverse Fourier transform of (2n)~"l2(X + |C|2)-1, X > 0. Then

Lemma 1.3. A0 is satisfied ifand only ifBx(q~) < 1 for some X < m2.

Proof: See [1], Lemma 1.1. Q.E.D.

Let us introduce

s?.(q) sup \q(y)\a2,xix - y)dy.
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We have Bx(q) < Sx(q). Then A0 is satisfied if Sx(q~) «£ 1 for some X < m2. In the
case of a scalar potential of Coulomb type, i.e. b0 0, qs e/\x\, this gives, for
n 3, e < 2m.

Let us introduce some notations [4]. For a > 0 let

coJi\y\) \y\"A 0<a<n,
1 - lg| v|, a n,

1, a > n.

Nx.ô,x(q) k(* - J>)|2<o«(>0 </v.
Jli>l<.5

#«, a(ff) sup NXtSi x(q), JV«,x(?) /Va, t, x(ff)

Nfjq) Na,x(q).

We denote by Aa the set of functions q such that NJjq) < oo.
We introduce a new assumption

AA
1) bi(x) e 7V2, 1 < i < n and if n ^ 2, /V2^,)^ 0

2) tf(x) ^(x) + q(x), \qx\112 e N2, and if
n > 2,A2>^1|1/2)^5>0-<?/x) Oifn < 2, and

qc(x) - e2/\x\2, \e\ *£ (n - 2)/2 if n > 2.

Lemma 1.4. IfA0 and A, are satisfied there exist two constants CX,C2 > 0 such
that

c2(\\fi\\i + \\f2\\2) *s (f,f)E ^ CAWfjl + ||/2||2).

Proof:

(fj)u t IKA - b,yx\\2 + ((m + qVuff) + (f2,f2)
t=i

< CAWfiWi + \\f2\\).

where we applied Hardy's inequality and Lemma 2.2 of [1]. Finally

(f,f)E > t HA/ill2 - 2 t HA/ill libili - ^ IIAIIï - K\\ff\2 -
2e

i=l i=l
|2

v« - 2

then

AIIÏ + H/2I!2,

1 " 8 " (A)2)171'1' + Ulf * (/'/)e + ll/2"2'

hence (/,/)£ > CjO/J2 + ||/2||2), for some C2 > 0. Q.E.D.

This implies that the norm of 77rfE is equivalent to the norm of H, (x) Ç£2 and they
coincide as sets.
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We need the following assumption :

A2:

N*Jbj) + ^4,,(ki|1/2) — 0, 1 <- / < n

Lemma 1.5. Let A, be satisfied. Then I (see 1.2) has a self-adjoint bounded below
extension, denoted by L, (a 'quadratic form extension). If A2 is also satisfied the
essential spectrum ofL coincides with [m2, oo).

Proof: We define the sesquilinear form

l(f, g) t (A - b,)f, (A - bj)g) + ((m2 + q)fg), f,geC%.
i= 1

As in Lemma 1.4 we have

[Kf,f)\ < CU/1!2, feC$, C>0
and

(1 - e)||/||2 < l(ff) + K(f,f), /e CS, s < 1.

Then 7 extends to a closed, symmetric, bounded below form with domain H,.
The associated selfadjoint operator is the extension of L that we need.

If A 2 is also satisfied we prove as in Theorem 1 of [6] that the essential spectrum
of L coincides with [m2, oo). Q.E.D.

Note that ifA0 is also satisfied L ^ e > 0. Then yjL is selfadjoint, positive, with
domain D(yjl) Hx. Moreover it is essentially selfadjoint on CS, and oc(yjL)
[m, co). The energy norm is given by

(fJ)E is/Lfi, VA ffi) + (A ff2), f,ge*E-
We define

U
1

72
'JE 1

JE -1.
U is a unitary operator from 777?E onto tf Ç£2 © Ç£2. Let HL be

~o rHL L 0

then

HL UH^-1 ~JL 0"

0 -yjL
D(HL) Hx ® T/i. Also let

"0 0"
"7

then

0 ß

-1 Q 2b0(x).
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We will prove that H HL+ Fis selfadjoint in tf with domain D(Ê) Hx ® Hx.
Then h (see 1.2):

"0 1

+
"0 0"

\_l OJ U q\
will have a selfadjoint extension, H,

H [/"'Ht/ HL + V, D(H) D(L) ® Hv
To do that we introduce the following assumptions :

A3: b0 bl + bc0, b\ e N2 and if n ^ 2

^2./*o)t^>0. 6ò(x) 0 if «<2

n 7* 3 bc0(x) where Iel <
2v/17

A4: N2Jbl)
M-.00

Theorem 2. Lef A0 Ax and A3 be satisfied. Then h (see 1.2) has a selfadjoint
extension, H, with domain D(H) D(L) ® Hx. If A2 and A*, are also satisfied the
essential spectrum ofH coincides with — oo, —m] u [m, oo).

Proof: Let us define

v=vx + V2,

1

-1
and Vn

where

Vi 2bi(x)

Then

ll?i/ll2 8 \\bl\2\f, -f2\2dx^

2b%(x)

«S 16 \b0\2(\fi\2 + \f2\2) dx

^ mbofiW2 + l\b0f2\\2).

But for any e > 0

IlV/ill <«ll/,lli + Will, '=1,2
by Lemma 2.2 of [1].

Then for any e > 0 there is a K such that

||^/|| ^ sdy'LfW + WjLfnW) + K(\\fx\\ + ||/ill
Thus V. is HL bounded with relative bound zero.
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We must prove that

|2 ^ „|| tJ f\\2 _l j^ll /-||2

-¦oo 2

W2f\\2 < s\\HLf\\2 + K\\f\j-
for some 8 < 1 and anyfe CS ¦ It follows from an easy calculation that this is true
if

17 e2
1

/ + Il |ffi|1/2/ II2 < e E (IKA - OT + K\\f\\2),

for any/e Cg>. But by A3, Hardy's inequality, Lemma 2.2 of [1] and Lemma 1.2,

page 168 of [4]^ this is true.
Then Fis HL-bounded with relative bound less than one. Hence H is selfadjoint

with domain

D(H) H, ® H,.
Moreover V, is HL compact (see Lemma 2.3 of [1]) Then

oe(HL + Vx) oc(HL) (-co, -m]u[m, co).

Moreover since V2 is HL + Vx bounded we have:

(H_Z)-i _(hl+.Fi -Z)"1

(H-Z)-1 UÏ/2 LJ1/2

172 (H -zy1 i
11/2

which is a compact operator. Then

cre(H)= (-co, -m]U[m, oo)

The condition \e\ < (n — 2)/2v/Ï7 is not optimal.

(HL+ V-Z)-1

(HL+ V, -ZY1

Q.E.D.

III. Gauge invariance

As in [1] we give conditions in the magnetic field that allow us to perform a

Gauge transformation in the magnetic potential b,(x), 1 ^ i =S n. We assume, for
simplicity, that n > 2 and that b,(x) e 7A2XoQ, 1 < i < r.

We denote

M», Aq) sup
l)>l<i

\qix -y)\\y\"-ndy

Mx is the set of functions q such that Mx x(q) < oo. We also say that q is locally in
Mi ,if<Sqe M^ x for every ^eCJ.

We introduce the following assumption AT: Vet b,(x) 1 ^ i < n be locally M2
and suppose that (Rot b)tj is a locally Holder continuous tensor such that

C&x) \Dibj Djbk1'" dy < oo
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for every x, where 1 < /, j < n, r \x — y\. Then (see Lemma 2.1 of [6])

b, bf + — (p(x), 1 < i < n
3x

where

(Rot è)j; ~2-n
dx,

dy,

cp(x) (b, - bj) dSl, K -V(\n)/2(n - 2)n'- JTlrr"!2

C is any curve from a fixed point to x (the integral is independent of the curve) and
the summation convention is used.

We introduce the following assumption :

AT:
1)' Cf.eN2 and NnJC^j^O.
2) q(x) qx(x) + qc(x), \q\\1/2 e N2 and N2j\qx\112) ^ 0.

qc(x) - \e\ «S

We define tfT to be the completion of CS'2 with the norm (1.7) but with bf instead
of b,. The Klein-Gordon equation with bf is equal to

l-zrf' — hTf;
dt T hr

0 1

It Q

(2.1)lT=Y (D, - bf)2 + m2 + q(x), Q 2b0(x)
t i

D(hT) {/e CS'2 | lTfi e 7£2 and Qf2 s TA2}

Then as in Lemma 1.5 we prove that lT has a selfadjoint extension LT. As in Theorem 2

we prove that LT has a selfadjoint extension with domain D(HT) D(LT) ® Hi ¦

We define [1]

tfE {fsTA2 suchthat f=U~1fT for some fT e tfT}
with the scalar product

(/, 9)e (A, ffT)r where U^f^x) e^AM
U is a unitary operator from tfE onto tfT by construction. Since

(A + bf)Uf= (A + bf) e^A(x) U(D, + b,)f,

tfE is the completion of U'1CS'2 with the scalar product (1.7). Then

Theorem 3. IfA0, AT,Af andA3 are satisfied h (see 1.2) has a selfadjoint extension,
H in tfE. IfA2 and A4 are also satisfied then

o-e(H) (—oo, — m]U\m, oo).
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Proof: We define

H U-XHTU.

vVe only need to prove that H is an extension of L. But

H IP r ° °i 1/
[_LT Q]

0 0"

U~lLTU Q

so we must prove that L U 1LTU is an extension of /. But if/e D(l), then

(Ulf Ug) £ ((A - bf)Uf (A - bf)Ug) +

+ ((m2 + q)f g) lT(Uf, Ug), Ug e CS-

then fe D(LT) and LTUf Ulf i.e.

//= U-lLTUf=Lf. Q.E.D.

Conclusions

We derived two representations of (1.1) as an equation which is first order in
:'me. Namely

H= °r I fetfEiJtf=Hf
and

'I'-« H Vl o

I o -VAl + ô

/ etf TC2 ® 7A2.

They are unitary equivalent. The second one has the advantage that the scalar
pi oduct in the Hilbert space where the representation is given does not depend on the
interaction, and is more suitable for the physical interpretation. In the free case we
have

A- 'y/-A + m2

0

0

-J-A + m2 f,

We see then that the /+, /_ are the usual positive and negative energy components
(this is sometimes called the free particle representation, see [7]). We can define a
position operator as multiplication by x; and \f+(x)\2 and \f_(x)\2 can be interpreted
as the (positive probability density for particles with positive and negative energy
respectively. The negative energy solutions are interpreted in terms of antiparticles
in the usual way.

If b0(x) 0, i.e., if we only have scalar and magnetic field the Hamiltonian H
is still diagonal, and the positive and negative energy solutions evolve in an independent
way.

However, if the electric field is different from zero, the Hamiltonian is not
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diagonal anymore. But if the wave operators exist (see [1]) and the intertwining
relations are satisfied, i.e., ip(H)(o± co±ip(H0), we have

SiP(H0) (o*coA(H0) HH0)S.
Then the scattering matrix commutes with any Borei function of the free Hamiltonian,
in particular with the projectors onto the positive and negative energy subspaces,
and asymptotically there is no Klein paradox.

Of course this representation is possible only if A0 is satisfied, i.e., if the external
fields are not too strong. But in fact a description of a relativistic spin zero particle
by a one particle quantum mechanical equation is only expected to hold for weak,
slowly varying external fields (see [2] page 199).

We have seen then that the Klein-Gordon equation gives, for weak fields, a
relativistic quantum mechanical description of a spin zero particle with a selfadjoint
Hamiltonian, in a Hilbert space, with positive metric, where a position operator and a
(positive density of probability is defined (it is often said in the literature that such
a representation does not exist).

It seems that this representation has not been noticed before in the literature.
In fact the Hamiltonian H contains the operator yjL which is usually rejected as
intractable or is expanded in series in the text-books in quantum mechanics.

It should be noted that yjL is not a local operator, but the equation i(d/dt)f Hf
is local because it is equivalent to the Klein-Gordon equation (1.1.) which is local.
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