Effet Jahn-Teller quadratique sur un ion de configuration d^9 dans une structure fluorine

Autor(en): Lacroix, R.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 47 (1974)

Heft 6

PDF erstellt am: 10.05.2024

Persistenter Link: https://doi.org/10.5169/seals-114590

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Effet Jahn-Teller quadratique sur un ion de configuration d^9 dans une structure fluorine

par R. Lacroix

Département de chimie physique, Université de Genève

(26. VIII. 74)

Resume. Le cas général d'un système dans un état triplet orbital T_{2g} soumis à l'effet Jahn-Teller dû au mode vibrationnel T_{1u} a été examiné. On montre que la déformation résultante, due à un effet quadratique, correspond à un déplacement dans l'espace de configuration dans l'une des trois directions (100), (111) ou (110), selon la valeur numérique des constantes. Dans le problème particulier traité, ces constantes sont évaluées par l'approximation de Wolfsberg et Helmholz. Les valeurs numériques obtenues pour le cas de Ag²⁺ dans SrCl₂ montrent un déplacement de l'ion Ag²⁺ dans la direction (111).

Abstract. The general case of an orbital triplet T_{2g} undergoing a Jahn-Teller effect due to a T_{1u} vibrational mode has been studied. The occurring deformation, produced by a quadratic effect, is shown to result in a configurational space displacement along one of the (100), (111) or (110) directions, depending on the numerical value of the constants. In the particular case in consideration, the constants were estimated by the Wolfsberg-Helmholz method. Numerical application to the Ag²⁺ ion in SrCl₂ crystal shows a displacement of this ion in the (111) direction.

Introduction

En vue d'interprétation de résultats expérimentaux [1], nous avons été amené à étudier l'effet Jahn-Teller quadratique dû à un mode T_{1u} pour un ion de configuration d^9 (Cu²⁺ ou Ag²⁺) substitué dans un cristal de structure fluorine.

Cette question a déjà été traitée par Fedder [2], mais cet auteur trouve assez curieusement un effet linéaire, ce qui laisse planer un sérieux doute sur la validité de son résultat.

Dans la structure considérée, l'ion substitué est au centre d'un cube de huit anions. Il est bien connu que dans un tel environnement, les cinq orbitales d se répartissent en un doublet e_g et un triplet t_{2g} , le triplet étant supérieur en énergie. Comme notre configuration compte 9 électrons d, il subsistera un trou dans l'une des orbitales t_{2g} . En conséquence, le niveau fondamental de l'ion sera un triplet orbital T_{2g} .

Le cas général

Nous allons tout d'abord considérer le problème général d'un triplet orbital T_{2g} soumis à l'effet Jahn-Teller dû au mode vibrationnel T_{1u} . Nous noterons ψ_a , ψ_b et ψ_c les trois fonctions d'onde électroniques de T_{2g} se transformant respectivement comme xy, zx et yz. De même nous écrirons q_x , q_y et q_z les trois composantes du mode T_{1u} . Déterminons maintenant la forme de l'opérateur exprimant l'interaction Jahn-Teller quadratique. Cet opérateur est somme de produits d'expressions quadratiques en q avec des opérateurs agissant sur la fonction d'onde électronique. De plus, il doit évidemment se transformer comme la réprésentation complètement symétrique A_{1g} .

Considérant que les expressions en q qui interviennent sont fonctions de base des représentations résultant de la réduction du produit symétrique $[T_{1u} \times T_{1u}] = A_{1g} + E_g + T_{2g}$, on trouve pour cet opérateur la forme suivante:

$$\begin{split} V_{1} \frac{1}{\sqrt{3}} (q_{x}^{2} + q_{y}^{2} + q_{z}^{2}) + V_{u} \frac{1}{\sqrt{6}} (2q_{z}^{2} - q_{x}^{2} - q_{y}^{2}) + V_{v} \frac{1}{\sqrt{2}} (q_{x}^{2} - q_{y}^{2}) \\ + V_{a} q_{x} q_{y} + V_{b} q_{z} q_{x} + V_{c} q_{y} q_{z} \end{split}$$

les opérateurs V_1 , V_u et V_v , V_a , V_b et V_c étant des opérateurs tensoriels se transformant respectivement comme les bases de A_{1g} , E_g et T_{2g} .

Nous pouvons maintenant exprimer cet opérateur sous forme matricielle dans la base des états électroniques ψ_a , ψ_b , ψ_c . Appliquant le théorème de Wigner-Eckart, on obtient en utilisant les coefficients de Clebsch-Gordan du groupe O_h [3], la matrice de couplage suivante:

$$K_{1} \begin{pmatrix} q_{x}^{2} + q_{y}^{2} + q_{z}^{2} & 0 & 0 \\ 0 & q_{x}^{2} + q_{y}^{2} + q_{z}^{2} & 0 \\ 0 & 0 & q_{x}^{2} + q_{y}^{2} + q_{z}^{2} \end{pmatrix} + K_{t} \begin{pmatrix} 0 & q_{y}q_{z} & q_{z}q_{x} \\ q_{y}q_{z} & 0 & q_{x}q_{y} \\ q_{z}q_{x} & q_{z}q_{y} \\ q_{z}q_{x} & q_{x}q_{y} & 0 \end{pmatrix}$$

Pour un déplacement \vec{q} de grandeur δ dans les directions (001), (111) et (110), cette matrice prend les formes particulières et donne lieu aux valeurs propres et vecteurs propres que voici:

$$(001) \quad q_z = \delta \quad q_x = q_y = 0$$

$$\begin{pmatrix} \delta^2(K_1+2K_e) & 0 & 0 \\ 0 & \delta^2(K_1-K_e) & 0 \\ 0 & 0 & \delta^2(K_1-K_e) \end{pmatrix}$$

 $\Delta E_1 = \delta^2 (K_1 + 2K_e) \qquad \qquad \psi_a$

$$\Delta E_2 = \Delta E_3 = \delta^2 (K_1 - K_e) \qquad \begin{cases} \psi \\ \psi \\ \psi \end{cases}$$

Vol. 47, 1974

$$(111) \quad q_{z} = q_{y} = q_{x} = \frac{\delta}{\sqrt{3}}$$

$$\begin{pmatrix} \delta^{2} K_{1} & \frac{1}{3} \delta^{2} K_{t} & \frac{1}{3} \delta^{2} K_{t} \\ \frac{1}{3} \delta^{2} K_{t} & \delta^{2} K_{1} & \frac{1}{3} \delta^{2} K_{t} \\ \frac{1}{3} \delta^{2} K_{t} & \frac{1}{3} \delta^{2} K_{t} & \delta^{2} K_{1} \end{pmatrix}$$

$$\Delta E_{1} = \delta^{2} (K_{1} + \frac{2}{3} K_{t}) \qquad \qquad \frac{1}{\sqrt{3}} (\psi_{a} + \psi_{b} + \psi_{c})$$

$$\Delta E_{2} = \Delta E_{3} = \delta^{2} (K_{1} - \frac{1}{3} K_{t}) \qquad \qquad \begin{pmatrix} \frac{1}{\sqrt{2}} (\psi_{b} - \psi_{c}) \\ \frac{1}{\sqrt{6}} (2\psi_{a} - \psi_{b} - \psi_{c}) \\ \frac{1}{\sqrt{6}} (2\psi_{a} - \psi_{b} - \psi_{c}) \end{pmatrix}$$

$$(110) \quad q_{z} = 0 \quad q_{y} = q_{x} = \frac{\delta}{\sqrt{2}}$$

$$\begin{pmatrix} \delta^{2} (K_{1} - K_{e}) & 0 & 0 \\ 0 & \delta^{2} (K_{1} + \frac{1}{2} K_{e}) & \frac{1}{2} \delta^{2} K_{t} \\ 0 & \frac{1}{2} \delta^{2} K_{t} & \delta^{2} (K_{1} + \frac{1}{2} K_{e}) \end{pmatrix}$$

$$\Delta E_{1} = \delta^{2} [K_{1} + \frac{1}{2} (K_{e} + K_{t})] \qquad \qquad \frac{1}{\sqrt{2}} (\psi_{b} + \psi_{c})$$

$$\Delta E_{2} = \delta^{2} [K_{1} + \frac{1}{2} (K_{e} - K_{t})] \qquad \qquad \frac{1}{\sqrt{2}} (\psi_{b} - \psi_{c})$$

 $\Delta E_3 = \delta^2 (K_1 - K_e) \qquad \qquad \psi_a$

Ecrivons maintenant la forme générale de l'équation séculaire donnant l'énergie Jahn-Teller ΔE , en négligeant la contribution en K_1 , qui est isotrope et déplace également tous les niveaux. On pose $q_x = \delta \sin \theta \cos \varphi$, $q_y = \delta \sin \theta \sin \varphi$, $q_z = \delta \cos \theta$ et on introduit les notations $x = \Delta E/K_e \delta^2$ et $k = K_t/K_e$. L'équation séculaire, plus simple si on utilise la variable y = x + 1, prend la forme:

$$y^{3} - 3y^{2} + (9 - k^{2})\sin^{2}\theta \left(\cos^{2}\theta + \sin^{2}\theta\cos^{2}\varphi\sin^{2}\varphi\right)y$$
$$- (27 - 9k^{2} + 2k^{3})\cos^{2}\theta\sin^{4}\theta\cos^{2}\varphi\sin^{2}\varphi = 0$$

Si K_e est positif, la direction de \vec{q} correspondant au minimum d'énergie sera donnée par la valeur minimum de la plus petite des trois solutions. Inversément, si K_e est négatif, il faudra considérer la valeur maximum de la plus grande des solutions.

Diagrammes angulaires des niveaux d'énergie Jahn-Teller en unités de $K_e \delta^2$ pour quelques valeurs de $k = K_t/K_e$.

Figure 2

Diagrammes angulaires des niveaux d'énergie Jahn-Teller en unités de $K_e \delta^2$ pour quelques valeurs de $k = K_t/K_e$.

L'analyse du comportement des solutions de l'équation pour les diverses valeurs de k, travail simple mais fastidieux, permet d'établir les résultats suivants pour la direction d'énergie minimum.

1) $K_e > 0$			
$K_t > 3K_e$	$\theta=90^\circ$	$arphi=45^\circ$	(011)
$K_t = 3K_e$	$ heta$ et φ q	uelconque	s
$-\frac{3}{2}K_e < K_t < 3K_e$	$\theta=90^\circ$	φ quelcon	que
$K_t = -\frac{3}{2} K_e$	$ heta$ et φ q	uelconque	s
$K_t < -\frac{3}{2}K_e$	heta=54,7	$4^{\circ} \varphi = 4$.5° (111)
2) $K_e < 0$			
$K_t < 3K_e$	$\theta = 54,74$	$^{\circ} \varphi = 45$	° (111)
$K_t = 3K_e$	$ heta$ et φ qu	elconques	
$3K_e < K_t < -3K_e$	$\theta = 0$ (1	00)	
$K_t = -3K_e$	$\theta = 90^{\circ}$	φ quelcon	que
$K_t > -3K_e$	$ heta=90^\circ$	$arphi=45^\circ$	(011)

On voit donc que, suivant les valeurs de K_e et K_t , la position d'équilibre peut être selon les axes quaternaires, ternaires ou binaires de la symétrie cubique, mais que, pour certains domaines de valeurs, cette position est indéterminée.

Afin d'illustrer la position des niveaux selon l'orientation de \vec{q} , nous avons représenté sur les figures 1 et 2 les valeurs de $x = \Delta E/K_e \delta^2$ en fonction de θ avec $\varphi = 45^{\circ}$ (plan 110) et en fonction de φ avec $\theta = 90^{\circ}$ (plan 001), ceci pour diverses valeurs de $k = K_t/K_e$.

Le modèle

Il convient maintenant de passer à l'étude du cas particulier qui fait l'objet de cette note.

Pour ce qui est de la déformation T_{1u} elle-même, nous allons la considérer sous sa forme la plus simple: le déplacement \vec{q} de l'ion central dans une cage rigide formée des huit premiers voisins. Des deux modes T_{1u} possibles, celui-ci est le seul important lorsque l'ion d^9 est substitué à un ion de plus grand diamètre, car alors il correspond à une faible force de rappel. Il convient du reste de remarquer que cette condition est nécessaire pour que cette étude soit applicable, car, si la force de rappel est comparable à celle des modes pairs, ce sont ceux-ci, agissant au premier ordre, qui interviendront en priorité.

Nous devons donc évaluer la variation d'énergie ΔE de notre ion d^9 lorsqu'il s'écarte du centre du cube, afin d'en tirer les constantes K_e et K_t . Pour ce faire, le plus simple est de comparer avec l'énergie d'un ion d^{10} , dont on soustrait l'énergie de la spin-orbitale vide.

Remarquons tout d'abord que pour un ion $d^{10} \Delta E$ n'est pas nul, car la variation

Vol. 47, 1974 Effet Jahn-Teller quadratique sur un ion de configuration d⁹

de la covalence change le centre de gravité de l'ensemble des niveaux, liants et antiliants. Cependant, comme l'ion d^{10} est dans un état appartenant à la représentation A_1 , il ne sera sensible qu'à un potential appartenant à la même symétrie et la contribution en δ^2 à ΔE sera isotrope, n'influant ainsi que sur K_1 .

En conséquence, il suffira de calculer la variation d'énergie de la spin-orbitale vide pour obtenir, en en inversant le signe, les constantes K_e et K_t .

C'est maintenant qu'il nous faut choisir un modèle permettant d'établir le signe de K_e et K_t et la valeur de leur rapport. Nous allons traiter le système de l'ion d^9 et de ses huit voisins par la méthode des orbitales moléculaires et évaluer la variation d'énergie des niveaux de l'ion dans l'approximation de Wolfsberg-Helmholz [4].

Si on néglige les orbitales s et p de l'ion central et les recouvrements entre ligandes, l'équation séculaire faisant intervenir chacune des orbitales d prend la forme suivante, où A est l'électronégativité de l'électron d et B_i celle des orbitales des ligandes (i = 1 à N), qui sont ici des orbitales de symétrie.

L'équation ci-dessus est celle du cas cubique, avant déformation, et nous évaluerons le ΔE du niveau le plus élevé en faisant varier les différents S_i . Remarquons que certains des S_i peuvent être nuls, car il faut aussi faire intervenir les états qui n'auront un recouvrement non nul qu'après déformation.

Après développement, l'équation prend la forme:

$$(A - E) \prod_{i} (B_{i} - E) - \sum_{l} \left[\frac{k_{l}}{2} (A + B_{l}) - E \right]^{2} S_{l}^{2} \prod_{k \neq l} (B_{k} - E) = 0$$

Posant $(k_l/2)$ $(A + B_l) = C_l$ et différentiant, on obtient:

$$-\Delta E \left\{ \prod_{i} (B_{i} - E) + (A - E) \sum_{l} \prod_{k \neq l} (B_{k} - E) - 2 \sum_{l} S_{l}^{2} (C_{l} - E) \prod_{k \neq l} (B_{k} - E) - \sum_{l} S_{l}^{2} (C_{l} - E)^{2} \prod_{k \neq l} (B_{k} - E) \right\} - \sum_{l} S_{l}^{2} (C_{l} - E)^{2} \prod_{k \neq l} (B_{k} - E) \left\{ -\sum_{l} S_{l}^{2} (C_{l} - E)^{2} \sum_{m \neq l} \prod_{\substack{k \neq l \\ k \neq m}} (B_{k} - E) \right\} - \sum_{l} \left[(C_{l} - E)^{2} \prod_{k \neq l} (B_{k} - E) \right] \Delta(S_{l}^{2}) = 0$$

où E est l'énergie du niveau le plus élevé. On en tire:

$$\Delta E = -\frac{1}{D}\sum_{l} F_{l} \Delta(S_{l}^{2}) = \sum_{l} G_{l} \Delta(S_{l}^{2})$$

1

en notant

$$F_{l} = (C_{l} - E)^{2} \prod_{k \neq l} (B_{k} - E).$$

D représente le facteur de ΔE , qui peut être amené, en utilisant l'équation séculaire elle-même, à la forme suivante:

$$D = \sum_{l} S_{l}^{2}(C_{l} - E) \prod_{k \neq l} (B_{k} - E) \left\{ (C_{l} - E) \left[\frac{1}{A - E} + \frac{1}{B_{l} - E} \right] - 2 \right\}$$

Nous pouvons maintenant établir que les coefficients $G_1 = -F_1/D$ sont positifs.

Pour cela, nous remarquons que E est supérieur à A, aux B_k et aux C_k , c'est à dire que tous les termes (A - E), $(B_k - E)$ et $(C_k - E)$ sont négatifs. Il en résulte que le signe de F_l est celui de $(-1)^{N+1}$.

Pour démontrer le signe de D, nous effectuons la transformation suivante :

$$\begin{split} & \left\{ (C_l - E) \left[\frac{1}{A - E} + \frac{1}{B_l - E} \right] - 2 \right\} = \left[\frac{k_l}{2} (A + B_l) - E \right] \left[\frac{1}{A - E} + \frac{1}{B_l - E} \right] - 2 \\ & = \frac{1}{2(A - E) (B_l - E)} [(k_l - 1)(A + B_l) (A + B_l - 2E) + (A - B_l)^2] \end{split}$$

 k_l étant supérieur à 1, il est évident que cette expression est positive, les deux termes du numérateur et le dénominateur étant positifs. Nous pouvons en conclure que chacun des termes de la somme constituant D ont le signe de $(-1)^N$. Ainsi F_l et D sont de signe opposé et G_l est positif.

Dans le cas que nous traitons, les orbitales de symétrie des ligandes sont constituées d'orbitales atomiques s, $p\sigma$ ou $p\pi$. Les orbitales de même nature ont mêmes B_l et k_l , donc même G_l , qui peut être mis en évidence.

Nous poserons Σ_s la somme partielle ΣS_l^2 portant sur les orbitales *s* et définirons de même Σ_{σ} et Σ_{π} pour les orbitales $\rho\sigma$ et $\rho\pi$. Nous aurons alors

 $\Delta E = G_s \, \Delta \Sigma_s + G_\sigma \, \Delta \Sigma_\sigma + G_\pi \, \Delta \Sigma_\pi$

Il reste maintenant à calculer effectivement $\Delta \Sigma_s$, $\Delta \Sigma_{\sigma}$ et $\Delta \Sigma_{\pi}$ pour différentes orbitales d et différentes déformations. De fait trois cas bien choisis suffisent pour déterminer les constantes K_e et K_t et la contribution K'_1 de ce mécanisme à K_1 .

Pratiquemment, nous allons calculer la variation des recouvrements pour les orbitales $|a\rangle = d_{xy}$ et $|b\rangle = d_{xz}$ lors d'un déplacement selon l'axe (100) et pour l'orbitale $|\alpha\rangle = (1/\sqrt{3}) (d_{xy} + d_{xz} + d_{yz})$ lors d'un déplacement selon l'axe (111).

Du déplacement δ selon (100), nous obtiendrons

 $-\Delta E^{a} = -G_{s} \Delta \Sigma_{s}^{a} - G_{\sigma} \Delta \Sigma_{\sigma}^{a} - G_{\pi} \Delta \Sigma_{\pi}^{a} = \delta^{2} (K_{1}' + 2K_{e})$ $-\Delta E^{b} = -G_{s} \Delta \Sigma_{s}^{b} - G_{\sigma} \Delta \Sigma_{\sigma}^{b} - G_{\pi} \Delta \Sigma_{\pi}^{b} = \delta^{2} (K_{1}' - K_{e})$

Quant au déplacement δ selon (111), il nous donnera

$$-\Delta E^{\alpha} = -G_s \, \Delta \Sigma_s^{\alpha} - G_\sigma \, \Delta \Sigma_\sigma^{\alpha} - G_\pi \, \Delta \Sigma_\pi^{\alpha} = \delta^2 (K_1' + \frac{2}{3} K_t)$$

En substituant dans ces équations la forme détaillée des $\Delta \Sigma$, qui sont calculés en appendice, on obtient les expressions suivantes, où l'unité de longueur est choisie égale à la demi-distance halogéne-halogéne, c'est à dire au quart du côté de la maille cristalline.

$$\begin{split} K_{1}' + 2K_{e} &= -G_{s} \left\{ \frac{16}{9} S_{s}^{2} - \frac{16}{3\sqrt{3}} S_{s} \frac{dS_{s}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{s}}{dl} \right)^{2} + S_{s} \frac{d^{2}S_{s}}{dl^{2}} \right] \right\} \\ &- G_{\sigma} \left\{ \frac{16}{9} S_{\sigma}^{2} - \frac{16}{3\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\sigma} \frac{d^{2}S_{\sigma}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ -\frac{16}{9} S_{\pi}^{2} + \frac{32}{9\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} + \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^{2} + S_{\pi} \frac{d^{2}S_{\pi}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ -\frac{8}{3} S_{s}^{2} + \frac{32}{9\sqrt{3}} S_{s} \frac{dS_{\pi}}{dl} + \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^{2} + S_{\pi} \frac{d^{2}S_{\pi}}{dl^{2}} \right] \right\} \\ &- G_{\sigma} \left\{ -\frac{8}{3} S_{s}^{2} + \frac{16}{3\sqrt{3}} S_{s} \frac{dS_{s}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{s}}{dl} \right)^{2} + S_{s} \frac{d^{2}S_{s}}{dl^{2}} \right] \right\} \\ &- G_{\sigma} \left\{ -\frac{8}{3} S_{\sigma}^{2} + \frac{16}{3\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\sigma} \frac{d^{2}S_{\sigma}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ \frac{88}{27} S_{\pi}^{2} + \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^{2} + S_{\pi} \frac{d^{2}S_{\pi}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ \frac{16}{27} S_{\sigma}^{2} - \frac{16}{9\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{56}{27} \left[\left(\frac{dS_{s}}{dl} \right)^{2} + S_{s} \frac{d^{2}S_{s}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ \frac{16}{27} S_{\sigma}^{2} - \frac{16}{9\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{56}{27} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\sigma} \frac{d^{2}S_{\sigma}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ \frac{16}{81} S_{\pi}^{2} + \frac{64}{9\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} + \frac{16}{81} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\pi} \frac{d^{2}S_{\pi}}{dl^{2}} \right] \right\} \end{split}$$

Eliminant K'_1 entre les équations, on obtient

$$K_{e} = -G_{s} \left\{ \frac{40}{27} S_{s}^{2} - \frac{32}{9\sqrt{3}} S_{s} \frac{dS_{s}}{dl} \right\} - G_{\sigma} \left\{ \frac{40}{27} S_{\sigma}^{2} - \frac{32}{9\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} \right\} - G_{\pi} \left\{ -\frac{136}{81} S_{\pi}^{2} + \frac{32}{27\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} \right\}$$

$$\begin{split} K_{t} &= -G_{s} \left\{ \frac{8}{3} S_{s}^{2} - \frac{16}{3\sqrt{3}} S_{s} \frac{dS_{s}}{dl} + \frac{16}{9} \left[\left(\frac{dS_{s}}{dl} \right)^{2} + S_{s} \frac{d^{2}S_{s}}{dl^{2}} \right] \right\} \\ &- G_{\sigma} \left\{ \frac{8}{3} S_{\sigma}^{2} - \frac{16}{3\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{16}{9} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\sigma} \frac{d^{2}S_{\sigma}}{dl^{2}} \right] \right\} \\ &- G_{\pi} \left\{ -\frac{56}{27} S_{\pi}^{2} + \frac{80}{9\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} - \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^{2} + S_{\pi} \frac{d^{2}S_{\pi}}{dl^{2}} \right] \right\} \end{split}$$

Application

Appliquons ces résultats au cas de l'ion Ag²⁺ substitué dans un cristal de SrCl₂. Le côté de la maille de SrCl₂ valant 7,0 Å, la distance Ag–Cl avant déplacement vaut 3,02 Å, et le quart de la maille que nous avons choisi comme unité de longueur pour notre calcul vaut 1,75 Å.

Pour les recouvrements et leurs dérivées, les valeurs suivantes ont été obtenues en utilisant les fonctions d'onde de Basch et Gray [5] pour l'argent et celles de Clementi [6] pour le chlore.

 $S_{s} = -0,01297 \quad \frac{dS_{s}}{dl} = 0,14399 \qquad \frac{d^{2}S_{s}}{dl^{2}} = -0,68277$ $S_{\sigma} = 0,03709 \qquad \frac{dS_{\sigma}}{dl} = -0,08820 \qquad \frac{d^{2}S_{\sigma}}{dl^{2}} = 0,19087$ $S_{\pi} = 0,01527 \qquad \frac{dS_{\pi}}{dl} = -0,04613 \qquad \frac{d^{2}S_{\pi}}{dl^{2}} = 0,14198$

A partir de ces nombres, on trouve pour K_e et K_t

 $K_e = -0.00408G_s - 0.00875G_{\sigma} + 0.00087G_{\pi}$ $K_t = -0.0588G_s - 0.0401G_{\sigma} + 0.0066G_{\pi}$

Il est important de remarquer que chacun des facteurs de G_s , G_σ et G_π est somme de termes tous de même signe. Cela veut dire que même si, par un autre choix de fonctions d'onde, les recouvrements et leurs dérivées étaient modifiés, cela ne changerait pas le signe de ces facteurs.

Un autre point à remarquer est que les contributions en π sont beaucoup plus petites, d'un facteur 6 à 10, que celles en σ . Cela va nous faciliter l'évaluation des signes de K_e et K_t . En effet, les constantes G_{σ} et G_{π} sont voisines, car B_{σ} et B_{π} d'une part, k_{σ} et k_{π} d'autre part, sont assez proches. Nous pourons donc les égaler sans changer le signe de la somme des contributions, σ l'emportant de toute façon largement sur π . On a alors

 $K_e \cong -0,00408G_s - 0,00788G_\sigma$

 $K_t \cong -0.0588G_s - 0.0335G_\sigma$

Comme nous avons montré que les constantes G sont positives, K_e et K_t sont négatifs.

Vol. 47, 1974 Effet Jahn-Teller quadratique sur un ion de configuration d⁹

De plus, on a

$$K_t - 3K_e = -0.0465G_s - 0.0139G_{\sigma} + 0.0040G_{\pi}$$
$$\cong -0.0465G_s - 0.0099G_{\sigma}$$

donc $K_t < 3K_e$, quel que soit le rapport de G_s sur G_{σ} .

Revenant à la discussion générale du début de cet article, on voit que $K_t < 3K_e < 0$ implique qu'un effet Jahn-Teller du deuxième ordre dû au mode T_{1u} considéré va déplacer l'ion Ag²⁺ dans la direction (111).

Appendice

Il s'agit pour nous de calculer les variations de recouvrement entre les orbitales s et p des ligandes et les orbitales d de l'ion central lorsque ce dernier se déplace.

Le premier cas à examiner est celui d'un déplacement le long de l'axe (001).

Figure 3

Numérotation des ligandes et orientation de leurs orbitales p (déformation tétragonale).

Pour fixer les idées nous représentons sur la figure 3 la numérotation des ligandes et l'orientation de leurs orbitales ϕ utilisées dans ce cas.

Sur la figure 4 nous avons représenté les distances et les angles à évaluer. Rappelons que, pour simplifier l'écriture, nous prenons pour unité de longueur le demi-côté du cube.

$$l = \sqrt{3} \qquad l' = \sqrt{3 - 2\delta + \delta^2} \qquad l'' = \sqrt{3 + 2\delta + \delta^2}$$
$$\cos \gamma = \sqrt{\frac{2}{3}} \qquad \cos \gamma' = \sqrt{\frac{2}{3 - 2\delta + \delta^2}} \qquad \cos \gamma'' = \sqrt{\frac{2}{3 + 2\delta + \delta^2}}$$
$$\sin \gamma = \frac{1}{\sqrt{3}} \qquad \sin \gamma' = \frac{1 - \delta}{\sqrt{3 - 2\delta + \delta^2}} \qquad \sin \gamma'' = \frac{1 + \delta}{\sqrt{3 + 2\delta + \delta^2}}$$

Il convient de remarquer que le déplacement de l'ion le long de l'axe z abaisse la symétrie au groupe C_{4v} et c'est dans cette symétrie que nous devons discuter les recouvrements.

Figure 4

Définition des distances et des angles (déformation tétragonale).

Examinons tout d'abord le cas de l'orbitale $|a\rangle = d_{xy}$ et construisons les orbitales de symétrie des ligandes appartenant à la même représentation irréductible de C_{4v} .

$$\begin{aligned} |\sigma_a'\rangle &= \frac{1}{2} \left(\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4\right) & |\sigma_a''\rangle &= \frac{1}{2} \left(\sigma_5 - \sigma_6 + \sigma_7 - \sigma_8\right) \\ |\pi_a'\rangle &= \frac{1}{2} \left(\pi_1^a - \pi_2^a + \pi_3^a - \pi_4^a\right) & |\pi_a''\rangle &= \frac{1}{2} \left(\pi_5^a - \pi_6^a + \pi_7^a - \pi_8^a\right) \\ \Sigma_{\sigma} &= \langle a | \sigma_a' \rangle^2 + \langle a | \sigma_a'' \rangle^2 &= 4 \langle a | \sigma_1 \rangle^2 + 4 \langle a | \sigma_5 \rangle^2 \\ \Sigma_{\pi} &= \langle a | \pi_a' \rangle^2 + \langle a | \pi_a'' \rangle^2 &= 4 \langle a | \pi_1^a \rangle^2 + 4 \langle a | \pi_5^a \rangle^2 \\ \langle a | \sigma_1 \rangle &= \frac{\sqrt{3}}{2} \cos^2 \gamma' S_{\sigma}' & \langle a | \sigma_5 \rangle &= \frac{\sqrt{3}}{2} \cos^2 \gamma'' S_{\sigma}'' \\ \langle a | \pi_1^a \rangle &= -\cos \gamma' \sin \gamma' S_{\pi}' & \langle a | \pi_5^a \rangle &= -\cos \gamma'' \sin \gamma'' S_{\pi}'' \end{aligned}$$

où on note S' et S" les recouvrements pour les distances l' et l''.

$$\begin{aligned} \Delta \Sigma_{\sigma} &= 3\cos^4 \gamma' S_{\sigma}^{\prime 2} + 3\cos^4 \gamma'' S_{\sigma}^{\prime 2} - 6\cos^4 \gamma S_{\sigma}^2 \\ \Delta \Sigma_{\pi} &= \cos^2 \gamma' \sin^2 \gamma' S_{\pi}^{\prime 2} + \cos^2 \gamma'' \sin^2 \gamma'' S_{\pi}^{\prime 2} - 2\cos^2 \gamma \sin^2 \gamma S_{\pi}^2 \end{aligned}$$

Développons $\Delta \Sigma_{\sigma}$ et $\Delta \Sigma_{\pi}$ en série de δ jusqu'au deuxième degré.

$$S' = S + \frac{dS}{dl}(l'-l) + \frac{1}{2}\frac{d^2S}{dl^2}(l'-l)^2$$

$$S'^2 = S^2 + 2S\frac{dS}{dl}(l'-l) + \left[\left(\frac{dS}{dl}\right)^2 + S\frac{d^2S}{dl^2}\right](l'-l)^2$$

$$= S^2 + 2S\frac{dS}{dl}\frac{1}{\sqrt{3}}\left(-\delta + \frac{\delta^2}{3}\right) + \left[\left(\frac{dS}{dl}\right)^2 + S\frac{d^2S}{dl^2}\right]\frac{\delta^2}{3}$$

$$\cos^4\gamma' = \frac{4}{9}(1 + \frac{4}{3}\delta + \frac{2}{3}\delta^2) \quad \cos^2\gamma'\sin^2\gamma' = \frac{2}{9}(1 - \frac{2}{3}\delta - \delta^2)$$

Les expressions pour S'' et γ'' sont les mêmes en changeant le signe de δ .

En introduisant ces développements dans $\Delta \Sigma_{\sigma}$ et $\Delta \Sigma_{\pi}$ on obtient pour ceux-ci les expressions suivantes:

$$\begin{split} \Delta \Sigma_{\sigma} &= \delta^{2} \left\{ \frac{16}{9} S_{\sigma}^{2} - \frac{16}{3\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{\sigma}}{dl} \right)^{2} + S_{\sigma} \frac{d^{2} S_{\sigma}}{dl^{2}} \right] \right\} \\ \Delta \Sigma_{\pi} &= \delta^{2} \left\{ -\frac{16}{9} S_{\pi}^{2} + \frac{32}{9\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} + \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^{2} + S_{\pi} \frac{d^{2} S_{\pi}}{dl^{2}} \right] \right\} \end{split}$$

Dans le développement, les termes linéaires en δ disparaissent évidemment, les contri-

butions de S' et S" étant de signes opposés. Quant à $\Delta \Sigma_s$, il a la même forme que $\Delta \Sigma_{\sigma}$. Passons au cas de l'orbitale $|b\rangle = d_{xz}$. Les orbitales de symétrie des ligandes de même représentation sont les suivantes:

$$\begin{split} |\sigma_{b}^{\prime}\rangle &= \frac{1}{2}(\sigma_{1} - \sigma_{2} - \sigma_{3} + \sigma_{4}) \qquad |\sigma_{b}^{\prime}\rangle = -\frac{1}{2}(\sigma_{5} - \sigma_{6} - \sigma_{7} + \sigma_{8}) \\ |\pi_{b}^{\prime}\rangle &= -\frac{1}{2}(\pi_{1}^{\pi} - \pi_{2}^{\pi} - \pi_{3}^{\pi} + \pi_{4}^{\pi}) \qquad |\pi_{b}^{\ast}\rangle = -\frac{1}{2}(\pi_{5}^{\pi} - \pi_{6}^{\pi} - \pi_{7}^{\pi} + \pi_{8}^{\pi}) \\ |\pi_{b}^{\ast}\rangle &= -\frac{1}{2}(\pi_{1}^{\beta} + \pi_{2}^{\beta} - \pi_{3}^{\beta} - \pi_{4}^{\beta}) \qquad |\pi_{b}^{\ast\ast}\rangle = -\frac{1}{2}(\pi_{5}^{\beta} + \pi_{6}^{\beta} - \pi_{7}^{\beta} - \pi_{8}^{\beta}) \\ \Sigma_{\sigma} &= \langle b | \sigma_{b}^{\prime}\rangle^{2} + \langle b | \sigma_{b}^{\ast}\rangle^{2} = 4\langle b | \sigma_{1}\rangle^{2} + 4\langle b | \sigma_{5}\rangle^{2} \\ \Sigma_{\pi} &= \langle b | \pi_{b}^{\prime}\rangle^{2} + \langle b | \pi_{b}^{\ast}\rangle^{2} + \langle b | \pi_{b}^{\ast}\rangle^{2} + \langle b | \pi_{b}^{\ast}\rangle^{2} \\ &= 4\langle b | \pi_{1}^{\alpha}\rangle^{2} + 4\langle b | \pi_{5}^{\alpha}\rangle^{2} + 4\langle b | \pi_{1}^{\beta}\rangle^{2} + 4\langle b | \pi_{5}^{\beta}\rangle^{2} \\ \langle b | \sigma_{1}\rangle &= \sqrt{\frac{3}{2}}\cos\gamma'\sin\gamma'S_{\sigma}' \qquad \langle b | \sigma_{5}\rangle = \sqrt{\frac{3}{2}}\cos\gamma''\sin\gamma'S_{\sigma}'' \\ \langle b | \pi_{1}^{\alpha}\rangle &= \frac{1}{\sqrt{2}}(\cos^{2}\gamma' - \sin^{2}\gamma')S_{\pi}' \quad \langle b | \pi_{5}^{\alpha}\rangle = \frac{1}{\sqrt{2}}(\cos^{2}\gamma'' - \sin^{2}\gamma'')S_{\pi}'' \\ \langle b | \pi_{1}^{\beta}\rangle &= -\frac{1}{\sqrt{2}}\sin\gamma'S_{\pi}' \qquad \langle b | \pi_{5}^{\beta}\rangle = -\frac{1}{\sqrt{2}}\sin\gamma''S_{\pi}'' \\ \Delta\Sigma_{\sigma} &= 6\cos^{2}\gamma'\sin^{2}\gamma'S_{\sigma}'^{2} + 6\cos^{2}\gamma''\sin^{2}\gamma_{\sigma}''S_{\sigma}''^{2} - 12\cos^{2}\gamma\sin^{2}\gamma S_{\sigma}^{2} \\ \Delta\Sigma_{\pi} &= 2(4\cos^{4}\gamma' - 5\cos^{2}\gamma' + 2)S_{\pi}'^{2} + 2(4\cos^{4}\gamma'' - 5\cos^{2}\gamma'' + 2)S_{\pi}''^{2} \\ &-4(4\cos^{4}\gamma - 5\cos^{2}\gamma + 2)S_{\pi}^{2} \end{aligned}$$

Comme dans le cas précédent, on développe $\Delta \Sigma_{\sigma}$ et $\Delta \Sigma_{\pi}$ en série de δ en s'arrêtant au deuxième ordre. On a en particulier $2(4\cos^4\gamma' - 5\cos^2\gamma' + 2) = \frac{8}{9}(1 + \frac{1}{3}\delta + \frac{11}{6}\delta^2)$. On obtient:

$$\begin{split} \Delta \Sigma_{\sigma} &= \delta^2 \left\{ -\frac{8}{3} S_{\sigma}^2 + \frac{16}{3\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{8}{9} \left[\left(\frac{dS_{\sigma}}{dl} \right)^2 + S_{\sigma} \frac{d^2 S_{\sigma}}{dl^2} \right] \right\} \\ \Delta \Sigma_{\pi} &= \delta^2 \left\{ \frac{88}{27} S_{\pi}^2 + \frac{16}{27} \left[\left(\frac{dS_{\pi}}{dl} \right)^2 + S_{\pi} \frac{d^2 S_{\pi}}{dl^2} \right] \right\} \end{split}$$

Nous passons maintenant au cas d'un déplacement δ dans la direction (111), qui amène le système à la symétrie C_{3v} .

Il convient tout d'abord de fixer la nouvelle numérotation des sommets du cube et le nouveau choix de l'orientation des orbitales π des ligandes. La numérotation est indiquée sur la figure 5.

Figure 5 Numérotation des ligandes (déformation trigonale).

Orientation des orbitales p des ligandes et définition des longueurs et des angles (déformation trigonale).

Quant aux orbitales π , seules nous intéressent celles qui interviennent dans les orbitales de symétrie appartenant à la représentation A_1 , celle de la fonction $|\alpha\rangle = (1/\sqrt{3}) (d_{xy} + d_{xz} + d_{yz})$. Ce sont celles qui sont dans le plan de l'axe (111). Leur orientation est indiquée sur la figure 6 pour les ligandes 2 et 5.

Vol. 47, 1974 Effet Jahn-Teller quadratique sur un ion de configuration d^9

D'autre part les distances et angles représentés sur la figure 6 valent respectivement:

$$l = \sqrt{3} \quad l^* = \sqrt{3} - \delta \quad l^{**} = \sqrt{3} + \delta$$

$$l' = \sqrt{3} - \frac{2\delta}{\sqrt{3}} + \delta^2 \quad l'' = \sqrt{3} + \frac{2\delta}{\sqrt{3}} + \delta^2$$

$$\cos \gamma = \frac{2\sqrt{2}}{3} \quad \cos \gamma' = \frac{2\sqrt{2}}{\sqrt{3}\sqrt{3} - \frac{2\delta}{\sqrt{3}} + \delta^2} \quad \cos \gamma'' = \frac{2\sqrt{2}}{\sqrt{3}\sqrt{3} + \frac{2\delta}{\sqrt{3}} + \delta^2}$$

$$\sin \gamma = \frac{1}{3} \quad \sin \gamma' = \frac{1 - \sqrt{3}\delta}{\sqrt{3}\sqrt{3} - \frac{2\delta}{\sqrt{3}} + \delta^2} \quad \sin \gamma'' = \frac{1 + \sqrt{3}\delta}{\sqrt{3}\sqrt{3} + \frac{2\delta}{\sqrt{3}} + \delta^2}$$

Les fonctions de symétrie se transformant comme $|\alpha\rangle$ sont les suivantes:

$$\begin{split} |\sigma_{\alpha}^{*}\rangle &= \sigma_{1} \qquad |\sigma_{\alpha}^{**}\rangle = \sigma_{8} \\ |\sigma_{\alpha}'\rangle &= \frac{1}{\sqrt{3}} (\sigma_{2} + \sigma_{3} + \sigma_{4}) \qquad |\sigma_{\alpha}''\rangle = \frac{1}{\sqrt{3}} (\sigma_{5} + \sigma_{6} + \sigma_{7}) \\ |\pi_{\alpha}'\rangle &= \frac{1}{\sqrt{3}} (\pi_{2} + \pi_{3} + \pi_{4}) \qquad |\pi_{\alpha}''\rangle = \frac{1}{\sqrt{3}} (\pi_{5} + \pi_{6} + \pi_{7}) \\ \Sigma_{\sigma} &= \langle \alpha | \sigma_{\alpha}^{*} \rangle^{2} + \langle \alpha | \sigma_{\alpha}^{**} \rangle^{2} + \langle \alpha | \sigma_{\alpha}' \rangle^{2} \\ &= \langle \alpha | \sigma_{1} \rangle^{2} + \langle \alpha | \sigma_{8} \rangle^{2} + 3 \langle \alpha | \sigma_{2} \rangle^{2} + 3 \langle \alpha | \sigma_{5} \rangle^{2} \\ \Sigma_{\pi} &= \langle \alpha | \pi_{\alpha}' \rangle^{2} + \langle \alpha | \pi_{\alpha}'' \rangle^{2} = 3 \langle \alpha | \pi_{2} \rangle^{2} + 3 \langle \alpha | \pi_{5} \rangle^{2} \\ \langle \alpha | \sigma_{1} \rangle &= S_{\sigma}^{*} \qquad \langle \alpha | \sigma_{8} \rangle = S_{\sigma}^{**} \\ \langle \alpha | \sigma_{2} \rangle &= (1 - \frac{3}{2} \cos^{2} \gamma') S_{\sigma}' \qquad \langle \alpha | \sigma_{5} \rangle = (1 - \frac{3}{2} \cos^{2} \gamma'') S_{\sigma}'' \\ \langle \alpha | \pi_{2} \rangle &= \sqrt{3} \cos \gamma' \sin \gamma' S_{\pi}' \qquad \langle \alpha | \pi_{5} \rangle = \sqrt{3} \cos \gamma' \sin \gamma' S_{\pi}'' \\ \Delta \Sigma_{\sigma} &= S_{\sigma}^{*2} + S_{\sigma}^{**2} - 2S_{\sigma}^{2} + 3(1 - \frac{3}{2} \cos^{2} \gamma')^{2} S_{\sigma}'^{2} \\ &\quad + 3(1 - \frac{3}{2} \cos^{2} \gamma'')^{2} S_{\sigma}''^{2} - 6(1 - \frac{3}{2} \cos^{2} \gamma)^{2} S_{\sigma}'' \\ \Delta \Sigma_{\pi} &= 9 \cos^{2} \gamma' \sin^{2} \gamma' S_{\pi}'^{2} + 9 \cos^{2} \gamma'' \sin^{2} \gamma'' S_{\pi}'''^{2} - 18 \cos^{2} \gamma \sin^{2} \gamma S_{\pi}^{2} \end{split}$$

Comme dans les cas précédents, nous développons en série de δ les distances et les angles en se limitant au deuxième ordre.

$$l' - l = -\frac{\delta}{3} + \frac{4}{9\sqrt{3}}\delta^2 \qquad l^* - l = -\delta$$
$$3(1 - \frac{3}{2}\cos^2\gamma')^2 = \frac{1}{3}\left(1 + \frac{16}{3\sqrt{3}}\delta + \frac{8}{9}\delta^2\right)$$
$$9\cos^2\gamma'\sin^2\gamma' = \frac{8}{9}\left(1 - \frac{14}{3\sqrt{3}}\delta + \frac{\delta^2}{9}\right)$$

Développant comme précédemment les recouvrements en série de Taylor et utilisant les expressions ci-dessus, on obtient:

$$\begin{split} \Delta \Sigma_{\sigma} &= \delta^2 \left\{ \frac{16}{27} S_{\sigma}^2 - \frac{16}{9\sqrt{3}} S_{\sigma} \frac{dS_{\sigma}}{dl} + \frac{56}{27} \left[\left(\frac{dS_{\sigma}}{dl} \right)^2 + S_{\sigma} \frac{d^2 S_{\sigma}}{dl^2} \right] \right\} \\ \Delta \Sigma_{\pi} &= \delta^2 \left\{ \frac{16}{81} S_{\pi}^2 + \frac{64}{9\sqrt{3}} S_{\pi} \frac{dS_{\pi}}{dl} + \frac{16}{81} \left[\left(\frac{dS_{\pi}}{dl} \right)^2 + S_{\pi} \frac{d^2 S_{\pi}}{dl^2} \right] \right\} \end{split}$$

Remerciements

L'auteur tient à remercier le Dr. J. Weber, qui a établi le programme et calculé les recouvrements sur l'ordinateur CDC 3800 de l'Etat de Genève. Ses remerciements vont aussi à M. C. Balestra, qui a programmé la calculatrice Hewlett-Packard avec table traçante afin d'obtenir les figures 1 et 2. Il remercie également M. J. M. Moret qui a dessiné les autres figures.

REFERENCES

- [1] H. BILL, C. MILLERET et R. LACROIX, Comptes rendus du 17ème Colloque Ampère, 223 (1973).
- [2] R. C. FEDDER, Phys. Rev. B2, 40 (1970)
- [3] R. LACROIX, dans Théorie des groupes en physique classique et quantique, Tome 3, édité par TH. KAHAN (Dunod, Paris 1972).
- [4] M. WOLFSBERG et L. HELMHOLZ, J. Chem. Phys. 20, 837 (1952).
- [5] H. BASCH et H. B. GRAY, Theoret. Chim. Acta 4, 367 (1966).
- [6] E. CLEMENTI, IBM Journal of Research and Development 9, 2 (1965). Supplément.