
General theory of potential scattering with
absorption at local singularities

Autor(en): Pearson, D.B.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 48 (1975)

Heft 5-6

Persistenter Link: https://doi.org/10.5169/seals-114690

PDF erstellt am: 01.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-114690


Helvetica Physica Acta, Vol. 48 (1975), Birkhäuser Verlag, Basel 639

General Theory of Potential Scattering with Absorption at
Local Singularities

by D. B. Pearson

Department of Theoretical Physics, University of Geneva1)

(8. VII. 75)

Abstract. The mathematical theory of potential scattering is generalised to allow real singular
potentials for which there is a non-zero probability of absorption of the particle by the scattering
centre at large (positive or negative) times. That such potentials exist has already been shown by
the present author.

The usual identification of M^.AH) with the subspace of scattering states need no longer
hold. Instead for each limit t —* ± oo we have a canonical decomposition of Ma.c.(/7) into two
mutually orthogonal subspaces, one being the scattering subspace and the other consisting of
states which are absorbed.

The general theory applies equally to short and long range potentials, but for short range
potentials the scattering subspaces may be identified with the ranges of corresponding wave operators,

which are known to exist even if the potential is highly singular.

I. Introduction

The customary picture of quantum mechanical scattering of a single particle by a
local potential V(r) is of a particle initially (i.e. at large negative times) moving
freely far from the scattering region, subsequently to be scattered by the potential and
finally (at large positive times) again moving freely and receding to a great distance
from the scattering region.

Such a picture of the physical scattering process is to be related to a corresponding
mathematical description in which the states are represented by elements of the Hilbert
space L2(U3), and the evolution of states by the one parameter family of unitary
operators, of which the generator is the total Hamiltonian H; H is some self-adjoint
extension of the differential operator —A + V. An important initial step in constructing

this mathematical picture of the scattering is to define the subspaces of scattering
states M *, for which two definitions have recently been proposed. Both definitions
have the merit of relating to observable properties of the evolution of states in position
space.

The first is to define M % to consist of states for which the mean squared
probability of finding the particle in any bounded region of R3 approaches zero as t -> ± co

[L 2].
Because of the existence of bound states, M± will generally be a proper subspace

of the entire Hilbert space, and contained in Mc, the subspace of continuity for the
total Hamiltonian. Physically one would expect to have M £ Mc, and indeed this
result has been proved for a very large class of potentials [2].

*) Now at Department of Applied Mathematics, University of Hull, England.
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An alternative and complementary approach, which will be adopted here, is to
take M% to be a subspace of the space of absolute continuity Mac. of the total
Hamiltonian, consisting of states for which the probability itself of finding the particle
in any bounded region of R3 approaches zero [2, 3].

This definition is particularly appropriate when one studies the way in which
scattering states have asymptotically free evolution. The mathematical expression of this
depends on the behaviour of the potential at large distances, the simplest case being
that of short-range potentials. (For long-range potentials see, for example, [4, 5].) In
this case, scattering states become free in the limit t -> ± co in the very precise sense
that they approach in norm states for which the evolution is given by the unitary
group generated by the free Hamiltonian H0 —A [6]. This result, called asymptotic
completeness, is equivalent to the equality of Afac. with the ranges of the wave operators

ü±(//, H0), and has again been proved for a wide class of singular and non-
singular potentials [5, 7, 8].

However, highly singular potentials have now been found [9] such that there are
states in Ma0. which are asymptotically free at t — oo but which have non-zero
probability of absorption into the scattering centre at time t 4-co. Such potentials
violate asymptotic completeness, and the results mentioned above do not apply to
them. (Whether these potentials should be regarded as pathological is not yet clear.)

The purpose of the present paper is to establish a framework for the
mathematical description of potential scattering which is sufficiently general to allow
absorption at local singularities. We considered it important to deal with as wide as

possible a class of potentials ; we therefore consider potentials not necessarily spherically

symmetric nor short-range, and which may be singular on some arbitrary bounded
set S of measure zero.

An important aid to studying the asymptotic behaviour of states in position space
is an analysis of local domain properties of H, and closely related to this the use of
compactness methods. (Roughly we say that/is in the local domain ofHit, away from
the singularities of V(r), f is equal to some element in the domain of H.) We rely
heavily on the method and results of Ikebe and Kato [10] which, though applying to
non-singular potentials, may be extended in part to the class of potentials considered
here. The use of compactness is already apparent in [2]. In Section 2 we give a fairly
systematic analysis of local domain properties, the results being summarised by
Lemmas 1-5.

A first consequence (Section 3, Theorem 1) is that for any state in Mao. the
probability of finding the particle in any compact region not containing singularities
of V(r) approaches zero. (One may show that, for states in Mc, the mean-squared
probability approaches zero). This leads us to define subspaces M\\, consisting of
states which as t -*¦ ± oo asymptotically approach the singularities of V. Analogous
subspaces may be defined by the asymptotic behaviour of states in momentum space,
viz. Nr% consisting of states for which the kinetic energy (or free energy) tends to
infinity and a corresponding orthogonal subspace Nf. (For precise definitions see

equations 13-14.) The relevance of these definitions appears from Theorem 2, showing
that

(i) Max. M| ©M*,and
(ii) Subspaces defined by asymptotic behaviour respectively in position and

momentum space are in fact identical; for example Mf N%.
In Section 4 we turn to the description of free particle states in the case that V is

short-range, and prove (Theorem 3) that in this case M £ is identical to the range of
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the wave operator QT(H, H0). Asymptotic completeness then holds if and only if
M% is empty, implying that all states in Mac. move asymptotically to infinity in position

space as t -> ± co. This confirmation of a result which is physically very reasonable
has as a by-product a proof of asymptotic completeness for semi-bounded Hamil-
tonians under extremely weak conditions (Corollary to Theorem 3).

We have succeeded, then, in establishing a more general framework for potential
scattering, with the usual scattering theory for non-singular potentials as a special
case. In addition to the scattering states, there are states which are asymptotically
absorbed, for which the kinetic energy necessarily tends to infinity. (Either at / — oo,
or at t +00, or conceivably in both limits). A correct formulation must take these
states into account. For example, in defining the wave operators Ci±(H0 + Vx,
H0 + V2) by a strong limit it must be realised that the evolutions generated by
i/0 + Vx and H0 + V2 may be comparable only in regions free of singularities ; the
strong limits, suitably redefined, may then be proved to exist for short range potentials
(Remark 2, Section 4), and to define partial isometries. However, in general H0 + Vx,
H0 + V2, acting in their respective absolutely continuous subspaces, need not be

unitarily equivalent. In several respects the theory of scattering by absorptive potentials

presents a richer structure, and we believe one that deserves the further attention
of mathematicians and physicists.

H. Local Domain Properties of — A + V

The differential operators -idk -i8jdxk, k 1,2,3) and -A -~2l i d2/dxt),
defined on all C™ functions having compact support in R3, are known to be essentially
self-adjoint, and we denote by Pk and H0 respectively their self-adjoint extensions,
acting in L2(R3).

We suppose that there is a compact subset of R3, denoted by S, having zero
Lebesgue measure and such that the potential Fis locally IA in the complement of 2.
(This means that every point of R3\S has an open neighbourhood N with VeL2(N)).
We denote by H the operator -A + V with domain D(H) consisting of all C°°
functions <f> on R3 such that supp. </> is compact and is contained in the complement of
2. It is easily seen that D(H) is dense in L2(R3) and that H is symmetric. Since every
self-adjoint extension of H is a restriction of H* (the adjoint of H), it is important to
study the domain of Ê*.

Let us denote by Daoc\T) the local domain of a self-adjoint operator T, defining
this by

fé Daoc\T) opfe D(T) Vp e D(H).

(With some abuse of notation, we shall employ the same symbol for the function p as
for the operator of multiplication by p).

Now let/be any element belonging to Da°c)(H0). Then any point in the complement

of E has an open neighbourhood A^ for which we can find p e D(H) such that
p\N 1. A/may now be defined as an element of L2(N) by

(Af)(r) (-H0pf)(T) (reN).
The right-hand side is independent of the particular choice of p, since if p pi, p2, say,
then

<7/0(Pi - P2)f, </>> <(pi - pAf H0<t>y o
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for any c/> e D(H0) having supp. (/> <=¦ N ; such <p are dense in L2(N), so that H0(pi — p2)f
0 as an element of L2(N). Now the assumption that S is of measure zero, and the

observation that the open sets Af cover R3\E, enable us to construct a function (or more
exactly an equivalence class of functions), defined a.e. on R3, and which we denote by
(A/)(-), which agrees with the above definition on each local neighbourhood N. If
/e D(H0) then /e D{loc\H0) and A/eL2(R3), whereas the converse implication is in
general false. We may similarly define — idkf fox f e Daoc)(Pk).

Jörgens [11] has pointed out that the arguments of Ikebe and Kato in [10] may be
extended and used to obtain local domain properties of H* even for potentials having
local singularities. Thus for any/e D(H*) an integral representation may be derived
for f(r) in an open neighbourhood N of each point in the complement of S. This
integral representation (cf. [10], equation (A2)) may be regarded as a local analogue
of the relation

J 4rr J r - r'
giving the solution of Laplace's equation in potential theory. We find, from the
integral representation, that /is bounded locally in the complement of 2. Again, by
differentiation we obtain an integral representation for (8fl8xk)(r), from which it
follows that 8fj8xk e L2(N) for each N. Given any p e D(H), a compactness argument
shows that supp p may be covered by a finite set of neighbourhoods N. Hence we
readily obtain fe D(Pk) Vp e D(H), /e D(Ê*), which in the notation introduced
above gives

D(H*) <= BP»%Pk) (k 1, 2, 3) (1)

In fact, noting D{l0C)(Hn) e Z)(l00)(Pfc), a stronger result than (1) holds, namely

Lemma 1

D(H*) c />'°°>(/70) (1')

Proof. Suppose/e D(H*) and pe D(H). We first provep/e D(H*). For^ e D(H)
we have

</fy, p/> <(-a + vyp, pfy

<(-a + vypipjy + mpjy + 2 f (ß--§-,A) (2)

The first term on the r.h.s. is

(Hpipjy <ip, pH*fy.

The second term may be written

#, (Ap)/>,

and the third term is

2 2 <iPé, (dp/8xk)fy 22 <i«A, Pk(8p/8xk)fy,
k=l k=l

where we have used (1) and noted that 8p/8xk e D(H).
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From the Cauchy-Schwarz inequality applied to each term of the right-hand
side of (2) it follows that

|</fy,p/>| < constali V<A e D(H), (3)

where the constant is independent of ip, so that we indeed have p/e D(H*).
Now let cf, he an arbitrary C°° function having compact support in R3. The open

sets R3\supp p and R3\S together cover R3, so that by a standard result on partitions
ofunity (see for example [12]) we can find real non-negative C °° functions pk(k 1,2)
satisfying p, + p2 1, with

supp Pi c R3\supp p; supp p2 <= R3\S. (4)

Writing <f> — <px + cf>n, where </>h pk<p, and defining

V(r) V(ry r e supp p (5^
0 j otherwise,

we have

<(-a + vyp,pfy <(-a + v)cp2,pfy
<HKpf> <<f>2,H*pfy,

where we have used
i) <£i 0 and V V on supp p,
ii) <rneD(H),
iii) pfeD(H*).
Hence

|<(-A + V)<p,pfy\ < const||02|| ^ const||^||,

so that p/belongs to the domain of the adjoint of the operator —A + F defined on
C°° functions having compact support in R3. But, by a compactness argument,
Ke L2(R3), and it is known [13] in that case that -A + F with this domain is essentially

self-adjoint, the self-adjoint extension being H0 + V, defined as an operator sum
on D(H0). It follows that pfe D(H0) (VpeD(H)), so that (1') holds and we have
proved the lemma.

Following the discussion of the local definition of A at the beginning of this
section, we also have

Corollary. Iffe D(H*), then

(#*/)(r) (-A/)(r) + V(i)f(T) a.e., (6)

where both terms on the right-hand side are locally L2 in R3\S.

Lemma 2. Vet p he any C°° function with supp p <= R3\S, such that p(r) const
for sufficiently large |r|. Then

feD(H*)^pfeD(H*).
Further, if there exists R > 0 such that VeL2 + Lm in the region

|r| > R, then /e D(H*) => pfe D(H0), D(Ê**).
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Proof Vox the first part of the Lemma, and to prove pfe D(H0) under the
additional hypothesis, follow the proof of Lemma 1, replacing the hypothesis pe D(H) by
the weaker assumptions on p. Observe that

(i) 8pj8xk e D(H),
(ii) If V is defined by (5), the condition on V implies VeL2(U3) + L°°(R3),

so that again — A + V, defined on C™ functions having compact support in R3, is
essentially self-adjoint.

To prove pfe D(H**), consider a general member g of D(H*). Then

<H*g,pfy <H*p2g,pfy,

where we have written g pxg + p2g, and the C°° functions pk satisfy (4). If p has
compact support, then p2 may be chosen to have compact support, whereas if p(r)
const # 0 for large |r| then px has compact support, so that p2(r) 1 — px(r) 1

for large |r|. Hence in either case, by the first part of Lemma 2, pkge D(H*)(k 1, 2).
Also, from the Corollary to Lemma 1 we have

<H*pig,pfy <(-APlg)(.) + (Vpig)(-),pfy o,

since Pi 0 wherever p # 0.

We also have p2g e D(H0) n D(V), so that

<H*g,pfy <(//o + v)p2g,pfy <p2g,(H0 + v)pfy
<g, (H0 + V)pfy, since p2 1 wherever p # 0.

Since g is an arbitrary member of D(H*), it follows that pfe D(H**), and Lemma
2 is proved. It is also useful to note at this point that

H* ^H0+ V (7)

where the r.h.s. is defined on D(H0) C\ D(V) by the operator sum. To verify (7), we
need only observe that, if <f> e D(H) and

h e D(H0) n D(V), then {Hcj>, /t> <j(H0 + V)<p, A> <<£, (H0 + V)E).

Lemma 2 applies to a wide class of short- and long-range singular potentials.
For the second part of the lemma, the behaviour of F for large |r| must be such that
—A + Fis essentially self-adjoint, and for this the assumptions on P" could be modified
or weakened somewhat. If p has compact support, all the conclusions of Lemma 2 are
obtained without making use of any assumptions on V beyond the property that V
is locally L2 in R3\E. Restating the lemma in this case gives

Lemma 3

D(ft*) <= Daoc)(H**) <= Daoc)(H*). (8)

Each self-adjoint extension of H is a restriction of H*, and may be defined by
specifying a core. The following result shows that, for a wide class of potentials, there
is a core consisting precisely of those members of the domain of the extension which,
as elements of 7_2(R3), have compact support.

Lemma 4. Suppose VeL2 + L™ in the region |r| ^ R, for some R > 0, and let
H he a self-adjoint extension of H. Define a set A of C" functions on R3 by p e A
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iff supp(l - p) is compact and supp p <= R3\£. Then {(1 — p)f; p e A,/e D(H)} is a
core for H.

Proof. From Lemma 2, we have p/e D(H**) <= D(H), so that certainly (1 — p)fe
D(H). Now let g satisfy

<(/7 ± i)(l - p)f, gy =0, Vp e A, fe D(H). (9)

Then D(H) c £(/7), so that if ^ e D(H) we have

<(H ± 0(1 - p)«^, g> 0, for all p e A. (9')
Since p may be chosen to vanish on supp <p, (9') implies

<(#± i)4>,gy 0, V<peD(H). (9")

But, from Lemma 2 again, pfe D(H**), and H** is just the closure of H, so that
from (9") we obtain

<(/Y ± i)pf, gy 0, Vp e A,/e D(H).

Combining this result with (9), we now have

<(/7 ± i)f, gy 0, V/e D(H),

so that g 0, since if is self-adjoint. Hence there is no non-trivial g satisfying (9),
and the lemma follows.

It may happen that the set of points 2 on which V is singular may be further
subdivided, and we conclude this section by exhibiting a class of self-adjoint extensions
of H in that case.

Lemma 5. Suppose S 2ZX u S2, where Sls £2 are compact disjoint subsets of R3

having zero Lebesgue measure. Writing V Vx + V2, suppose that VX(V2) is essentially

bounded in some open set containing 22(£i), and that Vk (k 1,2) is L2 + Lc0

in the region |r| ^ R, for some R > 0, and is L2 locally in R3\Sfc. Denote by fìk
(k 1,2) the operator — A + Vk defined on all C functions having compact support
contained in R3\Sfc, and let Hk (k 1, 2) be self-adjoint extensions of Hk. Let if
denote the closure of the operator -A + V defined on all pkgk (k 1,2) (and on
linear combinations), provided gk e D(Hk) and the C" functions pk have compact
support and satisfy supp px <= R3\X2, supp p2 <= R3\S1; supp(l — pfc) <= R3\Sfc.

Then (i) H is self-adjoint, and (ii) Iff e D(H) and pk (k 1, 2) satisfies the conditions

above, then pkfe D(Hk) n D(H).

Proof. The proof, of which we shall give a sketch only, uses the results of the
preceeding lemmas. Thus, for example, pigi e D(Hf) (from Lemma 4), and Hpxgx
Hipigi + V2pxgi. Using a similar expression for Hp2g2, one may verify that H is
symmetric.

Moreover, if/is in the domain of H (ox of some self-adjoint extension of H), and

gì e D(Hi), we may write

<Higu pjy (Hifei, pjy + (hai - ip)gi, pjy (io)

where ip is a C°° function chosen such that supp(l -*/<)<= R3\Si and such that
Pi 1 on supp ip. The first term on the r.h.s. of (10) may be written

<Wgijy - <v2<pgufy <gi, fHf> - <gi, v2$fy,
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so that certainly \(Hiipgi, Pi/>| < const||gi||. Similarly one may show that

\<Hi(l -<P)gi,Pify\ < const||gi||,

so that from (10) we have

\<Hxgl, pjy\ < constici Vg! e D(HX).

Hence pxfe D(Hf), since Hx is self-adjoint, and it follows easily that pxfe D(H).
Similarly we find p2fe D(H2) n D(H).

The self-adjointness of H is a straightforward application of Lemma 4.

HI. Behaviour of States as t -> ± oo

We consider a single quantum-mechanical particle moving in the potential V,
and suppose throughout this section that V is L2 locally in R3\S, that V e L2 + L™ in
the region |r| > R, and that S is contained in the region |r| < R.

The total Hamiltonian H is some self-adjoint extension of the operator tì defined
in Section II, and H0 is the free Hamiltonian. H is in general not essentially self-
adjoint (and indeed may well have infinite deficiency indices), and we know of no
mathematical or physical principle which in all cases selects any one self-adjoint
extension in preference to the others. We have already seen, however, that certain
domain properties are common to all self-adjoint extensions of Ê, and we shall find
that it is precisely these domain properties which determine the behaviour of states for
large times. A preliminary result of this kind is the following.

Theorem 1. Given a bounded measurable subset B of R3, such that the closure of
B is contained in R3\S, define the corresponding projection operator EreB by

(Pr.Bf)(r) f(r) reu |
0 otherwise J

Then for any /in Ma.c.(H) (the subspace of absolute continuity for H) we have

sAim EteBe-'Htf=0. (12)
t-> à oo

Proof. It will be sufficient to prove (12) for a dense set of elements/in M&C.(H).
Since the range of EIH] <c, as c is varied over the interval (0, oo), is also dense, we need

only show that

s-lim EteBe-iHtEim<cf=0, (12')
(-» ± oo

where (with a fairly obvious notation) EiHl<c denotes the spectral projection of H
associated with the interval (— c, c).

Now certainly Eim<cfe D(H) <=¦ D(Ê*), and it follows from Lemma 1 that
pE\H\<cf£ D(H0), where p is a Cœ function of compact support, chosen to satisfy
p(r) 1 for r e B, and such that supp p <= R3\S.

Thus (H0 + l)pE]m<c is defined on the entire Hilbert space and must, by the
closed graph theorem, be bounded. Moreover, it may be verified that EreB(H0 + l)'1
is compact (in fact Hilbert-Schmidt). The product of a compact operator and a
bounded operator being itself compact, we see that EreBpEiHt<c is compact.
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By a version of the Riemann-Lebesgue lemma,

w-lim exp(—iHt)f= 0, so that s-lim EIBBpEtHI<ce~imf 0.
t"»± 00 t-»± 00

Equation (12') follows immediately on observing that ErsB ETSBp, and the Theorem
is proved.

Let us now define eight subspaces M%, Met, N£, Nf, of Mac.(H) as follows,
where in each case g is assumed to belong to Ma 0 (//).

g e Mi iff sAim Ew>.ae-iHtg 0, Ma > R (13)
t->± 00

geMt iff s-lim Em<a.e-img 0, W>R (13')
t-»± oo

ge/V~± iff sAim EHo<be-img 0, Vi > 0 (14)

r +geNf (respectively Nf) iff, given any e > 0, there exist ß,T>0 such that
\\pHn>b-cxp(-iHt)g\\ < e, Ve' > ß, t > respectively t < -T).

Remark 1. It is sufficient to verify (13) for a single value of a, a ax say, since if
R < a2 < ai then from Theorem 1 we have

J-lim £'a2<|r|*o1 CXp(-iHt)g 0.
t-* ± oo

Similarly, (13') need be verified only for a single value of a'.

Remark 2. With the help of Theorem 1 we find that M§ consists of states which
(with probability 1) approach 2 asymptotically as t -> ± oo. MS, consists of scattering
states, that is states for which the particle moves asymptotically to a large distance
from S as r-> ± oo.

N * contains states for which (with probability 1) the kinetic energy tends to
infinity as / -> ± oo, whereas for states belonging to Nf the kinetic energy remains
essentially finite.

The following theorem gives the relationship between the subspaces defined above,
and shows that they reduce H.

Theorem 2

(i) M+ AMT.; Ml A M» (15)

(ii) M| =NZ;M% Nf (16)

(iii) Denoting by Pf and P* the orthogonal projections onto Mt and M%
respectively, we have

P| sAim é"%r\<a,e-™P&.c.(H)
t-, ±00

and <17>

Ptt s-lim eiH%n>ae-iHtP*.c.(H) J

t-> ± oo

where a, a' > R, and Pao.(7f) is the orthogonal projection onto M^fH).
(iv) Afa.0.(//) Mì e Mt (18)

and the subspaces reduce H.
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Proof (i) Suppose g e M{\ and h e M%. Then

<g, A> <Ew>ae-img, e-™hy + <«-«fc Em<ae~™hy. (19)

But, from (13) and (13'), the r.h.s. of (19) converges to zero in the limit as t -> ± co.

Hence <g, hf 0, and we have verified (15).
(ii) Suppose g e Mi Then

E„0<be-img EHo<0Em<ae-tHtg + EHo<bEIII>ae-iHtg.

On the right-hand side, the first term tends to zero as r-> ±oo since £,Ho<i)£'|r|<:a is
compact (in fact Hilbert-Schmidt), and equation (13) implies that the second term
also tends to zero. Hence g e Ni, and we have proved M%, £ N%.

Now suppose conversely that g e Ni. Given any e > 0, we can choose c sufficiently
large that ||i?|H|>cg|| < e/2. Given any a > R, we can find a C° function p, with

0 < p s* 1, such that p(r) 1 for |r| ^ a, and supp p c R3\S. From Lemma 2 we
have pEIHI<cg e D(H0), so that H0pEim<c is bounded (cf. the proof of Theorem 1).
Also \\EHo>b(H0 + 1)~1\\ (1 + è)"1, so that we may choose è sufficiently large that

\\E„0>b(H0 + iy\H0 + l)pEW£cexp(-iHt)g\\
\\EHo>bpEm&cexp(-iHt)g\\ < e/2 for all t.

But \\EHo>bpEm>c exp(-iHt)g\\ < e/2, and hence

\\EHo>bPcxp(—iHt)g\\ <e (for sufficiently large b). (20)

We also have

EHo<bpe-tHtg EHo<b(p - \)e-img + EHo<be-'Htg.

On the right-hand side, the first term tends to zero as / -> ± oo since EHo<b(p — 1) is

compact (in fact Hilbert-Schmidt), and equation (14) implies that the second term
also tends to zero. Hence

j-lim EHo<bpexp(-iHt)g 0,
t-, ± 00

and since e in (20) is arbitrary we have .s-lim^±„„ pexp(-iHt)g 0. Now (13)
follows immediately on noticing that Elrl>ap Eìrì>a, and we have proved g e Mi.

We have, then, N£ £ M% so that we may conclude M% Ni. The proof that
M% Nf follows by very similar arguments.

(iii) Let p he a C°° function with supp p <= R3\S, and such that p(r) 1 for
|r| ^ R. With a > R, define V(-) e L2(U3) + LX(U3) by

V(r) V(r), \r\>a j
0, otherwise J (21)

and let H denote the (unique) self-adjoint extension of -A + V acting on C° functions

of compact support [13].
Now let Au A2 be any pair of self-adjoint operators such that

AiE\Ax\<ClTE\A2\<C„ — E\Al\<Cl TA2E\Ä2\<C2
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is of trace class for some bounded operator T. Then ä-lim(_ ±<cEiAlf< c,eiA^Te~iA-^Eu^ < C2

exists on Ma.c,(/72) and has range contained in Ma,c.(AA.
We shall apply this result, which is a slight generalisation of a theorem of Belopol-

skii and Birman [14] on a two Hilbert space formalism of scattering theory, to the case

Ai H, A2 H, T p. A proof of the result, based on methods developed in [15],
will be published elsewhere. (An alternative approach to the present application is to
use methods based on smoothness; see [16, 17]).

We have to show, then, that Eìm<Cl(Hp — pH)Eiai<C2 is of trace class. (Using
Lemma 2,

feD(H)^pfeD(H0) n D(V),

so that pfe D(V) also. With (7), we have pfe D(Ê*), and pfe D(H) on a further
application of Lemma 2, since H => ft**. Hence we are justified in writing

HEm<CipE\ü\<Cn E\m<CxHpE\H\<cn.)

Setting H -A + V and H -A + V, we have

3

Hp - pft p(V - V) - Ap- 2 2 8p/8xk-8/8xk. (22)
k l

Now let ip be a C00 function with supp ip <= R3\S, and such that ^>(r) 1 for r e

supp 8p/8xk (k 1, 2, 3) and ip(r) 0 for |r| > a.

If/e D(H) then ipfe D(Pk) (cf. equation (1)) so that we can write

-**'*'<«» eft []^-r)Ew<^ £i*k^^W«i«
From Lemma 1, fe D(H) => </l/e D(H0), so that (H0 + l)ipEiHi<Cl is bounded (cf.
proof of Theorem 1).

If/e D(H), then ipjfe D(H), and writing H -A + F we obtain

HiPf= ipftfA (A0)/- 2 f 8jdxk(8ipjdxkf).
k l

If/e D(H2), then the first two terms on the right-hand side belong to D(ff) D(H0)
and 8ipj8xkfe D(H0), so that the third term on the right-hand side belongs to D(Pk).
Hence certainly/e D(H2) => <A/e D(PkH). But #</»/ H0ipf (since F=0on supp </<),

so that ^/"e D(PkH0), and it follows that Pk(H0 + l)4>E]fI\<c2 is bounded.
We now have

E\H\<c,'p-r£-Pu^E\H\<
028xk

wie.[(//0 + l)^|H|<cJ*(/70 + I)"1 ^f (H0 + DAPÂHo + W^iäkJ.

But op/a** e LX(R3) n L2(R3), so that (/i"0 + I)"1 dp/8xk(HQ + l)'1 is of trace class
(see [18]), and we have shown that the contribution of the third term of (22) to
E\H\<o,(Hp — pH)Elfjl<C2 is of trace class. The remaining terms of the right-hand
side ofequation (22) similarly give rise to trace class contributions, since both p( V — V)
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and Ap belong to LX(R3) n L2(R3). (For these terms we need use only the boundedness
of (H0 + iypEm<c, and of (H0 + l)*pEìSì<cr)

Hence Eim<Cl(Hp — pH)Elm<c2 is of trace class, and we have proved the
existence of the limit j-lim^ ± œ ElHi <Cleimpe~iätE[ü]<C2 on M&C.(H). Moreover, one may
verify that

II^WeÄKrJ \Em^(\H\ + A\\H\ + l)pEläl<C2\\

may be made arbitrarily small by taking Ci sufficiently large (||7i'|H|SiCl(|//| + 1)-1|| <
(1 + Ci)-1, and (\H\ + l)pE^\<c2 is bounded.) We may deduce the existence on
M&AH) of j-lim;_±0O exp(iHt)p exp(—iftt)Eiü\<c2 and since, as c2 is varied over the
interval (0, oo), the range of Etai<Ca is dense in Ma.c.(/f), the existence of
Ä-limi_±e0 exp(iHt)p exp(-iHt) on M&C,(H) follows. As Fis a non-singular potential
and (1 — p) is of compact support, Theorem 1 implies s4im(_* ± „(1 — p) exp(-ifft) 0
on Ma.c.(/7).

Hence the wave operators 5,-limt_±00 exp(iHt) exp(—iHt)P&c,(H) exist. Since the
trace conditions which we have verified are symmetric between Ax and A2, an identical
argument proves the existence of j-lim(_±co exp(iftt)p exp(—iHt)P&c(H).

By Theorem 1, if y is the characteristic function of the intersection of supp p with
the region |r| < a, then sAimt^ ± „ y exp(—iHt)P^c,(H) 0, so that we may conclude
the existence of the limits s-\imt_±a-, exp(ifft)E]Tl>aexp(—iHt)Pac,(H). The ranges
of these limits lie in Mac.(/?), and the existence of the limits on the right-hand side of
equation (17) follow from transitivity; for example

s-lim elmEw>ae-tmP&_c.(H) s-lim (eime-iät)(eii!%r\>ae-tmP&.o.(H). (23)
t-»±oo t-»±ec

(For the remaining limit, substitute E\T\<ai 1 — Ew>a-.) The limiting operators
have ranges in M&.C(H) and are self-adjoint. To show that they are projection operators

we need only use transitivity again to verify that in each case P2 P. If P denotes
the limit in equation (23) and g is in the range ofP, so that g j-ümt_ ± „ exp(iHt)E]TÌ>a
xexp(-iHt)Pa,r,.(H)h, say, then j-lim^±00 Ew<a,e~iHtg s-\imt_±a, EWe{aialx
e~iHtPe..c.(H)h 0, so that equation (13') is satisfied and g e Mi. Conversely, if
g e Mi we may verify Pg g. Hence the limit in equation (23) gives precisely Pt,
and similarly Pf is the other limit in equation (17).

(iv) Taking a a' in equation (17) we have Pi + Pi Pa.c.(/f), and equation
(18) follows. Moreover, eiHs commutes with P| and with Pi, and it follows that the
two subspaces on the r.h.s. of equation (18) reduce H; this completes the proof of
Theorem 2.

Theorem 2 shows that Mg.,0(H) is the direct sum of two orthogonal subspaces, the
first consisting of states which approach S asymptotically as t -> + oo, and for which
the kinetic energy tends to infinity, the second consisting of scattering states for which
the kinetic energy remains finite. There are two decompositions of Afa.0.(//), one
corresponding to the limit f -> +oo and the other corresponding to t -> — oo.

It may happen that there is a further canonical decomposition of Mf ox Mi-
Vox example, if S Si u S2, where Sb S2 are compact disjoint subsets of R3 having
zero Lebesgue measure, and if H belongs to the class of self-adjoint extensions defined
by Lemma 5, then using conclusion (ii) ofLemma 5 and following an argument similar
to the proof of Theorem 2, we find M\\ M£ ® M£, each subspace reducing H,
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where M£k consists of states which approach Efc asymptotically as t-*¦ ±co. This
result need not hold for a self-adjoint extension corresponding to boundary conditions
which 'mix' the singularities Si and S2, for which (ii) of Lemma 5 is not valid.

IV. Singular short-range potentials

The preceding results have been obtained without having to make any assumptions

which would imply the existence of the wave operators 0.±(H, H0). Assuming
these wave operators to exist, it is not difficult to show [2] that the ranges of the wave
operators are contained in corresponding subspaces of scattering states; i.e.

range(Q±(/Y,/70))ç Ml. (24)

If the potential V is of short range, a stronger result holds.

Theorem 3. Suppose that, for sufficiently large |r| and for some e > 0, V satisfies

|F(r)| ^ const|r|-(1 + e). Then

xange(Q±(H, H0)) Ml. (24')

Proof. The existence of £1±(H, H0) has been proved by Kupsch and Sandhas [19].
Indeed if a > R we have s-lim^±00 E^^aß-™** 0, so that

Q±(H,H0) s-\im e^e-^o'= sAim e""£|r|>0e-iHo< (25)
(-?TflO (-. T oo

The potential V in equation (21) is both short-range and non-singular, so that
defining H as in the proof of (iii) in Theorem 2 we may conclude the existence of

s-lim exp(iH0t) expi-iH^P^fH). ([5])
(-* T00

But we have already proved the existence of s-limf_¥oo eiôtij|r|>oe-ii"Pa.0.(/7), so that
by transitivity we may deduce the existence of s-lim(^¥00 exp(//Y00^in>ax
exp(—iHt)P&.n,(H). In fact, comparing with equation (25), we have

n*±(H, Ho) s-lim <?"V£|r| > ae~<"<Pa.c.(//). (26)
t~* T 00

By a further application of transitivity, equations (25) and (26) imply

s-lim eiHtEw >ae-««Pa.0.(//) Q±(H, H0)a*±(H, H0). (27)
*-? Too

The right-hand side of equation (27) is the projection onto the range of Q,
± (H, H0), and

from equation (17) the left-hand side is just PZ, the projection onto Mi. Hence we
have proved equation (24').

Remark 1. Unitarity of the scattering operator S(H, H0) (s£i*(H, H0)Cl+(H, H0))
is equivalent to equality of the ranges of Ç1+(H,H0) and Cl-(H,H0). Theorem 3

shows that S(H, H0) is unitary iff the states in Mao.(//) which become asymptotically
free as t -> + co are precisely those states which are asymptotically free as t -> — oo.

Asymptotic completeness (the equality of the ranges of Ci±(H, H0) with Ma.0.(/i"))
holds if all states in M^fH) are asymptotically free both as r-> + co and as t-> -co.
The use of Theorem 3 to prove strong asymptotic completeness may be illustrated by
the following.
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Corollary. Suppose that, for some g > 1, —A + gV, regarded as a bilinear form
on D(H) x D(ft), is bounded below. (Hence ft is similarly bounded below, since we
can write

ft - -A + V (1 - g^X-A) + g-\-A + gV)) (28)

Then, if His the Friedrichs extension ([20], p. 329) of ft, the wave operators Q±(H, H0)
satisfy strong asymptotic completeness.

Proof. Every/belonging to D(H), by the definition of the Friedrichs extension, is
the strong limit of a sequence {/„} such that

Hm <//(/m-/n),(/m-/n)> 0.
m,n-* co

Choosing c > 0 such that — A + gF+c^O, we have

lim ((ft + cg-1)^ - /n), (/„-/„)> 0,
m.n-, co

so that using equation (28) and writing -A/„ H0fn, we see that

lim <Ho(fm-fn),(fm-fn)y 0.

It follows that/is in the domain of (H0 + I)112, and we have D(H) <= D((H0 + l)1'2).
Hence, by the closed graph theorem, (H0 + l)ll2EiH]<const. is bounded. But
E\r\<a(H0 + l)"1'2 is compact, so that the compactness of ü^Ka-Eu/i^onst follows.
Any h e M^fH) is a limit of elements of the form Eim <consth, and we may deduce that
s-lim(_±00 Elr[<a exp(—iHt)h 0. Hence Mf (H) is empty and Mi(H) Mac.(/7),
so that the wave operators satisfy strong asymptotic completeness. This generalises a
result of Robinson ([21]) on positive potentials.

Remark 2. From the existence of Q±(//, H0) and of the limit in equation (26) we

may use transitivity to deduce the existence of

w±(Hv, Hw) s-lim eiHy%[l>ae-iHw*pac(Hw) (29)
t-» Too

where Hv and Hw correspond to short range singular potentials V and W respectively.
Equation (29) defines cu ± as a strong limit even if the wave operators Q,±(HV, Hw) fail
to exist; co± is a partial isometry with initial set Mi(Hw) and final set Mi(Hv), and
satisfies the usual intertwining and transitivity properties of wave operators. If
g e Mi(Hw) we have

s-lim £,|r|>o(exp(-///v0^ - cxp(-iHwt)g) 0,
(-» T oo

where

h <o±(Hv,Hw)g e Mt\(Hv),

so that co± gives the relation between two asymptotically free states (corresponding to
an evolution e~iHvl and e~iHw* respectively) which become asymptotically equal in the
region |r| > a, i.e. away from the singularities of the potential.

Remark 3. If 2 2ZX u S2, where Si, S2 are compact disjoint subsets of R3

having zero Lebesgue measure, and if H belongs to the class of self-adjoint extensions
defined by Lemma 5, where (in the notation of Lemma 5) Fi and F2 are short-range
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singular potentials, we may prove the existence of s-limi-,^ etHi'txke~iHtPa.c.(H),
where yfc (k 1, 2) are characteristic functions of disjoint bounded open sets
containing Si and S2 respectively. If ü±(rYfc, H0) are asymptotically complete then this
limit is zero (since w-lim(_±co Pa..c.iHk)e,Hi<?Xk 0), so that s-limt^±00 Xk-e~imPa..c.(H)

0 (k 1, 2), from which it follows that 0,±(H, H0) axe complete. A similar argument

proves the converse to be true, so that strong asymptotic completeness of
Q ± (H, H0) is equivalent to strong asymptotic completeness of Ü ± (Hk, H0) for k 1,2.
This result enables us in some cases to reduce the question of completeness for a
potential having a number of singularities to that for a potential having a single
singularity only.
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