Entropy, information and Szilard's paradox

Autor(en):  Jauch, J.M./Baron, J.G.

Objekttyp:  Article

Zeitschrift:  Helvetica Physica Acta

Band (Jahr): 45 (1972)

Heft 2

PDF erstellt am: 11.05.2024

Persistenter Link: https://doi.org/10.5169/seals-114379

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-114379

Helvetica Physica Acta
Vol. 45, 1972 Birkhéuser Verlag Basel

Entropy, Information and Szilard’s Paradox

by J. M. Jauch

Dept. of Theoretical Physics, University of Geneva,
and Dept. of Mathematics, University of Denver

and J. G. Baron

Rye, New York
(15. XII. 71)

This essay is presented in homage to Professor Markus Fierz, whose long-standing
interest in statistical physics is well known, on the occasion of his 60th birthday.

Abstract. Entropy is defined as a general mathematical concept which has many physical appli-
cations. Itis found usefulin classical thermodynamics as well as in information theory. The similarity
of the formal expressions in the two cases has misled many authors toidentify entropy of information
(as measured by the formula of Shannon) with negative physical entropy. The origin of the confusion
is traced to a seemingly paradoxical thought experiment of Szilard, which we analyze herein. The
result is that this experiment cannot be considered a justification for such identification and that
there is no paradox.

1. Introduction

There is a widespread belief that the physical entropy used in thermodynamics is
more or less closely related to the concept of information as used in communication
theory.

This thesis has been made precise and explicit, primarily by Brillouin [1], who is of
the opinion that both concepts should be united by identifying information (suitably
normalized) by establishing an equivalence relation with negative physical entropy
(called ‘negentropy’ by him), which then together satisfy a generalized principle of
Clausius.

This point of view, however, is not universally accepted by those physicists who
have thought about the question. We quote here as an example an explicit denial of such
identification, by ter Haar [2], who writes in his textbook on statistical mechanics:

‘The relationship between entropy and lack of information has led many authors,
notably Shannon, to introduce “‘entropy’’ as a measure for the information trans-
mitted by cables and so on, and in this way entropy has figured largely in recent
discussions on information theory. It must be stressed here that the entropy intro-
duced in information theory is #of a thermodynamic quantity and that the use of
the same term is rather misleading. It was probably introduced because of a rather
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loose use of the term ‘‘information’.
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We want to elaborate ter Haar’s point of view and discuss the reasons why we
believe that the two concepts should not be identified. '

One can trace the origin of this identification to a paper by Szilard [3], published in
1929, which discusses a particular version of Maxwell’s demon and an apparent violation
of the second law of thermodynamics.

The emphasis in that paper is on the intelligence of the ‘demon’, who, by utilizing
the ‘information’ gained by observation of the detailed properties of a thermodynamic
system, could use this information for the manipulation of a macroscopic gadget which
could extract mechanical energy from the fluctuations of a thermodynamic system and
thus produce a perpetuum mobile of the second kind.

Szilard based his version on a remark by Smoluchowski which was published in the
latter’s lectures on the kinetic theory of matter [4]. Smoluchowski said, ‘As far as our
present knowledge is concerned there does not exist a permanently working automatic
perpetuum mobile in spite of molecular fluctuations, but such a contraption could func-
tion if it were operated by intelligent beings in a convenient manner . . .’ (italics ours).

This statement seems to imply that the second law of thermodynamics could
somehow be violated in the presence of intelligent beings and that this possible violation
would be associated with the acquisition and retention of knowledge by such beings.
It is with this in mind that Szilard contructed his thought experiment.

Although in a subsequent passage, Smoluchowski expressed considerable doubt
(‘recht zweifelhaft’) about this possibility, Szilard proposed to elucidate the conjec-
tured role of the intelligent being in creating the uncompensated entropy decrease. He
described an idealized heat engine that seemingly functioned with continuous decrease
of entropy. In order to save the second law, Szilard conjectured that the intelligent
being (we shall call him ‘the observer’) must perform measurements in order to operate
the engine, and that this process is in principle connected with a compensating increase
of entropy.

We shall discuss Szilard’s thought experiment in section 4 of this paper. Here we
merely point out that this experiment provoked much discussion and, in our opinion,
misinterpretation. We mention in particular the discussion by von Neumann [5], who
transferred considerations of this kind into the realm of quantum mechanics with
reference to the measuring process.

Many aspects of the measuring process in quantum mechanics are still controver-
sial. Szilard’s conjecture mentioned above has led many commentators [6] to believe
that the measuring process in quantum mechanics is connected in an essential manner
with the presence of a conscious observer who registers in his mind an effect, and that
this conscious awareness is responsible for the oft-discussed, paradoxical ‘reduction of
the wave packet’.

We expect to show that the presence of a conscious observer in Szilard’s experiment
is not necessary ; he can be replaced by an automatic device with no consciousness at all.
Interestingly, Szilard noted this himself; toward the end of his paper, he concluded:

‘As we have seen with this example, a simple, inanimate device can do exactly the
same, as far as the essentials are concerned, as the intervention of an intelligent
being would accomplish.’ |

It is strange that Szilard seemed not to realize that an automatic version of the
intelligent observer contradicts the conclusion of Smoluchowski, according to which
such mechanisms are not possible. As a matter of fact, the solution of the paradox in the
case of the living observer is the same as that which Smoluchowski indicated for the



222 J. M. Jauch and J. G. Baron H. P. A.

explanation of the mechanical demon: The demon is himself subject to fluctuations,
just as the system which he tries to control. To use a medical analogy, the demon who
wants to operate the molecular trap is like a patient with a severe case of Parkinson’s
disease trying to thread a fast-vibrating needle!

We shall not question the analysis of the problem given by Smoluchowski; we shall
consider this aspect of the problem as solved. From this it follows that Szilard’s conjec-
ture is not proven by his experiment.

2. The Classical Notion of Entropy

Entropy as a basic notion of science was introduced by Clausius to summarize
thermal behavior of systems in equilibrium or changing in reversible fashion in the
second principle of thermodynamics.

Boltzmann [8] and Gibbs [9] defined entropy of non-equilibrium states and entropy
changes of irreversible processes in purely mechanical terms. Their theory was more
general; it also explained how the same thermodynamic process can be irreversible
from the phenomenological point of view—and completely reversible from the purely
mechanical point of view. This paradoxical situation was cleared up by statistical inter-
pretation of thermodynamic entropy.

Increase in generality resulted in some ambiguity of the notion of entropy. The
reason for thisis that in any statistical consideration a more or less arbitrary model must
be used. Expressed differently, the system may be described at different levels (see
H. Grad [7]).

We shall return to the significance of these ambiguities later in this section. First
we briefly review some special features of the statistical interpretation of thermo-
dynamic entropy.

In thermodynamics one may specify a homogeneous thermal system by a certain
number of extensive variables x,, . . . x, which usually have a simple physical interpre-
tation (volume, surface, magnetic moment, etc.).

The generalized forces yy, . . . y, associated with these variables are homogeneous
functions of them, such that the element of work 84 delivered by the system to the
surrounding is related to the differentials dx,.(» =1, ... n) by

84 = y,dx, 1)

r=1

Mathematically, (1) is a differential form defined on an open region of R", the Euclidean
space of #» dimensions.

The first principle of thermodynamics which expresses conservation of energy for
a conservative system states that for an adiabatic system (that is, a thermally isolated
system), this differential form is total. That means that there exists a function
U(x,, . .. %,) of the extensive variables x,, which is itself extensive, such that

SA = —dU (2)

Physically interpreted, this equation says that the work delivered to the outside by an
adiabatic system is exactly compensated by the loss of internal energy.

If the system is not adiabatic, then equation (2) is no longer true and must be
generalized to

8Q = dU + 84 (3)
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where now 8Q is the differential of the amount of heat added to the system in a reversible
manner.

We may consider equation (3) as a new differential form in # + 1 variables where
U = xy may be defined as the new variable. Each of the generalized forms v, is then a
function of all the variables Xg, Xys v+ s K

The differential form (3) is of a special kind which admits an mtegratmg factor
T (%q, x4, . . . x,) such that the form

80

. @
is the total differential of an extensive function S(x,, %4, . . . %,). This function is the
entropy and the integrating factor (suitably normalized) is the absolute temperature of
the system.!)

The second principle of thermodynamics says that in a spontaneous evolution of a
closed system not in equilibrium, the entropy always increases and attains its maximum
value for the state of equilibrium.

Definition (4) determines the thermodynamic entropy only up to a constant of
integration.

Boltzmann'’s statistical definition is given by the famous formula,

S=kInW | (5)

where W represents a probability for the system specified by the thermodynamic
variables based on some appropriate statistical mode. This formula was apparently
never written down by Boltzmann; yet it appears on his tombstone and indeed is one of
the most important advances in statistical physics. For the practical application of this
formula, one usually goes through the following procedure:

a) Oneassumes (explicitly or implicitly) an a priori probability. In phase space of a
classical system it is given by a convenient selection of a volume element.

b) One then imposes constraints in agreement with a certain number of external
parameters characterizing the thermodynamic state of the system.

c) One then calculates the probability of such constrained systems on the basis of
the a priori probability field assumed.

d) Finally, one calculates a maximum value of this probability under the assumed
constraints to obtain an expression for W.

The W thus calculated is in an arbitrary normalization. This arbitrariness corre-
sponds to the constant of integration for the thermodynamic entropy S.

Boltzmann’s theoretical interpretation of the entropy gives immediate insight
into two important properties which are characteristic for the thermodynamic, and,
as we shall see, for all other forms of entropy. They are:

a) Extensity

If there are two independent systems with their respective probabilities W, and
W,, then the joint system has a probability

W = Wl WZ' (6)

1) Itseems not to be generally known that the existence of the integrating factor, hence the exist-
ence of the function entropy, is a consequence of the first principle of thermodynamics for
conservative systems under reversible quasistatic variations. This was discovered by T.
Ehrenfest [12]. A new proof of this statement will be given in a subsequent publication.
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Hence
S=S,+S,="FkIn(W,W,). (7)

b) Maximum property

Any system outside the equilibrium state will have a probability W < W, the
equilibrium probability.
Hence

S—kInW < klnW,=S5,, (8)

since In W is a monotonic function.

The arbitrariness in the definition of W, and thus the ambiguity of S, is brought out
explicitly if we turn now to the definition for W used by Boltzmann and others in the
derivation of the so-called H-theorem.

Here one considers the phase space I" of a classical system endowed with a prob-
ability measure p(P), P € I'. p(P) is assumed to be a positive function, normalized by

[ p(Pra@ =1 (9)
r

and interpreted to represent the probability of finding the system at the point P in
phase space. We have written df2 for the volume element in phase space.
One can define a quantity n =1Inp and its average

o= fplnpd.Q=ﬁ (10)
r

and one can then show that this quantity reaches its maximum value under the sub-
sidiary condition

fepd.Q = E = constant (11)

provided it has the form of the canonical distribution
p = =10, (12)

However, the quantity o is a constant under the evolution in time. This is true for any o
of the form (10) for any p.

One obtains a more suitable statistical definition for the entropy if one uses the
process of ‘coarse-graining’. Physically, this corresponds to the process which one would
use for describing a system, the state of which is incompletely known. It is carried out in
the following manner:

One divides the phase space into a certain number of cells with volume £, and
defines

1
P =— as.
i Q, f P
Q!

It follows then that

SPQ =1
i
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The coarse-grained density is defined as

and
ZE;P‘IDP,.{J{= fPlnPd.Q.
r

Hence
S_InP.

One can then prove that > is a decreasing function in time, reaching its minimum value
for the canonical distribution provided that the mean energy is kept constant.

This suggests that —%> could be identified with the thermodynamic entropy when
the system is away from equilibrium.

This result shows quite clearly that there are several ways of defining and inter-
preting statistical entropy. The arbitrariness is connected with both the assumed prob-
ability field and with the nature of constraints used in the coarse-graining process. Both
Boltzmann [8] and Gibbs [9] were aware of these ambiguitiesin the statistical interpreta-
tion of thermodynamic variables. Boltzmann says, for example:

‘I do not believe that one is justified to consider this result as final, at least not as
long as one has not defined very precisely what one means by the most probable
state distribution.’

Gibbs is still more explicit:

‘It is evident that there may be more than one quantity defined for finite values of

the degrees of freedom, which approach the same limiting form for infinitely many

degrees of freedom. There may be, therefore, and there are, other quantities which

may be thought to have some claim to be regarded as temperature and entropy with
- respect to systems of a finite number of freedoms.’

As an example of two different ways of interpreting entropy, we mention the mix-
ing problem discussed by Gibbs.

If a blue and a red liquid are mixed, there will result after a while a purplish mixture
which cannot be unmixed by further agitation.

In this case the statistical entropy increases if the coarse-graining size is much
larger than the average size of the volume element that has a definite (unmixed) color.
On the other hand, the statistical entropy remains constant if the volume element hav-
ing a definite color is much larger than the coarse-graining size. Only on the molecular
level, e.g., in the diffusion process of two different gases, can this entropy be related to
thermodynamic entropy; it increases in the diffusion process by

S=Rlog2,

provided that the volumes of the two kinds of gases are equal. The so-called paradox of
Gibbs results from the confusion of two different kinds of entropy, based on different
statistical models.

All that we have said in this section has been said before. Nevertheless, we felt
reiteration useful to emphasize the polymorphic nature of statistical entropy. It is pre-
cisely this non-uniqueness which makes the concept so versatile.
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3. The Definition of Entropy as a Mathematical Concept

In this section we will define the notion of entropy in an abstract setting without
reference toits interpretations. It will be seen that a suitable definition will immediately
reveal the range of its applications to a variety of situations, including thermodynamic
entropy and the notion of ‘information’.

Before proceeding with the formal definition, let us give a heuristic description of
what we seek in order to achieve sufficient motivation for the mathematical definitions.

We wish to establish between two measures a relationship which represents a
quantitative expression for the variability of one with respect to the other. As an ex-
ample, let us consider the probability of the outcome of one of two alternatives, head or
tail in flipping a coin. If the coin is ‘true’ then the a priori probability for either of the
two eventsis . However, if the experiment is made and the coin has been observed, then
this probability is changed and is now O for one and 1 for the other event. The observa-
tion, or the specification, has restricted the variability and as a result a certain quantity
which we wish to define—entropy—has decreased.

This quantity should have the property that it behaves additively for independent
events, so that if the coin is flipped twice, then the entropy for the two observations
should be twice that for one. As we shall see, these properties determine the quantity
almost uniquely.

Proceeding now to the formal definition, what we need first of all is a measure space;
by this we mean the triplet (X,.%,u) where X is a non-empty set, % a collection of
subsets of X, and p a normalized finite measure on . We assume that the subsets of &
are closed under the formation of complements and countable unions (hence also
countable intersections), and we call such a collection a field of subsets.

The measure p is a positive, countably additive set function defined for the sets of
& such that

p(X)=1, u(@)=0 (o =nullset).

Let S € & be such that u(S) =0, then we say the set S has y-measure zero. Two
different measures p and v on & are said to be equivalent if they have exactly the same
sets of measure zero. We write u ~ v so that

g~ v <> {u(S) = 0 = v(S) =0},

A more general concept is absolute continuity. We say u is absolutely continuous
with respect to another measure v if

v(R) =0 = R is p-measurable and u(R) =0.
We then write
TR R
The relation o« is a partial order relation between different measures since

B
2. pecv and vep=pxcp

i

Two measures are equivalent if and only if u «« v and v « p.
A function f on X is called L! (v) if it is measurable with respect to v and if

f|f[dv<oo.
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It is convenient to identify functions which differ only on a set of measure zero with
respect to a measure ». In this case we write for two such functions

fi=/fae [v].

where a.e. stands for ‘almost everywhere’.
For any measure v and fe L! (v) (f> 0 a.e. [v]) we can define a measure u, by
setting

pr(R) = [ fav (13)

and it is easy to verify that u, <.
More interesting is the converse, which is the content of one of the Radon-Nikodym
theorems [10].

If u o« v then there exists a uniquely defined f > 0 a.e. [v] and f € L' (») such that
= ey

The function f so defined is called the Radon-Nikodym derivative and is often written
as

ap .
Fmr (14)

If X, and X, are two measure spaces with measures p, and u,, respectively, then
we can define the product measure u;, on X; x X, as follows: On every set of the form
S, xS, with S, € &, and S, € &, we set

P12 (St X Sy) = py (Sy) pa (S7).

There is then a unique continuation of this measure by additivity to the field of all sets
generated by the sets of the form S| x S,. This is called the product measure.
If gy < v; and p,c v, then one can prove that

dpyz  dpy dp,
1 = l =f1f2.
dvy, dvy dv,

We have now all the concepts needed for the definition of entropy. If u < v and
f=du/dv we define entropy of u with respect to v by

M2 <vy; and f, =

H(u,v) = j flnfdy. (15)
It has the following properties
1. H(p,p)=0.

2. H(p,v)=>0forp .
3. H(piz,viz) = H(py, vi) + H(py, v).
We verify them as follows:

1. is obvious, since f=1 for u=v,
2. we prove as follows: Let f=1 + ¢. Since

Jdp=!%dv=l=!dv
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it follows that [$dv = 0. Therefore

0= ffln(f—¢)dv=ff1nf(1—?}-)dv

¢
= | fiInf+ fln(l ——)dv
Jress [l
Here we use the inequality

m(l_f)<i
fl f

so that the second term is

ffln(l—if%)dvg—fwmo.

Thus we have verified
0< f finfdv
3. follows from the definition f,, = f, f, and Fubini’s theorem:

[rrm(if)dvia= [ fify (nfy +1nfy) dvy dv,
= [ finfidv, + [ fylnfydv,

= H(py,v1) + H(uy, vy).

We illustrate the foregoing with a few examples:

As a first example we consider a finite sample space X consisting of # objects. For
the a priori measure v we choose the value 1/# for each element of X. The family of sets
& is the class of all subsets of X. The measure of any subset S with % elements is then
given by v(S) = &/n.

For the measure u we choose the value 1 on one particular element of X and zero
for all others. Let A denote this element and denote by B any other element of X.
We have then

1
viB)=— BelX, u(d)=1
n
p(B) =0 for 4 # B.

If S € ¥ is any subset of X and if #(S) = 0 then it follows that S = ¢. Therefore p(S) =0
also, and p is absolutely continuous with respect to v: u o« v. We can easily calculate the
values of the Radon-Nikodym derivative f = du/dv. It has the values

f(A)=n, f(B)y=0 for A+#B

where A is that particular element for which v(4) = 1.
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We obtain now for the entropy as we have defined it

H(u,v) = fflnfdv_zf ) Inf(B)- —=lnn | (16)

We observe that this is a very simple, special case of Boltzmann'’s formula, since »
can be interpreted as the number of ‘states’ which are contained in a set X of # elements.

One can generalize this example a little to bring it closer to the use of ‘entropy in
information theory’. Let us assume as before that the a priori probability on the
elements 4, of X has the value y(4,) =1/n (i =1, n). For the measure u, however,
we assume u(A4;) = p; where p; >0 and >7=1, pi = 1 The positive number p; repre-
sents the probability with which the element A; appears for instance in a message with
an alphabet of » letters. If p; = 1/n the message is completely garbled ; if it is =1 for one
A; and =0 for the others, it is clear. We consider now the intermediate case.

If v(S) = 0 for some set S € & then S = ¢; hence again as before u(S) =0 so that
p 1s absolutely continuous with respect to v:pu < ».

Furthermore

au

E" (4y) Ef(Aa) = np;.
14

This follows from the formula

ap
—dv=p(S
sfdvv p(S)

When we calculate the entropy in this case, we obtain
Hu,v) = an,ln(np) —=1nn—|—2p!1npi (17

This expression reaches its minimum value 0 for ; = 1/# and its maximum value In»
for py=1for k=1, p,=0 for k#1.

In information theory [11] one uses the quantity I = —>"_, p;Inp, as a measure of
the information contained in the one-letter message and we may therefore write

Hu,v)=Inn—1.

Our definition of entropy is therefore in this case, apart from a constant, Inz equal to the
negative entropy of the measure p with respect to v.

The abstract mathematical concept of entropy introduced here is at the basis of
numerous different applications of this notion in physics as well as in other fields. This
was recently emphasized by Grad [7]. Mathematicians use this concept as a versatile
research tool in mathematical probability theory.

As has been emphasized, the use of the word entropy should not lead to confusion
of the mathematical concept defined here with the physical concept of thermodynamic
entropy. The concept introduced here relates two measures, one of which is absolutely
continuous with respect to the other and has at this stage of abstraction nothing to do
with any particular physical system. The misleading use of the same word for mathe-
matical and for physical entropy is well-entrenched; it is now unavoidable. We use it
in the general sense; its special meanings should be clear from the context.
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4. Szilard’s Paradox

Many authors who have tried to identify thermodynamic entropy with information
(or rather, its negative) refer explicitly to the thought experiment of Szilard which
seemed to lead to a violation of the second principle of thermodynamics unless the loss
of entropy in the hypothetical experiment, so it is alleged, is compensated by a gain of
information by some observer. In this section we describe Szilard’s thought experiment
and present an analysis to show that it cannot be considered a basis for the alleged
identity and interchangeability of these two kinds of entropy.

In our description of Szilard’s thought experiment, we follow closely von Neu-
mann'’s version. We make only minor, physically irrelevant changes in the experimental
set-up to make it more convenient for analysis and to avoid extreme idealizations.

In the experiment, a rigid, hollow, heat-permeable cylinder, closed at both ends, is
used. It is fitted with a freely moveable piston with a hole large enough for the molecule
to pass easily through it. The hole can be closed from outside. All motions are considered
reversible and frictionless. The cylinder is in contact with a very large heat reservoir to
keep the temperature of the entire machine constant.

Within the cylinder is a gas consisting of a single molecule. At the beginning of the
experiment, the piston is in the middle of the cylinder and its hole is open so that the
molecule can move (almost) freely from one side of the piston to the other. The hole is
then closed, trapping the molecule in one half of the cylinder.

The observer now determines the location of the molecule by a process called by
Szilard ‘Messung’, meaning measurement. If it is found to the left of the piston (see
figure), the observer attaches a weight to the piston with a string over a pulley so that
the pressure is almost counterbalanced. He then moves the piston very slowly to the
right, thereby raising the weight. When the piston reaches the end of the cylinder, the
hole in the piston is opened and the piston is moved back to the middle of the cylinder,
reversibly and without effect on the gas. At the end of this process the starting position
has been reached, except that a certain amount of heat energy Q from the heat reservoir
has been transformed into potential energy A of the weight lifted.

Although Szilard does not mention this, obviously the same procedure can be used
if the molecule happens to be trapped on the other side of the cylinder after the closing
of the piston’s hole.

By repeating the process a large number of times (say, N), an arbitrarily large
quantity of heat energy Q = N4 from the reservoir is transformed into potential energy
without any other change in the system. This violates the second principle of thermo-
dynamics.

In order to ‘save’ the second law, Szilard assumes that the observation of the mol-
ecule, for determining in which half of the cylinder it is contained, is in principle con-
nected with an exactly compensating increase of entropy of the observer.

Before analyzing the experiment, a few remarks are in order concerning admissi-
bility of procedures in idealized experiments. In this we are helped by a statement of von
Neumann (p. 359 of his book, Ref. [5]): ‘In phenomenological thermodynamics each
conceivable process constitutes valid evidence, provided that it does not conflict with
the two fundamental laws of thermodynamics.” To this we add: ‘If an idealization is in
conflict with a law that is basic to the second law, then it cannot be used as evidence for
violation of the second law.’

Now this is precisely what is happening in the case of Szilard’s experiment. Obvi-
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ously, frictionless motion, reversible expansion and heat transfer, and infinitely large
reservoir are all admissible under these criteria. Even the single-molecule gas is admiss-
ible so long as it satisfies the gas laws. However, at the exact moment when the piston
is in the middle of the cylinder and the opening is closed, the gas violates the law of Gay-
Lussac because the gas is compressed to half its volume without expenditure of energy.
We therefore conclude that the idealizations in Szilard’s experiment are inadmissible
in their actual context.

It is of further interest to analyze that phase of the experiment during which the
hole in the piston is closed. This phase is almost a replica of the expansion phase of a
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Szilard’s thought experiment

Carnot cycle. Szilard believed that during this phase there is an uncompensated de-
crease in entropy, since during this interval the entropy of the heat reservoir decreases
while at the same time the entropy of the gas increases by the same amount. The entropy
of the entire system (piston, gas and reservoir) remains constant because the system is
closed and the changes are reversible. Thus there is nothing to be compensated for by the
alleged increase of entropy of the observer during observation.

Finally, and perhaps most importantly, there is an unacceptable assumption in
Szilard’s interpretation of his experiment. He believed that the observer must know
on which side of the piston the molecule is located in order that he may start the piston
moving in the right direction. This knowledge is unnecessary, as is the pushing of the
piston by the observer. The piston starts moving—under the idealized conditions of the
experiment—by the pressure of the gas.
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The automatic device, referred to in section 1, which can completely replace the
observer, could work as follows:

Near the mid-plane of the cylinder and on both its sides are electrical contacts in
its walls. When activated by the piston’s motion along them, they operate mechanisms
which attach a weight to the piston in whichever direction it moves. Thus a weight is
lifted and the engine performs work, without interference by a conscious observer.

5. Summary and Concluding Remarks

Entropy is a fundamental mathematical concept, which relates two measures on a
measure space in a certain manner.

The concept has many different applications, including thermodynamics (where it
was first discovered) and information theory. It is also applicable in quantal systems,
for example, and in random variables of any kind. The fact that entropy can be applied
to many fields is no excuse for confusing its different meanings when applied to physical
systems or mathematical constructions.

In particular, the identification of entropy of information (as defined by Shannon)
as equivalent with negative thermodynamic entropy is unfounded and a source of
much confusion. We have traced the origin of this confusion to the paradox of Szilard.
Analysis of Szilard’s paradox has shown specifically that:

1. Szilard’s experiment is based on an inadmissible idealization; therefore it can-
not be used for examining the principles of thermodynamics.

2. The observer needs no information about the location of the molecule at the
beginning of the experiment.

3. There i1s no uncompensated entropy change in the system during the expansion
phase of the experiment.

4. Thus, Szilard’s thought experiment does not work; it is no paradox; and has
nothing to do with information.

REFERENCES

[1] L. BRILLOUIN, Science and Information Theory (Academic Press, New York, N.Y. 1956).

[2] D.TERHAAR, Elements of Statistical Mechanics (Rinehart and Co., New York, N.Y. 1954, p. 161.

[3] L. SziLArD, Z. Phys. 53, 840 (1929).

[4] B. voN SmoLucHoOWwsKI, Vortrige iiber die kinetische Theorie deyr Materie und Elektyizitit
(Leipzig 1914), esp. p. 89.

[6] J. von NEUMANN, Mathematische Grundlagen der Quantenmechanik, p. 212 (1932).

[6] F.LonpoN and E. BAUER, La Théorie de I'Observation en Mécanique Quantigue, Actual. scient.
ind. 775 (Hermann, Paris 1939).

[7] H. GRAD, The Many Faces of Entropy, Comm. Pure Appl. Math. X1V, 323 (1961).

[8] L. BoLtzmANN, Collected Papers, No. 42, p. 193.

[9] W. GiBBs, Elementary Principles in Statistical Mechanics, Dover Press, p. 169.

[10] S. K. BERBERIAN, Measure and Integration (MacMillan & Co., New York, N.Y. 1962), esp.
p. 160 seq.

[11] C. L. SuanNoN and W, WEAVER, Mathematical Theory of Communication. (Univ. of Illinois
Press, 1949). :

(12] P. and T. EHRENFEST, The Conceptual Foundations of the Statistical Approach in Mechanics,
transl. from the German by M. T. Moravcsik (Cornell Univ. Press, 1959), esp. Preface to the
translation, by T. EHRENFEST-AFANASSJEWA. See also T. EHRENFEST, Die Grundlagen der
Thermodynamik (Leiden 1956); A. LANDE, Axiomatische Begriindung der Thermodynamik,
Handbuch der Physik I.X; A. H. WiLsoN, Thermodynamics and Statistical Mechanics (Cam-
bridge Univ. Press, 1960), esp. §2.5, p. 24 seq.



	Entropy, information and Szilard's paradox

