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Information Theory and Thermodynamics
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Marie Curie, 75005 Paris, France

and Myron Tribus
Xerox Corporation, Webster, New York, USA

(19. XL 73)

Abstract. In answer to a recent article by Jauch and Baron bearing this same title, the information

theory approach to thermodynamics is here upheld. After a brief historical survey and an outline

of the derivation as formulated by one of us in previous publications, Jauch and Baron's critique
of Szilard's argument pertaining to the 'well-informed heat engine' is discussed.

I. Introduction

In a recent paper Jauch and Baron [1] argue against the identification of the
thermodynamic entropy concept as defined by Clausius and the information theory entropy
concept as defined by Shannon [2]. In support of their thesis they present a new
discussion of Szilard's thought experiment of the 'well-informed heat engine' [4],

We definitely belong to the other school of thought and intend to say briefly why.
While admitting with others [5] that a general mathematical definition of the

entropy concept can be produced and used in many fields, Jauch and Baron do not
mention the fact that the entropy concept of statistical mechanics has actually been
deduced from the information concept. The corresponding papers are not quoted in
their article, where Brillouin (1957) [4] is the only author mentioned as asserting the
identity of the Clausius and the Shannon entropy concepts.

Jaynes (1957) [6], much inspired [7] by an article of Cox (1946) [8], later expanded
in a book [9], is the recognized author of the derivation of the fundamental equations
of equilibrium statistical mechanics (or 'thermostatistics' in the terminology of one of us
[10]) from the inductive reasoning probability concept as introduced by Bayes [11],
Laplace [12] and Hume [13]. In his two pioneering articles [6, 7] Jaynes presents his
deduction in terms of, respectively, classical and quantal statistical mechanics. In the
latter case he uses of course von Neumann's [14, 15] density matrix.

What is perhaps less known is that the same line of reasoning had been lucidly
presented and used, also in von Neumann's quantum statistical formalism, as early
as 1937 by Elsasser [16], who quotes Fisher (1929) [17] as one of his inspirers.

One point of interest in the Elsasser-Jaynes quantum information formalism
is that the density matrix, and corresponding negentropy or information attached to
the system under study, are calculated from the results of a set of 'macroscopic'
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measurements simultaneously performed, these being interpreted as the (quantum
mechanical) mean values <F,> attached to not necessarilly commuting operators Ft.

For the sake of completeness we mention that the history of the inductive reasoning

probability concept continues beyond Fisher, Cox and Shannon; Watanabe [18],
Carnap [19], Kemeny [20], Jeffreys [21] and others can be added to the list.

In statistical physics Szilard is not the only forerunner of Elsasser, Brillouin
and Jaynes. Lewis (1930) [22], in a paper devoted to time symmetry, has the sentence
'Gain in entropy always means loss of information, and nothing more. It is a subjective
concept.' Van der Waals (1911) [23] derives the time asymmetry in the //-theorem
from the classical time asymmetric use of Bayes' conditional probabilities, an idea
also expressed by Gibbs [24] in an often quoted sentence. Jaynes has followed up his
pioneering articles by more comprehensive publications [25], as has also one of us
[26,27]. Among other authors using the information theoretical approach in probability
theory or in statistical mechanics we quote Kinchin [28], Yaglom and Yaglom [29],
Katz [30], Hobson [31], and Baierlein [32].

In Section II we outline the information-theoretical derivation of the laws of
equilibrium in statistical mechanics.

As for the more special topic of Maxwell's demon and Szilard's 'well-informed
heat engine' we have brief comments in Section III with a reference to Brillouin.

II. Outline of the Information Theory Basis for Physical Theory
Part of Cox's contribution may be summarized as follows: suppose we wish to

inform someone else of our incomplete knowledge of a subject. Is there a unique code
which enables us to say neither more or less than we really know? Cox saw that instead
of trying to find such a code, it would be necessary to design it. To design implies generation

of alternative designs and the selection among them according to criteria. But
what criteria should be used for the code? Cox chose criteria equivalent to the following :

1. Consistency
2. Freedom from Ambiguity
3. Universality
4. Honesty

What is surprising is that these criteria are necessary and sufficient to develop unique
functional equations (27, Chapter I). For example, one of Cox's functional equations is :

[AB\E] F([A\BE],[B\E])

F([B\AE],[A\E])

F is a function to be determined, [ ] is a measure. Cox's solutions are the ordinary equations

of mathematical probability theory :

p(A \E) + p(~A \E) 1 0 < p< 1 (2a)

p(AB\E)=p(A\BE)p(B\E) (2b)

[A and B are propositions, ~A is the denial to A, E is the evidence and /> is 'a numerical
encoding of what the evidence E implies'.] Equations (2a) and (2b) can be used to
develop all of probability calculus [27].
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Cox's approach is unique in his deliberate attempt to design a code for the
communication of partial information. The code is constrained to obey certain functional
equations, which turn out to yield the equations of the calculus of probabilities. This
result sheds new light on an old controversy; namely, the 'meaning' of the concept
'probability'. Because these equations are obtained by design, the interpretation of the
function p is clear.

In the notationp(»\E), p is 'an encoding of knowledge about •'. E represents the
knowledge to be encoded. Only a measure which obeys the above two equations can be
used as an encoding to satisfy the desired criteria.

The definition of/», due to Cox, is free of two limitations. On the one hand, it is not
defined by reference to physical objects such as balls in urns or frequency of numbers
in the toss of dice. On the other hand, it is not developed as an 'element on a measure
space', devoid of all reference to anything but mathematical context. In no sense
do we wish to minimize the importance of being able to put mathematical probability
properly in perspective with respect to the rest of mathematics. But if we are to say
what we 'mean' by 'probability', we must go beyond merely stating the mathematical
properties of the function />(

The interpretation '/> is a numerical encoding of what the evidence E implies'
is critical to all that follows.

If we take the Cox interpretation of /» as fundamental and general, the question
naturally arises : What are the rules for translating a statement E (normally made in a
'natural' language) into an assignment of a set of numbers represented by/»? This question

is the central task of statistics.
Jaynes' principle enters as a synthesis of Cox's result, just given, and Shannon's

result in communication theory. If the knowledge E has been encoded as a set of p's,
the measure S indicates how much is yet left to be learned.

S -kZPtlnp, (3)

Proofs of the uniqueness and generality of S abound [2, 4, 28].
What interests us here is that Shannon's measure uniquely measures the

incompleteness of the knowledge represented by E. If E were complete, the knowledge
would be deterministic; i.e., would leave no residue of uncertainty. When E is
deterministic the calculus reduces to sets of p's which are either 0 or 1 and the logic becomes

purely deductive rather than inductive. For cases in which E is incomplete, Jaynes
proposed, therefore, the principle of minimum prejudice as follows [6, 7] :

The minimally prejudiced assignment of probabilities is that which maximizes the

entropy

S -kZPtlnpt (A)

subject to the given information
The particularization of this principle for any field of inquiry depends upon the
information to be encoded (i.e., upon E and the set Aj). In common parlance we say the
uncertainty measure has to be applied to a well-defined question (which At is true?)
and well-defined evidence (E). Statisticians say 'define the sample space'; thermo-
dynamicists say 'define the system'. Both are saying the same thing, i.e. define the set
Af and be explicit about the experiment (E).

The entropy of Clausius becomes a special case of Shannon's entropy if we ask
the right question. The question is put in the following form: suppose an observer
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knows he is dealing with a system in a volume V which may be in a quantum state '»'
characterized by Nal particles of type a, Nbi particles of type b, etc., and an energy
e(. He knows his instruments are too crude to say precisely what et, Nat, Nbi, etc.,
truly are. All he can usefully observe are the repeatable measurements on e,, Nai, Nbi,
etc.

To apply Jaynes' principle requires the definition of the set of all possible answers.
For the system postulated the question is therefore :

Q Tn what quantum state is the system? (V is given)'

The set of possible answers is :

At Tt is in the ith quantum state, for which the energy is et, the number of
particles of type a is Nal, the number of particles type b is Nbl, etc'

For illustration in this paper we shall confine our attention to systems in which
electricity, magnetism and gravity play no part. The generalization to these phenomena
has been given [6, 7, 26].

According to the Cox-Shannon-Jaynes development, the observer should 'encode'
his knowledge in a probability assignment. We identify the 'repeatable measurements'
with a mathematical 'expectation' for within the theory no other quantity can be so
identified. The knowledge, E, therefore, is encoded by maximizing

S -k2PArypt (4).

subject to

2£< 1 (5)

2 A«i-<«> (6)

2PtUci <NA c a,b,... (7)

where />, is the probability that the system is in state i.
By the usual mathematical methods we find

Pt exp(-ß - ßt, -xaNat-xbNb(-...) (8)

which is recognized as Gibbs Grand Canonical Distribution. The application of Jaynes'
principle has served to introduce three new constructs, represented by Q, ß and the
set {ac}.

The system of four equations above may be used to replace the set of probabilities
and thereby exhibit a set of necessary and sufficient relations among the four constructs
S,Q,ß,{xc}.

s Q + ß<ey + Zxc<Ncy (9)
c

Q ln 2 exp(-ße, -2«cNe\ (10)

dQjdß -(e> (11)

dQjdxc-.—<iVc> (12)

Two things should be pointed out here. First, there has been no real use of physics.
Thus far <e> and <iVc> have been defined only by identifying them with 'repeatable'
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measurements of energy and composition without saying what 'energy' and 'composition'

are. The mathematical results should be familiar to all who have studied
statistical mechanics and their extension to more general cases should be obvious. Since
we have not introduced or made use of any of the properties of energy or the particles,
the results are all due to the rules of statistical inference inherent in the Cox-Shannon-
Jaynes formulation. There is no reference to ensembles, heat baths, 'thermodynamic
systems of which ours is an example drawn at random', etc.

This feature of being able to separate clearly which results are due to statistics
and which are due to physics is a particular advantage in the information theory
approach. The statistical quantities /»,, S, <e> and <[NJ> generated Lagrange multipliers
Q, ß, {xc} independent of the physical properties associated with <e> and (NJ); the form
of the four equations given comes only from the general procedure for inference laid
down by Jaynes. That principle comes from logic; not reasoning about physical
systems.

To describe the physical behavior of S, Q, ß and {<xc} we have to define the rules
for changes in <e> and <iVc>, i.e. put physics into the description. This has been done,
for example, in Ref. [26].

The detailed derivation is given in the references. We quote only some general
results to illustrate that the maximum entropy encoding of knowledge about the
system of volume V to which we attach expectations <e> and (NA leads to the concepts
associated with classical thermodynamics.

In this derivation the zeroth, first, second and third laws become consequences,
not premises. Such a conclusion is indeed far reaching and it is no wonder the idea has
been resisted for the dozen years since it was first put forward [10].

The properties of the Grand Canonical Distribution were first given by Gibbs
who referred to his distributions as 'analogues' [24]. Denbigh [33], in his famous
textbook on thermodynamics, also makes it quite clear that his statistical descriptions are
analogies to classical thermodynamics. All workers who have dealt with statistical
mechanics without basing their work squarely upon Shannon's information theory,
as used by Jaynes and Cox, have either been silent on the connection between Clausius'
entropy and the statistically defined entropy or been careful to disclaim any necessary
connection between the two.

The important clue to understanding why the results given are more than a mere
analogy is the recognition that we are actually defining that elusive state called
'equilibrium'. In this treatment, the encoding and all deductions from it, are valid only for
those systems for which 'repeatable' measurements on ef and Nct are possible and for
which knowledge of <e) and <[NJ> are sufficient to define the macrostate of the system in
volume V. We can use the derivation to describe the mathematical properties of this
state, which we call 'equilibrium', i.e. how changes occur on passage from one equilibrium

state to another, how two or more systems interact, etc. These results are valid
for systems which satisfy the premises of the theory, i.e. for which 'equilibrium' exists.
It remains for experiment to decide if there exist states of physical systems for which
the premises can be met. Such a situation is quite common in physics. For example,
in mechanics it is postulated that in a 'Newtonian frame' : force mass x acceleration.
The question of whether Newtonian frames exist or if a particular frame of reference
is Newtonian is settled by seeing if all the deductions from 'force mass x acceleration'
are satisfied.

This circularity in all physical theories is usually glossed over in the education of
physicists. It is the subject of very careful scrutiny in Norwood Hanson's illuminating
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inquiry into theory building [34]. It is in a similar way that the general rules of inference
(the maximum entropy encoding) are used to develop a description of 'equilibrium'.
Mathematical relations are shown to be a consequence of the encoding process ; behavior
consistent with these equations proves that 'equilibrium' exists.

It is not generally understood that the concept of equilibrium is ill-defined in
the literature of classical thermodynamics just as 'Newtonian frame' was glossed over
in pre-relativity days. Attempts to define equilibrium, when they are made at all,
are usually based on the idea of waiting for a long time. This idea of waiting a long time
is not useful. Geological samples from the earth's interior have been found to be in
thermodynamic disequilibrium. If substances that have been around for times comparable

to the life of the earth are not in equilibrium, surely 'waiting' doesn't guarantee
equilibrium. The proof of disequilibrium is the failure of the material to satisfy the
phase rule. And the phase rule is, of course, a consequence of thermodynamics.

There is no way out of the dilemma that equilibrium is defined via thermodynamic
constructs which constructs were in turn defined for the equilibrium state. We have no
way of telling if a system is 'at equilibrium' except by making experiments which rely
on the constructs which are defined by the theory of equilibrium. It is this dilemma
which has inspired the comment 'there is no such thing as an immaculate perception'.
What we see does depend on what we think.

This is not a special weakness of the information theory approach. It is inherent
in the work of Gibbs, who defined equilibrium as the condition of maximum entropy.

The definition of 'equilibrium' thus given does not depend on the physics associated
with ef and Nci. Indeed, these symbols could stand for anything and the results would
satisfy the desiderata. In references [10] and [27] it is demonstrated that the needed
physics is obtained by introducing the following ideas:

1. The e( are additive, conserved.
2. The €j depend on i and the dimensions which determine V.

From these ideas and the previous equations we may derive all the known relations of
classical thermodynamics.

Because the information theory's simplicity and freedom from such artificial
constructs as ensembles, heat baths, etc., enables us to keep separate which results come
from physics and which from statistics; important differences, often lost in non-
information theory treatments are kept in the foreground. For example, irreversibility
is traced to the difference between 'force' and 'expected (or equilibrium) force'. There
is maintained a distinction between the principle of conservation of energy (a
deterministic addition of energies of Newtonian systems) and the First Law of
Thermodynamics (a statistical treatment of energy). The roles of ß(=l/RT) in diffusion of
energy and of x(= —pjRT) in diffusion of particles are seen to be identical.

Heat is usually treated as a pre-existing idea to be 'explained' by physics. In the
information theory treatment it is seen that someone who believes in the principle of
conservation of energy (and who wishes to retain consistency in his ideas) must invent
the concept of heat if he tries to make statistical descriptions. In this treatment entropy
is taken as primitive and heat derived from the resulting statistical descriptions. Also,
heat is introduced without the need to define it in terms of temperature or adiabatic
walls (and not developed as if 'adiabatic' were understood before heat)!

The information theory treatment thus inverts the usual procedure, in which
heat, temperature, and work are taken as primitive, and in which energy and entropy
are derived. This break in tradition is hard to accept for those steeped in a tradition that
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treats the laws of thermodynamics as though they were 'discovered' by experimentalists
who knew instinctively about heat, temperature, work, equilibrium and equations of
state. But the laws of physics are not 'discovered', they are 'invented' or - better yet
- 'designed' according to criteria such as :

1. Consistency
2. Freedom from Ambiguity
3. Universality
4. Honesty

and are, therefore, constrained to the same results as produced simply, elegantly and
directly by the information theory approach.

The information theory approach tells us why our ancestors had to invent temperature,

heat, and reversible processes. It elucidates the 'paradoxes' of Szilard, Gibbs
and many others. But most of all, it unifies.our understanding of many phenomena.
And it does so by showing that the entropy of thermodynamics is but a special case of
the entropy of information theory.

III. Critique of Jauch and Baron's Discussion of Szilard's Thought Experiment

We definitely do not follow Jauch and Baron in their rebuttal of Szilard's
argument. We understand the question as follows :

1. A matter of semantics. Jauch and Baron borrow from von Neumann the statement

that 'in phenomenological thermodynamics each conceivable process constitutes
valid evidence, provided that it does not conflict with the two fundamental laws of
thermodynamics', and then add from their own that 'If an idealization is in conflict
with a law that is basic to the second law, then it cannot be used as evidence for
violation of the second law'.

It is certainly obvious that a self-consistent theory (and macroscopic, phenomenological

thermodynamics is a consistent theory) cannot be criticized from within.
But this does not forbid the production of thought experiments based on knowledge
from outside the domain of the theory in order to criticize it. In his criticism of Aristotelian

mechanical conceptions Galileo largely used thought experiments based on
information that was at hand to everybody, but was outside the realm of Aristotelian
physics.

The very concept of bouncing point molecules, and of pressure as integrated
momentum exchange per sec cm2, certainly is outside the domain of phenomenological,
macroscopic, thermodynamics- not to speak of the consideration of one single molecule,
and of learning in what half of the cylinder it is found.

Therefore, let us imitate Socrates in his criticism of Zeno, and proceed.
2. With Jauch and Baron, let us not get involved in quantum subtleties, but

instead use the point particle concept of classical mechanics and of the classical kinetic
theory of gases.

Let us first discard Jauch and Baron's large heat reservoir; we will bring it in
later on.

There is no question that if Szilard's single molecule is (nineteenth-century
language) or is known to be (post Szilard and Lewis language) in one definite half of the
cylinder, the entropy of the single molecule gas is smaller than when the molecule is
allowed to move all through the whole cylinder. If the transition from one state to the
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other is secured by opening the door in the piston, then the entropy of the gas inside the
cylinder increases by &Ln2.

Does this statement contradict the classical thermodynamical statement that
(in Jauch and Baron's terms) 'The entropy of the... system piston, gas... remains
constant because it is closed and the changes are reversible'? In fact it does not, because
the mere (frictionless) opening of the door entails an 'irreversible' change. Though
energetically isolated, our (limited) system is not informationally isolated. However, with
this distinction, we are certainly stepping outside the domain of classical
thermodynamics.

As a result of opening the door, the pressure inside the cylinder falls down to
one-half of what it was ; this is because the molecule, while retaining by hypothesis its
kinetic energy, now spends only half of its time in each half of the cylinder. Whence the
classical expression for the change in entropy. (Note that while the molecule is not
'aware' that the door has been opened, the observer is, hence the entropy increase is
computed as of the opening of the door.)

3. Jauch and Baron write: "However, at the exact moment when the piston is
in the middle of the cylinder and the opening is closed, the "gas violates the law of Gay
Lussac because it is compressed to half its volume without expenditure of energy. We
therefore conclude that the idealizations in Szilard's experiment are inadmissible in
their actual context."

Socrates' walking and walking certainly was inadmissible in the context of Zeno's
arguments. Nevertheless he could walk. If, by definition, our single molecule is a
Newtonian point particle, nothing on earth can prevent us from suddenly closing our
frictionless, massless, impenetrable door, and learning afterwards in what half of the
cylinder we have trapped our molecule. There is absolutely nothing self-contradictory
in this, not even the idealized concept of the door, which can be approached at will
without even contradicting classical thermodynamics.

Moreover, no classical thermodynamicist would object to the reversed procedure:
opening the door. This is adiabatic expansion, the subject of an experiment by Joule.

Why then had we termed adiabatic expansion an 'irreversible' process, and are we
now speaking of it as time symmetric to the process of trapping the single molecule by
closing the door? Because macroscopic irreversibility is one thing, and microscopic
reversibility another thing, which have to be reconciled. It would lead us too far astray
to delve here in this problem; we simply refer the reader to a recent discussion of it in
terms that are consonant to those we are using here [35].

4. Finally we bring in Jauch and Baron's pulleys, strings and scales, which will
restore the macroscopic irreversibility of the whole process.

From now on, as soon as we suddenly close the door, we do not allow the (single
molecule) gas to expand adiabatically: we harness it, and have it lift (reversibly) a

weight. This will cause its temperature to drop down, so that the heat reservoir becomes

extremely useful if we want to lift many weights. So we bring it in also.
And now the whole system, supposed to be isolated, undergoes a (macroscopically)

reversible change, so that its entropy remains constant.
However, potential energy has been gained at the expenditure of heat so that, at first

sight, there is something wrong in the entropy balance. What are we overlooking?
We are overlooking that the observer has to know, that is, to learn which way

the piston begins moving, and then push a weight on the right scale. This is his free
decision, in accord with the general decision he has made, to use the heat in the reservoir
for lifting weights. However, we are not delving here in a discussion of the twin Aristotelian

aspects of information: cognizance and will [36].
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Suffice it to say that, in order to have the entropy balance right, we must include in
it the information gained by the observer. But this was Szilard's statement.

5. Finally, together with Brillouin [4] and others, Jauch and Baron point out
rightly that the preceding 'system' can be transformed into a 'robot', the functioning
of which, however, will require drawing negentropy from an existing source, by an
amount at least as large as the negentropy created by lifting the weights.

The point is that the robot does not just step out of nowhere - no more than does a
refrigerator or a heat engine. This brings into the problem Brillouin's 'structural
negentropy', also Brillouin's 'information contained in the expression of the physical
laws' that the engineer has used, and, finally, the problem of all the thinking and
decision-making on the engineer's part.

In other words, if you push information out of the door by appealing to the robot,
then it will come back right through the adiabatic wall.

6. Concluding this section, we believe that, while it is possible, and very informative,
to deduce Thermodynamics from a general theory of Information, the converse is not
possible. Thermodynamics is too rooted in specifics of physics to produce a general
theory of information.

But this is a mere instance of the way scientific progress goes on...
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