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The Extraordinary Hall Effect in Kondo Alloys

by G. S. Cohen, M. Crisan and B. Giovannini
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Abstract. The extraordinary Hall effect is calculated in a dilute magnetic alloy, taking into account
the logarithmic temperature dependence that occurs in Kondo systems. To do this, it was necessary to
evaluate the vertex part r in a magnetic field. This was achieved only by summing a simple ladder
series of diagrams for r. The results are discussed in the low field and high temperature limits.

I. Introduction

The Hall effect in dilute alloys was first discussed theoretically by Béal-Monod and
Weiner [1] using the exchange interaction Hamiltonian—/S«x with an isotropic band.
The experimental results showed however that additional large effects were present [2].
These were calculated [3] by introducing an additional, skew, interaction which had
been proposed earlier by Kondo [4] on quite general grounds.

The main result of these investigations was that the so-called s-d interaction has in
reality a much more complicated form than the simple exchange term, a point emphasized

also by Hirst [5] and, for a special case, by Coqblin and Schrieffer [6]. Quite
recently an attempt has been made to explain the experimental Hall effect data through
band structure effects, thus leaving the exchange Hamiltonian untouched [7].

We feel however, that, besides the Hall effect, for which a convincing amount of
experimental data has been gathered by Fert and his group [8], recent measurements of
the magneto-resistivity in Au RE alloys [9] and of the thermopower in PrCu5 and PrNi2
compounds [10] suggest strongly that one has indeed to generalize the simle S • a
interaction in order to understand the detailed behaviour of localized moments in metals.

Although most experimental results of the Hall effect in magnetic alloys have been
obtained in systems whose Kondo temperature is vanishingly small, some of the earlier
results [2], and those of Ref. [7], were obtained in so-called Kondo alloys.

The aim of this paper is to examine the extraordinary Hall effect taking into account
the logarithmic temperature dependence which arises when one goes beyond lowest
order in perturbation theory. It is well known that this is necessary to explain the low
temperature behaviour of the longitudinal electrical resistivity.

Previous calculations of the EHE in these alloys [3] have only considered the lowest
non-zero order in an expansion in powers of the s-d interaction and hence do not include
any logarithmic terms.
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We shall use the model introduced by Kondo [4] and which was used by us for our
earlier calculations [3]. This model may be written (for a single impurity)

AC^Ae^ + ^cjJ
with

^JJ -Jn2 S-<r__-fl__a_,_, 0)
k k'
a a'

is the usual form of the s-d interaction and

^2) 1i2-n''(kxk')-s<û^ (2)
kk' kf

represents the interaction between the localized spin S and the 1=1 component of the
electronic orbital angular momentum, a is the magnetic quantum number of the
conduction electron spin and the a are the Pauli spin matrices. We shall assume that the
coupling constant Xx is much less than Jex, so that we only need calculate to first order in
Xx. The spin-independent part of the interaction has been omitted from the calculations
for the sake of simplicity.

Using the above interaction, we shall evaluate the Hall resistivity pH at zero
frequency by a method that is essentially that introduced by Götze and Wölfle [11] and used
by Giovannini [3] for this problem. This method relates the longitudinal and transverse
resistivities, p and pH, to the longitudinal and transverse conductivities o"„V and a_y
where the superscript (1) implies that the conductivities are calculated formally to
first order in the concentration. Then

p i—^z2a^(z)

v / (3)

er(1) behaves as 1/z2 as z -> 0 so that p and pH tend to finite values. It should be emphasized

that equation (3) does not represent an expansion in the interaction strength
(indeed, we shall sum a certain class of diagram for o-„V to all orders) but rather an
expansion in the concentration of impurities. We admit that it is doubtful that equation
(3) is generally valid, but it forms a plausible and very convenient basis for calculations.
In particular, the problem is thereby reduced to a single impurity problem.

As we shall see, the calculation of pH reduces to the evaluation of the renormalized
vertex function of the interaction J47Ç1» m a magnetic field. This task is quite intractable
(even without a magnetic field) and so we restrict ourselves to summing that part of the
series for the vertex which can be summed analytically; this corresponds to the simple
ladder approximation that has been discussed by Mattuck [12]. Although this certainly
omits terms (parquet graphs') of the same order as those we include, it might be hoped,
as Mattuck suggested is the case for the resistivity, that we obtain roughly the right sort
of temperature dependence. We can also compare p and pH calculated in the same
approximation.

The calculation is performed diagrammatically using the Abrikosov [13] pseudo-
fermion technique to describe the localized spins. The restriction to lowest order in the
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concentration permits us to consider a single impurity, which in turn implies that just
one continuous impurity line be present in a diagram. Diagrams with more than one such
line vanish due to additional factors e~ßh which arise, where X is the energy assigned to a
spin to ensure that the occupancy of a spin site is unity.

The calculation in this paper includes the Kondo effect only to the extent that it
directly affects the transport properties. We have excluded the modifications that arise
from the renormalization of the spins S, that is to say we have not taken account of the
modification of the susceptibility due to the Kondo effect. Since the Hall effect depends
explicitly on the effects of a magnetic field, this might be serious. Nevertheless, as the
influence of the Kondo state upon the transport properties (as manifested by the electrical

resistivity) and upon the magnetic properties (as manifested by the susceptibility)
appear to be fairly distinct problems we think it reasonable at the beginning to attack
them separately. In this paper, therefore, we only consider the former problem.

We now turn our attention to the calculation of the vertex function in a magnetic
field, and in Section III we shall use this result to evaluate the Hall resistivity.

n. The Vertex Function

The approximation for the vertex function F that we shall use includes only those
diagrams in which the conduction electron Greens functions and the localized spin
Greens functions are either always parallel or always antiparallel. We omit all diagrams
which mix the two. F therefore splits naturally into two components, which we shall
call Fp (p for particle) and F* (h for hole). Note that F is a matrix in the two spin spaces
of the conduction electrons and of the localized spins, as well as depending upon
frequency.

The diagrams for F" and F* are shown in Figure 1, where the external lines are
included for clarity. The external frequencies are labelled in each case in such a way that
F depends only upon the single frequency (om. In the next section we shall see that we
need to calculate Fp with the frequency continued to the real axis such that

icom ->y + X-iô (A)

and to calculate F* for

imm ->- y + X + iô. (5)

M M' M M' M M'

X A V / \WnTUJr, Wm-U), <f

_£__. *?-
-9—I7qL)= •**—^—«T •**—*—»- + -*^*—*—A,lu)m' _ a' a a' acon c«i>s v—• evin\

XM M/ M W M M'
V P \ A \<%i,un Wfn'Wl/"

r7_ -e.—W » __ -e, * (^ + -e^-*—g, \ l—b^_
a a' a a' aü>n cc'ü)s a'ü>[

Figure 1
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The magnetic field H is included in the Greens function which now depends upon the
magnetic quantum numbers a (for the conduction electrons) and M (for the localized
spins) :

GJk,con) - (6)

for the conduction electrons.

1

ico„ — X — Mv,

for the localized spins.

Ve gerCBH

Vi=gtUBH.

At this point we recall that, following Abrikosov [13], at the end of the entire calculation
we must multiply the result by

sinh_/3v,

sinh(S + i)ßvt
and take the limit X -> co.

The integral equation for F" is

PL- (0}m) -JexOr,<,-SMM.+ 2 <fax-SMM-FMj0}m)r'' (C0m) (1)
MM' afM" "„"*M m-m:

where FM(com) is the kernel

-Jex P22G« (k. coJ ^M(oim - coJ
<"» k

-N(o)JeJdeTyr
J *—i h

1 1

ra, 2'a>s - e - ave /(a>m - cos) - X - Mv,

i u, w f ^ tanh^(e + are)/2 + tanh ^(Mv' + A)/2- _AT(o)/e_ de — :—— (8)
J e + ave + Mv, — jcom +1

where the frequency sum has been carried out in the usual way. If it is now assumed that
the bandwidth D is much greater than ve, we can shift the energy integral by <xve and
neglect the change in the integral's limits. F does not then depend upon a, as our
notation has anticipated. We now perform the continuation according to equation (4)
and obtain

tanh - + tanh ß(X + MvJ/2

FJy + l-iQ—mtDjJf* 2

l + M,t_y
1

\
- m(tanh ß(y - Mv,)/2 + tanh ß(X + Mv,)/2) F(y- Mvj), (9)
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where the function F(x) is defined as

F(x) - _/»N(o) In x2^4T2 -inil+ tanhßj\\. (10)

The real part of the integral has been approximated for D > x, T and in the imaginary
part we have anticipated the limit X -> œ. In the following we shall write

F(y-Mv,) FM.

Because of the magnetic field the usual ansatz, r r0 + rid- S will not work. However,
the fact that the kernel F does not depend upon electron spin suggests the following
general form (dropping the frequency variable)

rÄ.-r^«-+*i-ri-- (11)

where the a' axe the Pauli matrices and the repeated index i implies summation. The four
matrices F°, F* remain to be determined.

Using the following relations

a'aJ= ôij + istJkak

etJkAJBk (AxB)'

and writing F' as a vector in real space, equations (11) and (7) yield (dropping for the
moment the superscript/»)

Pmm-= 2 Smm'Pm-m'Pm" (*¦*¦)
M"

PmM- —JeJjMM- + 2 {'(SjVfM" X Pm-M-) + &MM-PM"M'} FM.- (13)
M"

These equations are straightforwardly but laboriously solved in terms of the matrices
F°, rz and F± 1/V2 (F" ± iry).

Substituting for the matrix elements of S,

Smm- — "m-.m-iAm-i

Smm- "m'.m+i Am

Smm- M6mm,,

where AM Vi(S - M)(S + M + 1) one finds

ppt _ „p± c
1 MM' — M °M',M+1

1 MM' — 1 M °MM-

rpx rpZ âMM' — 1 M VMM'
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with

M
1 + MFM -(M-l)FM_x-S(S+ 1) FMFM_i

M_1

—Jex Ai
_ P+

M " 1 - MFM + (M+ 1)FM+X - S(S+1)FMFM+X
' M+lr

1 M I l M ¦

-Jex(S(S+l)FM±i±M)

(14)

1 + MFU ± (M ± 1) FM±1 - S(S + 1) FM FM±i J

The calculation for F* is similar with the kernel replaced by

F'm(cOm) -Jex 2 2 G«(k, œj GM(com + coJ
IDs k

followed by the continuation equation (5), leading to

F'M(y + X + iô) -(F(y-Mvi))*.

Furthermore the equation for Ph corresponding to equation (7) has the matrices S
transposed. The result is that

Fh*(y + X + iò) (P°JJy + X-iò))*
FXjy + X + iò) PMXy + X-i$)Y (15)

r^(y + X + iô) -(rfty + X- iô))*.

Since the bare interaction is included in both Fp and F* we have that

r rp + rh+jeia-s. (16)

These results will be used in the next section to calculate pH.

m. The Hall Resistivity

As discussed in the Introduction, pH will be calculated by way of the transverse
conductivity ff„V evaluated formally for a single impurity. <r„V is related to the retarded
x-current-j-current correlation function by

axy(z) -Xxy(z) (17)
z

where

00

Xxy(z) j dte»\(jx(t)Jy(o)]y. (18)
o

Two factors greatly reduce the number of diagrams contributing to Xxy(z). Firstly
the fact that we consider a single impurity requires that there be only one impurity



Vol. 48,1975 The Extraordinary Hall Effect in Kondo Alloys 85

X(ifl) +

li
Figure 2

line in each diagram. Secondly, the restriction to first order in X, together with the form
of the interaction AC-JJ requires that the electronic Greens function on one side of the
correlation function bubble contain just one vertex At?i2) and no vertices ACJJ. Otherwise
the bubble vanishes due to the angular integration of the momenta. This also implies
that the only component of ACJS> that contributes is proportional to kx, k'y, Sz, which
is conveniently diagonal in M. The general form of the diagrams contributing to Xxy(iQ)
are shown in Figure 2. These two diagrams yield equal contributions to pH.

Using equation (16) for F, the fully labelled diagrams for Tare shown in Figure 3.

X=(ifi) 2<^ ^iVujm-u.

\ ,J_____s_

o£

ek yU>m

y

X k_k_S7
Q- I *

i*5

ü)r»ü)l \ ekyekx turn ion

%im)

iX, !«Jiv__.
1

..2

ekx ek y

JexÖOXC'SMM
m y

Figure 3
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Let us consider the first diagram of Figure 3, which we shall call X". We have

X" —2 y y T3 y l-~-L- ¦ MPI« (cbJ x GJk, œ„)GJk, con + Q)
m2 ^—i *-< t-i kj mm

txM kk' o), 0)m(ûH

x GJk', œj Gjk', co, + ß) <SM((üm - tod &M(œm - (oe). (19)

The sum over k, for example, gives

•* -s."-Uy—GJk, coj GAK (On + Q) \ [ i^m 2) (i(on — e — txv,)(i((o„ + Q) — e — <xvJ

nin^Q)"1 if —iQ < ico„ < 0

0 otherwise. (20)

The resulting sum over con we write as

0 1

T y —_(~(„-i'(<a«.-<ö»)-Mv<-'*
°° i

=-ìqt y
»Ta) W60-» -con + iì)- Mvt - X} {Ì((Om - (0„) - MVt - X)

-iQ2M(i(om). (21)

Then we have

X"(iQ) -in2 Xx(f) _> T 2 [&M(icom)}2 Mr^(com). (22)
\ Kfj CM 0>m

The only dependence on electron spin occurs in F, and we see from equation (11)
that only F° contributes to X since Tro-' 0. For the same reason the third diagram of
Figure 3 vanishes.

Let us consider LM(z) as defined in equation (21) as a function of the complex
variable z. Performing the frequency sum in the standard manner, we have

+ 00

i r
LM(z)= dxtanh —

47t/ J

ßx 1 1

2 (x-z-iQ + Mv, + X)(-z + x + Mvt + X)

ß 1

+-A(z) — tanh ß(Mv, + X)/2 (23)
2 iQ

where

A(z)=l if -ffl<Jmz<0
0 otherwise.
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LM(z) thus has a cut along the real axis and the line Imz -iQ. Furthermore r(z) has a
cut along the real axis.

The frequency sum in equation (22) is now transformed into an integral, remembering

that (om is an even frequency:

Tl {LM(i(om))2r((om) -i [ dzcoth^-{LM(z)}2r(z)
cm Am J 2

c

(24)

where the contour C is indicated in Figure 4. We now consider the function LM(z) along
each of the integration paths of C bearing in mind that according to equations (3) and
(17) we seek terms that behave as 1/co, where (o is the real external frequency.

i LRez

1 J

r
V

2

&3

>

^_ _^
A >i

lmz 0

Imz -ifi

Figure 4

Along 1

The following continuations are performed :

z y + iô, z + iQ=y + (o + iô.

Then A(z) 0 and, from equation (23),

-t-m

ßx

Ani J
dxtanh-

1 1

2 (x - y - (o - iô + Mvt + X) (x - y - iô + Mvt + X)

1 11 l(y + (o-Mv,-X)2 + r2
Än~i œ \ln\ (y-Mv,-X)2 + r2

+ in{tanhß(y + co-Mvt- X)j2 - tanh/?(j> - Mvf - A)/2}.

The lowest order term is independent of (o, so we neglect this contribution.

Along 4

As above, there is no contribution.
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Along 2

Here, z y — iô, z + iQ y + co + iô

A(z)=l
and

LM(y) — {tanh ß(y + œ - Mvt - X)/2 + tanh ß(y - Mv, - X)/2
Arn

+ 2tanh/3(Mv, + A)/2}. (25)

Along 3

z y — (o — iôz + iQ y + iô.

A(z)=l
1

LM(y) — {tanh ß(y-(o-Mvt- A)/2
Aa>

+ tanh ß(y - Mv, - X)/2 + 2 tanhß(Mvt + X)/2}. (26)

If equations (26) and (25) are substituted into equations (24) and (22), and the result is
expanded to lowest order in co, we find

r Mi 2 M ~ - f dy {tanhpXj - Mvt - X)/2
kf] m Ioni co J

—00

+ tanh ß(Mvt + X)/2}2 -F£° (y - iô)
sinh2^

2

1 I nl
(O

nßi — Xx 2 M f dy sedr'pXMv, + l)/2sech2/5
' \4kf! ** _i

x(y-Mv,-X)j2rpM°(y-iô) (27)

where in the last line we have used the relation

sinhU + B)
tanh A + tanh B

cosila coshB

On shifting the frequency y by an amount X it is seen that F_M is to be evaluated at a
frequency y + X — iô, as we did in Section II. An entirely similar calculation for the
second diagram of Figure 3, X", yields equation (27) with Fp replaced by r^(y + iô),
which again we anticipated in Section II.

From equation (15) we see that

rp°(y - iô) + rh°(y + iô) 2Jm r"°(y - iô).
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After multiplying by the factor ^A[sinh*""2]/[sinh(,S-l- _) ßvj, taking the limit X

and using equation (3) we find

89

Ph
sinh/?V(/2 47^

sinhOS + tì/Sv, (evfj2 2Me-^cj, j dyf{y) im rM\y + My _ is) (28)

wheref'(y) is the derivative of the Fermi function, and we have dropped X in the argument

of F since, as seen in the previous section F(j + X — iô) does not depend upon X.

We may now write

Pn
sinh/9v/2 2nXxJ2xc

unh(S + i)ßv (eV,)2

+ 00

A(v)= \ dyf'(y)\m —

'S M{e~ßMvA(v) - eßMvA(-v)}
M

S(S+l)F(y-v) + M

(29)

MF(y) + (M+ l)F(y - v) - (S(S + l)F(y)F(y - v)"

Since the calculation up till now has been for a single impurity, we have multiplied
equation (29) by the concentration c (the volume has been taken equal to one). This is
our general result for pH, in terms of a rather unmanageable integral.

At high temperatures, F> Tk, we can expand A in powers of F, i.e. a perturbation
expansion is valid. We find to lowest order

Ph
n2cXxN(o)J2

(^f)2 [S(S+ 1).
/ ßv ßv

(2S+1) coth(2S + 1) — - coth —

-1 coth
ßv ißv

Sh,2^

ßv ßv ßv
S(S+ 1) -i\(2S+ l)coth(25'+ l)yCothy-coth2y (30)

The first and second square brackets are the average values of M and M2 respectively.

The function in curly brackets has a saturation value of S3, and an initial slope
(as a function of /5v/2) \rS2(S + I)2 - %S(S + 1).

At more general temperatures (T > Tk) we obtain an expression for the Hall
coefficient RH (defined as dpHjdH\H=0) by expanding equation (29) in powers of v. This
still leaves the problem of doing the integral for A(v), but we circumvent this difficulty
by treating the derivative of the Fermi function as a ^-function and take the zero
frequency value of the integrand. Since both the functions F(y) and/'(j) vary on a scale
of F this is certainly not very accurate, but it is reasonable to expect that this frequently
though often surreptitiously used approximation will give the correct general behaviour.

We shall also assume that the imaginary part of the expression 1 + F(o) — S(S + 1)-
F(o)2 is small compared with the real part. This requires that F is not too close Tk
(defined as the temperature at which the real part vanishes). We remark that according
to Mattuck [9] lmF(o) 0, but this is incorrect according to equation (10). This implies
that there is actually no divergence in physical quantities at any temperature. The result
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of the expansion gives

1 n2XxN(o)Jlx
RH g7iB—S(S+l)c W "

3F (evf)2

S(S +!)(!+ S(S +1)I,_)-1
n2J\N(o)2

(1+Lo- S(S + 1)L2)2 + - W (1 - 2S(S + 1)L0)2 j

(31)

where

Lo -JtxN(o)ln~.

We have retained that component of the denominator which comes from the small
imaginary part of 1 + F(o) - S(S + X)Fl in order to show explicitly that the result
does not diverge. Such terms have been neglected in the numerator. Mattuck and
Cheung's result [9] for the zero field resistivity p corresponds to the above approximation
for F, but because the imaginary part of the kernel was not correctly evaluated they
do not have the term in the denominator that prevents the divergence. If we are not too
close to Tk this is of no importance. They found (generalizing to spin S)

3nJ,2 I

P
S(evf)2

2(1+S(S+1)L20)

(l+L0-5(5 + l)L2)2
-1 5(5+1).

We see that p and pH 'diverge' in the same way, and therefore that the low field
Hall angle 8H should have no really anomalous behaviour. In fact

HRH gpBH 8 { 5(5+1)(1 +5(5+1)L2)-1
8H ~ — nXx N(o)— x

P ~ 3F """1 *' K"J3 "{ 2(1 + S(S +1)L2)-(1+F0- S(S +1)L20)2 J

(32)

which for L0 <^ 1 becomes

eH g-^^N(o){S(S+l)-l). (33)

TV. Discussion

Although our quantitative results should not, perhaps, be taken too literally due
to the nature of the approximations used, we can nevertheless draw the following general
conclusions.

Firstly, the temperature dependence of pH is essentially that of p multiplied by the
susceptibility (which in our calculation is just 1/F). This means that the Hall angle is

just proportional to the susceptibility, the bracketed function in equation (32) being
very slowly varying.
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Secondly, according to equations (32) and (33) there is a possibility of pH having
different signs depending only upon the spin. For example, equation (33) predicts
that the hypothetical case 5 _¦ has opposite sign to 5 > i. This occurs because of the
competing effects of the magnetic field's action upon the level population on the one
hand, and its action upon the scattering on the other.

We remark that equation (33) relates the unknown parameter Xi very simply to the
Hall angle.

The available experimental data on the Hall effect [2, 7] in Kondo alloys does not
permit a detailed comparison with our theory. Such a comparison would require accurate

measurements ofthat part of the zero field Hall coefficient due solely to skew scattering

as a function of temperature. The existing results indicate in general an increase in
RH as Tk is approached from above, but the proportion of this increase due to the
susceptibility (proportional to 1/Fin our approximation) and that due to logarithmic terms
is uncertain.
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