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On the Quantum Mechanical N-Body Problem1)

by Klaus Hepp
Seminar für theoretische Physik, ETH, Zürich, Switzerland

(13. IX. 68)

Abstract. Systems of a finite number of nonrelativistic particles are studied in the framework
of time-independent quantum scattering theory in the approach of Faddeev. For a non-empty
class of 2-body potentials, we shall prove the unitarity of the S-matrix and a singularity structure
of resolvent kernels and scattering amplitudes in the physical region, which is qualitatively the
same as in perturbation theory.

§0. Introduction

The investigation of quantum mechanical many particle systems has received
much attention in the recent past. The most developed framework is non-relativistic
wave mechanics which, apart from its importance for a correct description of vast
domains of natural phenomena, provides a very interesting testing ground for studying

general properties of quantum scattering amplitudes.
Two goals seem to be within reach in a rigorous treatment of the Schrödinger equation

for a Hamilton operator with short range forces : the proof of the unitarity of the
S-matrix and of maximal regularity. Maximal regularity is a concept of qualitative
dynamics (a field full of refreshing new results in classical mechanics [22]) : the N-body
resolvent kernels, in particular the scattering amplitudes, are expected to be as regular
as in perturbation theory augmented by some obvious "kinematical" singularities
connected with bound states. The smoothness of these amplitudes inyspace ("maximal

analyticity" in the best of all worlds), except for rescattering and threshold
singularities, would strongly support our space-time picture of wave mechanics as

expressed by the asymptotic condition and the cluster decomposition properties of
the scattering amplitudes. The use of quantum mechanical amplitudes, which are

only "kernels" of isometric operators in Hilbert space, is greatly facilitated if maximal
regularity holds, e.g. in the expression for cross sections or virial coefficients and, more
fundamentally, for the most natural proof of unitarity: we know from formal
scattering theory that non-relativistic quantum mechanics of finitely many particles
satisfies asymptotic completeness, once some mild regularity properties of the resolvent

kernels in the continuous spectrum allow the interchange of certain limits.
The central idea in the pioneering work of Faddeev [3] on the 3-body problem is

based on maximal regularity: highly connected products of 2-body amplitudes
become uniformly smooth in the physical region and allow to treat the singular limit in

*) Elaboration of lectures given at the 5 th Polish Winter School of Theoretical Physics at
Karpacz, February 1968.
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the scattering integral equations. Our investigation will systematically develop this
technique and prove the qualitative relevance of perturbation theory for multi-
particle processes and thus unitarity.

§ 1 Scattering Theory and F-Y Equations

This section will start with time-dependent scattering theory, mainly for illustrating

of the kinematics and dynamics of multichannel systems. Then we shall introduce
the Faddeev-Yakubovsky (F-Y) equations for the N-body resolvent and establish
the connection between time-independent and time-dependent scattering theory.

We study quantum mechanical N-body systems with a Hamiltonian H H° +
Vin~U L2(R*N) of the form

H° Z2Pm-- V= Z Vij(xi-Xj) (1.1)
i -1 ' K t < ; < .V

Vjj is real and in L2(R3), and therefore H is selfadjoint on the domain of H° [1]. All
particles are distinguishable, i.e. there is no non-trivial permutation of the particle
coordinates which leaves H invariant. The discussion of Fermi systems, in particular
a systematic low density expansion for infinite Fermi systems at F > 0, will be

treated in a separate paper.
The N particles are indexed by 1, 2, N. Let a 6 {1, N} denote any

subsystem with a Hamiltonian

Ha Hi + Ha, Ha =Hl+Va, Va Z Va¦ (!-2)
i, je a

Hi is the free Hamiltonian of the center-of-mass (CM) movement of o and Hi describes
the free movement in the relative coordinates within a (see Appendix A). If a
contains more than one element, let Ja {^"} be an orthonormal basis of the discrete

spectrum of Ha, where Ha \pna E" y>". Otherwise we retain one ipa 1 with Ea 0.

A channel At of i fragments is a set

^ {^67, !</<*} (1.3)

where at a(AA {ox, a,} is any partition of {1, N} into i non-empty sets.
The channel wave function is in compact notation

fA.= êyA{- (1-4)

A channel Hamiltonian HA. is defined on 'U by

HX-Z{^,+ E^ (L5)

and is in yspace a multiplication operator by EA.(p) (see App. A). There is only
one channel AN with AT fragments and energy E(p). For every partition at there is a
tensor product decomposition

U ?L. ® K (1.6)
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effected by introducing instead of px, pN the CM coordinates p(a}) and relative
coordinates p^af). Whenever there is no confusion we omit the number i of fragments
in a channel A Ai or a partition a a{.

The main result of time-dependent scattering theory is [2] :

Fheorem 1.1 : For VtJ e L2(R3) + L"(R3), 2 < p < 3, and all channels A

s-lim exp(i H t) exp(- i HAt) QÌ (1.7)
t—>±oo

exists on ïl A %A ® y>A. For all A 4= B, 1lBx _L "UA> where #" ®a Ua, ex ±.
The states QeA* fA ® y>A have physical interpretation as incoming (—) or outgoing

(+) scattering states. When propagated under exp(— i Ht), they have the free wave

packet exp(— iHAt) fA®fA with CM wave function/^ e Ha as "asymptote" in the
L2 norm for t -> + oo. The Q" are intertwining operators.

exp(- i H t) QAX Q™ exp(- i H°A t), (1.8)

and H is on HAX unitarily equivalent to HA. Thus the spectrum a(H) of H contains

the continuous spectrum of all HA HA — H":

o{H)Z) min ZE2>°°) IEC> °°). (1.9)
' i-i

The S-matrix is defined as isometric mapping from H+ © "UA onto M~ —

® Ua by
^

SQ+fA®y>A QAfA®yjA. (1.10)

We are interested in proving asymptotic completeness, i.e.

¦U=U+ U- (l.ii)
which insures the unitarity of S on "U.

The scattering amplitudes (0AfA ® v^» &ßgB ® Vb) are tempered distributions.
We shall show that there exist integral operators which contain all information about
the asymptotic observables of the system. From now on we shall stay entirely in the
CM system of {1, N} and write H for H, etc. Of central importance is the resolvent
R(z) (z - H)'1 which is holomorphic for z $ a(H). Let R0(z) (z - H0)'1. The
resolvent equation

R(z) Rq(z) + Rq(z) V R(z) (1.12)

uniquely characterizes (z — H)~x: if for some z $ a(H) a bounded operator R(z) : H ->
V(H°) satisfies (1.12), then [3] R(z) (z - H)"1.

For A^ 2 all regularity properties of the resolvent kernel can be deduced from
the Lippmann Schwinger equation

T(z) =V +V R(z) V =V +V Rq(z) T(z) (1.13)

(1.13) can for z $ [0, oo) be regarded as integral equation of second kind in L2(RZ) :

T(k, q, z) =v(k-q) + fdp v (k - p) (z - n p2)-1 T(p, q, z) (1.14)
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where v(k), the Fourier transform of V(x), is in L2 and v (k — p) (z — np2)-1 a Hilbert
Schmidt (HS) kernel. In particular, || V R0(z) \\HS < c (1 + | z \)~ö, ò>0, for
Re z < — 1. The Fredholm alternative applies. A solution g e L2 of the homogeneous
equation g V R0(z) g leads to an eigenstate h R0(z) g oi H with eigenvalue z.

Therefore (1.14) has a unique solution F(.,q, z) eL2, if z£cr(H). Actually F(z) R0(z)
(1 — V Rq(z))~W Rq(z) is as product of a bounded and a HS operator with

|j F(z) Rq(z) \\hs < c (1 + | z \)~ô for — Re z sufficiently large.
For N > 2 the correct generalization of the equations (1.13) has been derived

by Faddeev [3] and Yakubovsky [4]. Let o.k be a sequence of partitions

«* K «* + i, • • • %-i). where am D am + x, (1.15)

i.e. am + x is obtained from am by breaking up one of its groups. Let at (ax, aj)
and

i-i
V(aijai + x) V(ai)-V(ai + x). (1.16)

For any sequence a.k of partitions we define

Fak(z) V(ax_,) R(ax_x, z) V(akjak + X) (1 + R(z) V)

!""*(*) V(aN_x) R(aN_x, z) V(akjak + X) (1 + R(ak, z) V(ak)). (1.17)

These operators have a simple graphical characterization. For sufficiently small Re z,
the Born series converges : ^

F(z) VZ (Rq(z) V)". (1.18)

Any term V{J R0Vkl R0 Vmn is in 1-1 correspondence with a graph G G(ij,
mn), where N horizontal lines stand for particles 1, N and every Vrs is represented
by a vertical connection of the lines r and s in the order ij, mn from the left.
Ta*(z) is the sum of all graphs of F(z) with at least connectivity a.k, i.e. Vij V(aN_x),
then the next potential not connecting the lines i and j belongs to V(aN_2jaN_x) etc.

Similarly FXli(z) is the sum of all graphs in V(ak) + V(ak) R(ak, z) V(ak) with
connectivity a.k. By analytic continuation into the complement of a(H) one proves the
"cluster decomposition"

F(z) x r*"-1^) + • • - +Zfa'^) +2X2W
«iV-l a3 <*2

F°2(z) r2(z) + F°1(z).
We decompose 7 1(z) :

(1.19)

Fa\z) Fa2(z) Rq(z) V(axja2) (1 + R(z) V)=Tq"*\z) R0(z) t\z) (1.20)

Here the right-hand side is graphically defined as follows: Every graph G in F 1(z)

can be cut into two graphs, G Gx G2, where the leftmost potential in G2 is the first
potential from the left in G belonging to V(axla2). Gx contributes to T 2(z) and is equal
to G4 G3, if one requires that Gs has left connectivity ß3 and that the first potential
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to the right in G4, V(cN_x), connects b3 to a2, i.e. cN_x <t b3, cN_xC a2. Then G3G2

has the left connectivity ß2 with b2 4= a2 and contributes to T 2(z), and G4 enters in
Q«2%).

For two sequences xk, ßm define

?„ «*!—ß„= (cn, ck_x,a.k) (1.21)

as ak completed by all new connections arising from ßm in the order bN_x, bm.

Then [5] Q 2 2(z) is the sum of all graphs with left connectivity ak, 2 < k < N — 1,

and a rightmost potential V(cN_x), cN_x C ak, such that a.k I ß3 a2, cN^x <t b3, or in
formulis :

Q*2%)= £ fH(z)R0(z)V(cN_x)+ X Tak+\z)R0(z)V(cN^). (1.22)
afti—ßs -«2 «ft I— £3-«2

cA'-lC«/e,CV-l*63 «V-lCa/s.c.V-l + ^a.^ + l
In the sequel we shall use a instead of a2. An algebraic derivation of the F-Y equations
(A«ß(z) Qaß(z) RJz))

F*(z) F«(z) + ZA«ß(z) Fß(z) (1.23)
ß

can be found in [4] together with the proof that the homogeneous equations

f«=£Aaß(z)fß (1.24)
ß

have only trivial solutions in L2 for z ^ a(H). We shall use the F-Y equations to prove
the

Fheorem 1.2: Assume V{, e L2(RS). Then H has below Ec only discrete eigenvalues
EAi with finite multiplicities. The EAt are bounded from below and have at most Ec

as accumulation point. For z ^ [Ec, oo), R(z) is an integral operator which has for
z £ [E, oo), E < Ec, the representation

R(k, l,z)= Z ^_^-W- + £àa (k - ï) Ra (k, î, z - Ea(k) (1.25)
EA<E A, a

The kernels Ra (k, I, z — Ea(k)) are holomorphic for z ^ [E, oo) and HS operators in

the relative coordinates k, I when multiplied with (z — E(k)) or (z — E (I)) with
HS norm bounded by c (1 + \ z — Ea(k) \)~ô ò > 0, for Re z sufficiently small.

Remark: (1.9) and the first part of this theorem has been proved by Hunziker
[6] under the much weaker assumption Vtj e L2 + Z.00, if the L"»-component of V{j
can be chosen arbitrarily small in the L^-norm.

Proof: Let us assume that Theorem 1.2 has already been proved for all subsystems
a Ç {1, N}. Then A*ß(z) is a bounded operator for z ^ [Ec, oo). For proving this,

two remarks are helpful: Firstly, let a {1, r} and Ra(kx, lr, z) be the resolvent

kernel of Ha in "Ua. Then the kernel of Ra in "Ua becomes

Ra(kx, kr,lx, lr, z) b (/5(a) - 1(a)) Ra(kx - k(a) mxjm(a),

x I - 1(a) mrjm(a), z - n(a) k(a)2). (1.26)
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Secondly, let a^ a2 be two disjoint subsystems. Then the resolvent of Hx + H2 in
the Hilbert space Hx ® "U2 can be computed from the resolvents of H{ in 3/, (i
x'2)hy n _i_

2ni f
where r encircles the spectrum of Hx in a counter clockwise way, sufficiently close

to the real axis. (1.25) then leads to a bound of A(z) as 0(| z \~") for Re z -> — oo.

According to (1.22) the (N — l)th power of the F-Y kernel is a finite sum of terms

IJV{Rq(z)W1(z) (1.28)
i-l

where the Vt belong to V(aN_ijaN_i + x) and the W{(z) are bounded operators of the
form 1 or FI V R(a, z) of at most connectivity aV- i- One proves by induction [10]
that for z $ [Ec, oo) (1.28) is a HS operator with HS norm 0(| z \~ä) as Re z -> — oo.

By the Riesz-Schauder theorem, (1 — A(z))~1 exists in C(U), whenever there are no
non-trivial solutions of the homogeneous F-Y equations. The latter are of finite
multiplicity and in 1-1 correspondence with eigenstates of H. Since furthermore
(1 — A(z))_1 is meromorphic outside [Ec, oo) and holomorphic for Re z sufficiently
small, the singular values E are real, bounded from below and have at most Ec as

accumulation point. In a neighborhood of E, R(k, I, z) has the representation

Z^^A—Akk,l,Z) (1.29)
EA,=E

Z

where R(z) is holomorphic in z. Elsewhere the square integrability of the solution
follows from the L2 properties of the inhomogeneity of the F-Y equation and the
boundedness of (1 — A(z))~1. Below any E < Ec, only a finite number of singular
values occur, and the representation (1.25) is obtained using the Cauchy integral
formula.

Fheorem 1.3 : For Vt, e L2 one has in the L2 topology

&k ÌA ® VaW !™ =F « e [dl R (k, l, EA(l) + t s) fA(l) y>A(l) (1.30)
eJ.0 J

Proof: An immediate corrolary of Theorem 1.1 is the identity

uì Îa®Wa= s"lim ±e I dt exp(* H t) exp(- i(HA + i s)t) fA ®%pA. (1.31)
u

We have to show that for e > 0 (1.30) is related to the right-hand side of (1.31).
Take any g e H with compact spectrum of H J XdE(X). Let r be a bounded smooth
curve encircling the support of dE(X) g in {| Im z \ < e/2}. Then

o

dt eet (g, exp(i H t) exp(- i HA t) fA ® fA)

u

~. f dteel fdzA'z f dkdl exp(- i EA(l)t)
-oo r

x g(k)* R(k, I, z) fA(l) Wa(1) (1.32)
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By theorem 1.2, all integrations in (1.32) are absolutely convergent and by Fubini's
theorem independent of the order of integration.

So far the elementary connection between scattering theory and the F-Y equations.

§ 2. Asymptotic Completeness and the Singular Limit of the F-Y Equations

In nonrelativistic transcription the axioms of S-matrix theory [13] would be

(1) Connectedness (vacuum cluster properties)
(2) Galilei invariance
(3) Unitarity
(4) Maximal regularity.

The vacuum cluster properties have been deduced by Hunziker [11]. The scattering
amplitudes are Galilei invariant, if the Vtj are rotation invariant (see e.g. [12]).
Maximal regularity is a well-developed concept only as far as the regularity properties
of the scattering amplitudes in the physical region are concerned. Here certain
singularities (solutions of the Landau equations for positive a-parameters) are necessary
for a macroscopic space-time description of scattering [9].

In the following we shall study only iV-body systems with a finite number of
channels, all strictly below the continuum. We shall require (see section 5) :

(S) : For all subsystems o C{1, N}, Ha has no discrete spectrum for E > Eca — ô,

ô ô(a) > 0.

Consider generalized Feynman integrals with smooth numerator functions and any
sequence of energy denominators (z — EA(q))~x for arbitrary channels A (consistent
with the occurrence in an iteration of the F-Y equations). The physical region Landau
singularities [9] are exactly those of all generalized Feynman integrals. Maximal
regularity is the postulate that the physical scattering amplitudes or, more generally,

the resolvent kernels are essentially as regular as in perturbation theory and of
similar asymptotic behaviour at infinity. We shall outline how a weak form of
maximal regularity implies unitarity.

Theorem 1.3 contains some information about the singularity structure of R(k,
I, z) for Im z -> 0. Because of R(k, I, z) R(l, k, z*)*, there must be multiplicative
singularities

D/fc 7 ^ ^VA(k)y>A(l)*ÔA(k-l) y,A(k)TAB(k,l,Z)VB(l)*
R{k'l'z) =?—^— +^5L~é=^» c-^) • (Z1)

For/e V(RlN) and any A, a(A) 4= ax, we define

r l «-. t a u (k, h A vA1)* I

<^(/) (*, k)=fA(k) / di m \fA(i)* ôA(k -i)+ z - VinflvH • (2-2)

The following assumption can be easily proved for every term in generalized perturbation

theory, if the numerator functions are Holder continuous (HC) and sufficiently
decreasing at infinity:
(R) : 0A(f) (z, e B(B, pi) for some 6 > 3/2, pi, v > 0, uniformly for Re z bounded

from above, Im z > 0 or < 0, \ w \ < 1, Im z Im w > 0:

II *aV) {*. ¦) We,, < C i 0A(f) (z + w,.)- 0A(f) (z, |9>„ < C | w Ì" (2.3)

(the Banach space B(6, pi) is defined in App. A).
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Fheorem 2.1 : Assume that R(k, l, z) has the form (2.1) with 0A(f) (z, k) satisfying
(R). Then asymptotic completeness holds:

\=Z&ax(&ax)*. ex=±. (2.4)
A

Proof: By Theorem 1.1 QeAx(Qex)* is the projector on Ue/. We shall relate (2.4) to
the resolution of the identity of H. For /, g e T), one has in the weak topology

(/, dE(X) g) lim —I (j, [R(X -ie)~R(\ + i e)] g) dX

lim - (/, R (X + i s) R (X + i e) g) dX. (2.5)

We insert for h /, g

R(X + >s)h(k) =aZai y±-T7--iyÄ)r +f (I± i£-£y • (2-6>

The diagonal terms contribute to (2.5) for e I 0

Z [dk ô (X - EA(k)) 0A(j) (EA(k) + i 0, k) * 0A(g) (EA(k) + i 0, k) dX
a(A) dpa, J

+ Z(fA,,f)*(WA1,g)ò(X-EA)dX
A,

Z fdk <5 (A - EA(k) (fly * /) (Ä) * (fly * g) (*) dX

a(A) 4= «! ^

+ 2>*./)'K.g)*(A-^l)<tt- (2-7)

In the last step we observe that after inserting (2.1) and (2.2) into (1.30) one obtains

(Q% *h,fB® wB) lim y i e f dk [ f dl R(k, l, EJk) ± i e) h(l)] * Uk) wjk)
e 10 J J

Jdk 0B(h) (EB(k) + i 0, k) * fB(k) fB(k). (2.8)

Here the terms in the representation (2.6) with A 4= B do not contribute: If a(A)
a(B), then y>A and yB are orthogonal. Otherwise EA(k) — EB(k) is non-degenerate
and the numerator HC and therefore the integral o(l) for e j 0. In particular we see

that 0B(h) (EB(k) + i 0, k) is square integrable in k. For the same reason as in (2.8),
the non-diagonal terms do not contribute in (2.5). After integration over X we obtain
(2.4) between a dense set of states in ?/.

For the proof of maximal regularity the amplitudes in the F-Y equations have to
be more differentiated. With the help of the spectrum condition (S) one can separate
the multiplicative singularities (2.1) in the kernels of Fa, Fa (1.17) and of Aaß (1.22) :

F«(k, I, z) T«NDN(k, I, z) + S' TaADN(k, I, u z)j(z - EA(k))

+ 27' T*ND{k, I, z)j(z - ED(l)) + S' FAD(k, I, z)j(z - EA(k)) (z - ED(l)) (2.9)

27' denotes summation over all different channel energies EA, ED 4= EA EA

The summation over A is further restricted by requiring consistency with a, i.e.

a(A) a{ for some i. Fa(k, I, z) has a similar structure, and

A-ß(k,l,z)=E'qfNC(k,l,z)j(z-Ec(l))
+ r Q«/C(k, I, z)j(z - EA(k)) (z - Ec(l)). (2.10)
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The A are restricted as above, while the C have to satisfy a(C) 4= ax, a(C) Ç a2 with
a cN_x C a(C) such that cN_x \ ß2 ßx, if a(C) 4= aN. Written in these components
the F-Y equations become

T«AD(k, I, z) T*D(k, l,z)+Z [dp Q«/C(k, p, z) FB (p, I, z)j(z - Ec(p))
ß,c J

+ Z fdP QAßc(k, P, z) FßBD(p, I, z)l(z - Ec(p)) (z - EB(p). (2.11)
ß,C,BJ

The singular denominators indicate to study (2.11) in the Banach space B(6,pi)
(see App. A). For HC integrands F(k, p, z) of sufficient decrease at infinity, the double
singular integral

G(k, z) j dp F(k, p, z)l(z - Ec(p) (z - EB(p) (2.12)

is again HC in k and z for Im z > 0 or < 0 (Either a(C) 4= aN, and, after a linear
change of variables, the denominators become (z — q\ — Ex(q2, qN-X)) (z — q\ —

E2(q3, <2A'-i)), where Ex, E2 are polynomials. Privalov's lemma [3] can then be

applied first to the qx- and then to the ^-integration. Or a(C) aN, and then Ec(p) —

EB(p) > E for some E > 0).
The Faddeev program starts from 2-body potentials v(J e B(6, pi), 6 > 3/2,

pt > 1/2. The hope is to solve (2.11) in some B(<x, ß), oc > 3/2, ß > 0, uniformly for
Im z -> 0. There are, however, several serious difficulties :

(1) The inhomogeneity 77 does not belong to any B(<x, ß). Perturbation theory
suggests that^r, the inhomogeneity of the Kth iteration of (2.11), K > K0, belongs
to some B(a., ß), if the spectrum condition (S) is satisfied.

(2) The kernel A(z) of (2.11) is not a bounded operator in any B(u., ß), for <x > 3/2,
ß > 0 and Im z -> 0. This is due to the fact that the amplitudes Qac(z) have
additional singularities (<5-functions for disconnected components and rescattering
singularities). From perturbation theory we expect:

(A) For some y > a > 3/2, ò > ß > 0, all powers AK(z) exist as bounded linear
operators B(y, ô) ->- B(a, ß), uniformly for Im z > 0 or < 0, if Re z is bounded
from above.

(B) For some K0 and all K > K0, AK(z) can be extended to a bounded linear operator :

B(<x, ß) -> B(y, ô), uniformly for Im z > 0 or < 0, if Re z is bounded from above.

Property (A) will be a consequence of Privalov's lemma, once the kernels Qac(z) can
be exhibited as a finite sum of generalized Feynman integrals with HC numerators
of uniform asymptotic decrease. (B) follows by (2.12), if for K > K0 the kernels
kQac(z) are HC and of uniform decrease at infinity. Then AK(z) is compact and the
Fredholm alternative holds for (2.11), although A(z) has not even a dense domain in
B(*,ß) [14]:

Fheorem 2.2: Under the assumptions (A) and (B), either/= Af has a non-trivial
solution in B(y, ô), or / g + Af has a unique solution in B(ol, ß) for every g e
B(y, ô).

(3) One has to control the Fredholm alternative in (2.11). Due to the inversion
formulae in [4], solutions of the homogeneous equations can occur only for z < Ec

28
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or for z E + i 0, E e [Ec, oo). Faddeev has shown for N 3 and pt > 1/2 that
there are only countably many singular values of z with possible accumulation points
only at the EAa and that except for these values all solutions of the homogeneous
F-Y equations lead to eigenvectors of H. Thus the control over the Fredholm
alternative can be related to the knowledge of the discrete spectrum of H, but not yet in
a satisfactory way (see section 5). We shall always make the assumption

(SN) If for some y > a > 3/2, ô > ß > 0 (A) and (B) are satisfied, then there are

no non-trivial solutions/= A(z) fin B(y, ô) for z E + i 0, E e [Ec, oo).

As outlined before, (S)N implies (SN). In the following section a study of the 4-body
problem with finitely many channels will be given in this spirit.

§ 3. Time-Dependent Approach to the Singular F-Y Equations

In this section we shall investigate the singular F-Y equations in the scale B(6, pt)

of Banach spaces using a time-dependent method for proving the necessary regularity
properties of the kernels Q and the inhomogeneities F. For weakly interacting
2-particle systems, Prosser [7] and Kato [8] have derived asymptotic completeness
from the convergence of the Dyson series for Qex in certain Lfi topologies. Essential
is here the decay of free wave packets exp(— i H° t) f for large t. We shall use similar
techniques to prove that rescattering processes with highly connected classical orbits
[9] cannot lead to long-range correlations in «-space or to strong singularities in

yspace.
Consider for instance a rescattering contribution to the 3-body F(z) for V{, e S and

lmz>0:
V12 Rq(z) VX3 Rq(z) V2S Rq(z) VX2 Rq(z) V23

f( fldti expQ'ZU) Vi* *~"'"° Viz ¦ ¦ ¦
e~it,H° Vx (3.1)

For Im z > 0 the ^-integrals converge in the uniform topology. We are interested in
the behaviour of the kernel of (3.1) for Im z j 0. We obtain from Figure 1

Figure 1

[[dH exp (izStk) [fjdpj F(p) exp(- iZAi}(t) p, pA (3.2)

o ' 1

where F(p) arises from the potentials

F(p) vX2 (px - p&) vX3 (- px-p2- pe)

X ^23 (Pi + Pi + Ps) *>12 (P2 - Pt) "23 (Pi - Ps) (3-3)

and the quadratic form A{j(t) comes from the energies of the intermediate states.
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For m, 1/2, E(p, q) p2 + q2 + (p + q)2 and

ZA(j(t) p{ Pj tx E(px, pe) + t2 E(Pi, Pa + k E(p2, Ps) A h E(p3, p7). (3.4)

We expect continuity in the external momenta p4, p9 and in z for Im z \. 0, if in
«-space the multiple rescattering (3.1) becomes sufficiently improbable for large
separations. There should be a LJ (1 + Xk)~sl2 decrease in the scaling parameters
Ax, X2, X3 of the three independent closed loops in Figure 1. The absolute convergence
of the ^-integration for Im z \ 0 depends critically on Xk as functions of tx tt. For
(3.2) we expect bounds (1 + tx + t2)~312 (1 + t2 + t3)~*12 (1 + t3 + Q-Sl2, which
would be sufficient. Obviously convergent diagrams have to be highly connected,
and such graphs are generated by the higher powers of the F-Y kernels.

Let B(6, r), 6 > 0, r 1, 2, be the Banach space of all Cr functions/ : R3 -> C

with
™P(X+\P\)6Z \Def(p)\<oc (3.5)

(DQ: differential monomial of degree qi in djdpit Eqì=\q\) and B(d, oo) H B(6, r

Fheorem 3.1 : Let y e B(B, oo), 1 < * < j < N, with 6 > 3/2. Then there exist
a a(N) > 3/2, ß ß(N) > 0, L L(N) < oo, such that the kernel G(k, I, z) of any
graph G in (1.18) contributing to AM~1Q, M > L, has a limit for Iraz^-0 and
satisfies

sup N(k, a)-1 N(l, a)"1 (1 + E(Z))"1 J| G(k, I, z) \

\G(k + h, l + m, z+w)-G(k,l,z)\\+ -
| k \ß+\~m \ß+ \w\ß '" ] ^ y0 '

Here the supremum extends over all h, k, l, m e R^N with \h\, \m \ < 1 and over all
z, w $ [0, oo) with j w \ < 1, Im z Im w > 0 and Re z < E0, E0 arbitrary, but fixed.

Proof: Consider any connected graph of order K in (1.18) for Im z > 0. It is

convenient to separate in every resolvent kernel (z — E(q))~* the dominant contribution

for large momenta from the local singularities for Im z \ 0 by a C00 partition

1 Xi(z) + Xi(z) • zeC

supp Xi c { I z I < 2 a}

supp*2n{ |x| <ò}= 0 (3.7)

where ô > 0 is arbitrary but fixed. We introduce q^z) z^x^z), i 1,2. q2 (z — E(q))
is C00 and decreases uniformly for Re z < E0 with all dérivâtes as (1 + E(q))~1,
while gx (z — E(q)) has compact support in q and will be represented as a ^-integral
(3.1). Expand the kernel of G into a sum of qx £2-monomials. After an allowed
interchange of the t- and loop-integrations we obtain typically

fdmt exp (i z Z U G(pL+n ¦ ¦ ¦ Pl+2N, h, • • ¦ <„. z) (3-8)

G(P, t, z) []Jdpm F(PX, PL+2N, z) expL i Z Amn(t) pm p„\. (3.9)
"* m l \ m,n= 1 /
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Hereby pL are loop momenta and (pL+x, pL + N), (Pl + n + v ¦¦¦ P l+2n) e RlN
external momenta. F(p, z) incorporates the products of potentials, g2-terms and xr
factors, andAmn(t) is linear in t and depends on the connectivity of the graph.

It will become clear from the following estimates that the worst local singularities
arise from the pure ^-term, while the relevant asymptotic behaviour for large
external momenta is determined by the pure g2-term. The discussion of these two cases

requires different techniques.
Pure Qx-terms : In Kth order there are K ^-integrations and L K + 2 — N loop

integrations. We require that G contributes to AM~1Q, where M > 3 A — 4. The loop
momenta px, pL will be placed consistently on certain internal particle lines:

px on line h(X) between the i(X)th and f(X)th interaction. These lines contribute to
(p,Ap) ZAmnpmpna diagonal form

L /(A)-l
(P, Bp)=ZBÂPÏ, BÄ nm Z h (3.10)

x~i k-i(X)

The remaining internal lines give a positive semidefinite form (p, Cp) (p, Ap) —

(p, B p). We maximize the Bx by choosing different sets of loop momenta in different
sectors

tQ{x) > te& >.> teiK) (3.11)

of the ^-integration. We place the maximal number v(l) of loop momenta on lines
through intermediate state g(l), then v(2) — v(l) through q(2), etc. Then Amn will be

partially diagonalized :

/ L+2V \2 L + 2N /L + 2.N \2
(p, Ap)= Axx px + A-\ Z Au Pj + Z Au Pt Pi - AÏÎ Z Ali h ¦ (3.12)

i,i-2 \»' 2

If we set

Pi Pi + An Z AU Pj
t-2

A,i=AV-AiJAuAn 2<i,1<L + 2N (3.13)

then (3.12) becomes Axxp\ + 27 A'^pfpp and by the Schwarz inequality C'.j A't- —

ô{J B; is again positive semidefinite. Recursively we obtain

Pk -pk
L + 2N

+ Z eKJpJ> 1 <k<L

h--pk L+l<k<L+2N
(P, Ap) =ZDkPl +

L + 2N

Z AuPiPj
i,i-L+l

where for all t and all 1 < k < L : Dk > Bk. The shifts ekj can be uniformly estimated
in the sector (3.11) : For the first v(l) internal momenta one has Bj > tQ{x) min {%},
1 <j <v(l), and

An>B.>c max \A„\ (3.15)
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for some c > 0 independent of t. Let g > 1 be the smallest integer, such that v(g) —

v(g — 1) > 0. The momenta of the intermediate states p(l), g(g — 1) are by
construction independent of pr{g_x)+x, pHg). Therefore the Ai} with i or j > v (g — 1)

+ 1 are linear combinations of the te^, t^Ky By induction one proves that
(3.15) holds for all 1 < j < L with c > 0 independent of t. Furthermore a similar
relation holds when going over from A to A', A ", due to the uniform bounded-
ness of Axx AXm, (A22)^ A'2n, Therefore \ekA < d < oo uniformly for all t in
(3.11). In the new coordinates, (3.9) becomes

* L /L+2N
__ Ì + 2.V

/ HdPmF\ Z flmPnv ••• Z ÌLmPm,pL+ r, ••• pL+zy Z

/ L L+2N _ _ \

Xexpl-iZDmfi-i Z AaPiPj) (3-16)
\ OT-l i,j-L+l I

where the ffj in the inversion of (3.14) are again uniformly bounded in t. In (3.16),

we split off the factor exp (— i(p, Ä p)). F(p, z) has for Re z < E0, due to the fo-fac-
tors, compact support in all^>1( Pl+2n> except for the relative momenta appearing
in the first and last potentials, where (3.5) holds. Thus after applying to the remainder
in (3.16) any differential monomial D with respect to z and pL+1, ¦ ¦ ¦ Pl+zn we obtain
by standard estimates [15]

"d*LpDF(p,t,z)exVl-iZDkpl
\ k-i

< cfj(l + Dk)-™ N(pL+v pL+N, 6) N(pL+N+x, pL+2N, 6). (3.17)
k-1

We now use the following lemma (to be proved in App. 3).

Lemma 3.2 : There exists a ò > 0, such that every AT-particle graph contributing
to AM-X<J, M >3N -A, satisfies in every sector (3.11)

77(1 + Dk)-W < 7J(1 + Q-1-». (3.18)
k-1 *»1

We have to obtain uniform estimates for the Holder differences of (3.8) in pL+1, ¦ ¦

Pl+2n e R%NX R^N and z, Re z < E0, Im z > 0. Using the ^-integral representation
and (3.18), all non-trivial majorizations can be reduced to

[[dKtlJr(l + tkr1-ö\exv(iItk(z-w))-exp(iItkz)\ (3.19)

fi) »-1

[\dKtfl(l + tA-1-0 \ exp(i AtJ pt hf) - 1 j

* i
K _

dKtfJ(l + tk)-}~& | exo(i AtJ ht hf) - 11. (3.20)

(3.11) k~1

(3.11)
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For (3.19) we use the mean value theorem, when \Etk\ < j w |_1: | exp (i E tk

(z + w)) — exp (i E tkz) | < | E tk w | and obtain for 0 < ß < ò

oo K
\w\~ß\ J (3.19) \<ffdKt (Etf 77(1 + tk)-^s. (3.21)

\zt< w\-' Ö *_1

In j Et [ > | w |_1, we bound the exponentials by 1 and get the same extimate.
Similarly one obtains for (3.20)

\(3.20)\<c\hj\ß(\hi\ß+\pi\ß). (3.22)

Therefore (3.6) holds, whenever 0 < ß < ò is so small that a 0 — ß > 3/2.

Pure Q2-term: Here Weinberg's theorem [16] is applicable. However, it is difficult

to define for an arbitrarily complicated graph a simple algorithm. We shall
therefore prove in App. 3 the very elementary and by no means optimal

Lemma 3.3 : There exists a a > 3/2, such that every pure ß2-term °L anY
graph G contributing to A(z)M, M > 4 (N — 1), is uniformly bounded in the
external momenta k, l e R%N by e N(k, a.) (N(l, oc), where c depends on G and on max
{0, Re z}.

Mixed expressions are locally better behaved than the gx-term and at infinity
better that the g2-term. This observation concludes the proof of Theorem 3.1.

It is difficult to extend this perturbation-theoretic argument to the exact kernel
of the A-body F-Y equations. Firstly, additional singularities arise from bound state
poles for all channels A( with 2 < i < N — 1. If the spectrum condition (S) is satisfied,

then Theorem 3.1 can be extended to any generalized Feynman amplitude with
numerators from B(B, oo) and any consistent inclusion of bound state poles. The
second difficulty is more serious: even after having removed a finite number of
iterations of the F-Y equations there remain threshold singularities in subenergies

z - > 2>(o/) k(aj)2 + EA z 2>(o,.) î(aj)2 + EA (3.23)

i-i i-i
where the remaining kernels cannot be C00. Here a-, {ap a,} is any partition and
EA the energy of a channel A with aiDa(A). For a( a(A), the singularity is

multiplicative (see (2.1)).
There are two alternatives. Either one is strong enough to discuss the real

singularities of Feynman integrals with HC numerators of compact support (as
Faddeev for N — 3). Or one has to exhibit more explicitly the special structure of the
threshold singularities in the numerators. By a gracious act of Fortuna this second
method is fairly simple for N 3 and 4 and smooth potentials. Here one has only
to deal with the threshold singularity of the 2-body scattering amplitude Fjj(k, I, z)

at z 0. For simplicity, we formulate our results for v(j e B(0, oo), leaving as an
exercise the generalization to y e B(0, r), r r(N) sufficiently large.

We start by accumulating information about the 2- and 3-body problem,
supplementing the results of Povzner [17], Ikebe [18] and Faddeev [3] with emphasis
on maximal regularity.
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Fheorem 3.4: Assume v e B(8, oo), 6 > 3/2, and (S2). Let {tpn} be an eigenbasis
of H,H y>„ En y)n. Then the 2-body off-shell scattering amplitude F(k, I, z) in the
relative coordinates has the form

T(k, l,z)=Z ^"(fj"{l)* + f(k, I, z) (3.24)
n ~n

where for some cc > 3/2

(a) cpr(k) ipr(k) (Er-nk2) e B(ol, oo)

(b) T(k, I, z) is Cœ in k, l e R3 and holomorphic for z $ [0, oo). T(k, I, z) and all its
derivatives with respect to k, I and Re z are uniformly bounded by c (1 +

| k — I \~a) for Re z bounded from above, Ira y 0 or < 0 and z outside of a

neighborhood of z 0.

(c) In any neighborhood N of z 0 for any integer r > 0, there is a splitting T
1\ + F2. Fx is a finite sum of terms

dmt exp (i zJTtA Fs(k, I, tx, tm, z) (3.25)

with supp FSC 7?6x [0, oo)mxN, m m(s), Ts is (7e0 in k, I, z and with all derivatives

bounded by c (1 + \ k - I \)-a II (1 + tr)~3'2. f2 is C in k, I and Re z for
Im z > 0 or < 0 the with same bounds as in (b).

Proof: The existence of a solution F(k, I, z) of the form (3.24) has been established
by Faddeev within the class of HC functions of decrease a > 3/2. The equations

9m(k)=jdlv(k-l)(Em-nl2y1cpm(l)
T(k, l,z) v(k- I) +f dpv(k-p)(z-n p2)-1 v(p-l)

+ ff dp dqv(k-p) (z-n p2)-1 T(p, q, z) (z - n q2)-1 v (q - I) (3.26)

show differentiability in k, I and analyticity in z $ [0, oo).

r)

dz T(k, l,z) - [dp F(k, p, z) (z-n p2)-2 T{p, I, z) (3.27)

and iterations prove differentiability in Re z > 0 uniformly for Im z > 0 or < 0,
since (x AiiO — np2)~h is a distribution in S'(R3) for x 4= 0, which is weakly Cœ in x.

At z 0, F(k, I, z) has a iTz-singularity, if (S2) holds. In a neighborhood N of
z 0, T(z) is given by the power series

oo

T(z) Z [T(0) (Rq(z) - Rq(0) )]» T(0) (3.28)
re-0

which converges in the topology of C(B(a, 1/2)). The series can be split as ^y1 + Ef,
in such a way that the second term is C, if s s(r). The contribution of the first
term, multiplied with a C00 partition of the unit subordinate to N, gives a finite sum
of integrals of type (3.25) by Theorem 3.1.
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In a similar way, by combining the results of Faddeev and Theorem 3.4, we can

prove maximal regularity for the 3-body amplitudes. Here the notation of section 1

is too cumbersome. Let o {1, 2, 3}, a (a2) ({i,j}, {k}) ij 12, 13, 23), and

Mf(z) « Va oaß + Va Ra(z) Vß TJz) oxß + Ta(z) R0(z) Z Mv/(z). (3.29)

Here the Ta(z) are the exact 2-body amplitudes transformed from their CM

system into the CM system of a by (1.26). Let kM%ß(z) be (3.29) minus its first k
iterations.

Fheorem 3.5: Assume v{j e B(6, oo), 6 > 3/2, and (S2). Then^45(^) can be extended
to a bounded operator B(a., ß) -> B(y, ô) in a scale of component spaces with 3/2 <
a < y, 0</?<(5. The inhomogeneity in

*Mf(z) *Mf(z) + Z Uz) Rq(z) *M\ß(z) (3.30)
7 + a

has components in B(y, Ò). Assume (S3) for the F-Y equations (3.30) in B(a., ß) and
let E" be the finitely many singular values with E" < Eca. Then there exists a solution
to (3.30):

*Mf(k, l,z)=y y''(*)y'"('>* + *Mlß(k, I, z) (3.31)

where

(a) cpla(k) (Va tpl) (k) is Cm in k and decreases with all derivatives as N(k, a).

(b) *M^(k, I, z) has HC components decreasing as N(k, a) N(l, a), when multiplied
with (1 + E(k))~1 or (1 + £(/))-!, uniformly for Re z < E0, Im z > 0 or < 0.

(c) For sufficiently large k, the Holder norms of kM*ß(k, I, z) are bounded by c (1 +
| z \)~ô (ô > 0, uniform convergence of an iterative solution for large \ z \).

kMlß(k, I, z) is (7e0 in k, I and Re z for all Im z < 0 or > 0, except for the thresholds

(a ij, ß =fg, {e,f, g) {h, i,j}= {1, 2, 3})

z 0, z=El,z=E™ (y=12, 13, 23)

z nhk'i + n, njKn, + nf) (k, + k})2 (+ E™)

ne l'i + nf nj(nf + « (lf + lg)2 (+ £"). (3.32)z

Proof: The boundedness of A5(z) : B(c, ß) -> ß(y, ô) follows easily from Theorem
3.1. A typical graph is represented in Figure 1, the vertical connections being exact
2-body amplitudes. For the pure 772-terms, r sufficiently large, our perturbation
theoretic argument needs no modification. By direct estimates, however, one sees

that one acquires uniform y-decrease already for A5 (instead of M 4 (N — 1) 8).
The 77,-terms can be incorporated, since the singular ^-dependence is through the
same exponential representation as used for the propagators. Also the bound state
denominators are harmless, since they never vanish together with one of the propagators

on either side.
Maximal regularity will be systematically studied in section 4. The algorithm of

Theorem 4.1 can be applied using a standard technique, which will be illustrated here
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for the typical example of Figure 1 in the equal mass case (»,- 1). The amplitudes
7712 and 7723 at both ends of the graph lead to multiplicative singularities for

z EnX2 + (kx + k2)2j2 + k\= E\\ + 3/2 k\ z= E\\ + 3/2 l\. (3.33)

We claim that away from (3.33) one can absorb all other singularities by partial
integration, except for

z 3/2 k\, z 3j2l\ z 0, z= £*• (for any ij, n). (3.34)

Assume typically z E + i e, s > 0, E < 3/2 k\, 3/2 l\, E 4= 0, E%. Then we choose

loop momenta px, p2, p3 as in Figure 1. We have to show that the amplitude is C°°

in k, l, E uniformly for e > 0. Let first e > 0. Then differentiation can be interchanged

with the ^-integration. The numerator functions are Cœ for e > 0 by Theorem
3.4, while differentiation increases the power of the denominators. With p0 k3,

p4 lx and bound state energies Et we have to estimate

[ip W(p, z)fj(z - E(pt_x, PòVTKz - Et - 3/2 PifH. (3.35)
J i-l t=l

All denominators are dangerous only in a bounded region K, to which we restrict
(3.35) by a C°° partition of the unit. If we replace pi by p{ (1 — icp), 1 < i < 3, we obtain
an integral I(q>). By Lemma 4.2 the denominators never vanish for e > 0 and 0 <
<P < <Po (<Po sufficiently small), or e > 0 and 0 < cp < <p0. There exist some c > 0

such that for all pt, 1 < i < 3, and for e > 0 the integrand is bounded by qr*,
t Ers + Esj. (3.35) is the limit cp j 0 of I(cp) which has the integral representation

m z (<p-<Po)m dml ^- (3-36)

By partial integration one can absorb the 99-derivatives into ip and obtain with « > t
uniform boundedness for cp \ 0 [19].

Before proceeding to N 4 we have to characterize the kernel of the resolvent
Ra a,(z) for the disjoint subsystems 0 {1, 2}, a' {3, 4} (see (1.27)). For a, ß e (12, 34}

MfM Fa «5aA + Va Ra a,(z) Vp Ta(z) oaß + Fa(z) R0(z) Z KU') • (3-37)

Let kMlßa,(z) be the remainder of (3.37) after subtraction of the first k iterations.

Fheorem 3.6: Assume vi} e B(6, 00) and (S2). Then the kernels of rM%i,(z), r>4,
in the relative coordinates of a, a' (kx + k2= l3 + /4 0) satisfy similar
estimates as in Theorem 3.5: HC in k, I, z of index ß > 0, and uniform decrease in k, I
with exponent a > 3/2 after multiplication with (1 + E(k))~1 or (1 + E(l))~L for
Re z bounded from above and Im z < 0 or > 0 ; for r > r0, the Holder norms are
bounded by c (1 + \ z \)~ó, ò > 0, and rM is <7°° in k, I, z except on the thresholds

(3.38)

z 0, z E["2, z -pn
¦^34 »

Z - Fm 4- F"- ^12 T ^-34

z=nxk\ + n2k22(+ElA, -,

z n3l\+n, /;(+£»).



442 Klaus Hepp H. P. A.

Proof: The regularity properties follow most easily from representing *M as

iM + 9M plus a remainder, which is a 2-body 77-amplitude or the convolution X
of two 2-body T-amplitudes sandwiched between two 4M-terms, *M R0 X R0 iM.
The regularity of rM, r > 4, follows from Theorems 3.1 and 3.4 by a trivial improvement

of Lemma 3.3. The singular integrals for the remainder are harmless, as there
are four singular denominators and four 3-dimensional integrations.

Under the assumption y e B(6, oo), (S2), (S3), we shall now "solve" the 4-body
problem. All information about the subsystems is contained in Theorems 3.4, 3.5,
3.6. There are two types of sequences a (coupling schemes) which characterize the
connectivity of the amplitudes Fa :

« ({{*/*}. {*}}.{{»'/}- {*M0}) »/.*/*
« ({{»' /}, {k I}}, {{*' ;'}. {k}, {l}}) =ij,kl. (3.39)

In this notation the F-Y equations become

•-rijjijk __ rpijjijk i AÌj,ÌjCTÌj,iÌl i "TÌi,kl\

I Aij,ik i'~rik,ikl i rr,ik,jl\ i Aij,jk (''TJkffkl i nrjktH\

•r-iukl rpij,kl _j_ Aij,ij CTÌJ,ìJk ^rijyijh

+ AAkkll(Fkl'tkl + Tkl'jkl), (3.40)

where (see (1.22)

Aïît (M-£% + M<$}) Rq Ayf% M^m R0. (3.41)

For the component space (2.11) the multiplicative singularities of the kernels are
obtained from Theorems 3.5, 3.6. The singular factors on the left of Fa are typically
In, 1,27£,. 0):

Ti2,i2-s,k j x y cpvi ikr- Aa) Tif'n23 {kx + k2- 2 k3, kt, I, z)
4 \ ><¦> >+Zf z-E[<2-{k1 + k2-2kA2l6-4l3ki

_l_ V yi2,123(^l~ ^2- ^l+^2~ 2 ^3) '^2, m (kjA, Z) l'i A.9)+ £ z-E?23-4ßkl (ó-^>

where <, Vfj ff,-, q%t{jh V{j y%„.
We claim that ^412(2) has components which are HC and of uniform decrease,

as required for the compactness of the F-Y kernel for Im z > 0 or < 0. For the
decrease at infinity in the external momenta one has to study the pure g2-terms. Instead
of potentials there are now exact 2-, 3- and 2-2-body amplitudes to be introduced
into Lemma 3.3. This does not present any difficulty, since the highly connected
remainders have much better asymptotic properties. In the study of the local
singularities we shall again use the method of Theorem 3.1. A12 is of the form FF12X (Ma(i) R0)

with partitions a(i) into {ij k}, {1} or {ij}, {k I}. We split every Ma as

K ZA: Ma + A\Ma= ZMa(Al)r + Ma(A\Y. (3.43)
r-0 r-0
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Here Aa is the F-Y kernel for the subsystem a, therefore again a product of 2-body
amplitudes. Hence A12 is a finite sum of terms of the following type:
(a) Products of 2-body amplitudes. Then Theorem 3.1 can be directly applied.

(b) One highly connected part of some Ma as factor. In such a term there must occur
the typical factor

fi (A$ Ki) Ro) Km Mm (0 < r(i) < 3). (3.44)
t=i

Theorem 3.1 shows that (3.44) has already the desired regularity properties. With
only an infinitesimal loss in the Holder index the remaining factors to the right and
left can be multiplied, using Privalov's lemma repeatedly.

(c) At least two factors of the type Ma occur. Then one has in this product a factor

Ma(x) A™ RqJTJ(A$ Ma{i) Rq) A*m Mm (3.45)
7-2

with possibly k 2. Again the regularity properties follow already from Lemma
3.2 and 3.3.

Thus the 4-body F-Y equations make sense in a scale B(y, ò) 7J B(cn, ß), and the
Fredholm alternative applies. By repeating the discussion in [3] one can show that
the set of singular values, S, is countable and of the form S {z E + i 0} with
possible accumulation points at most at the thresholds EAl for two fragments. For
E ± i 0 $ S, one can define 0A(f) (E ± i 0, k), which satisfies (R). By relating 0A(f)
(z, k) to the spectral measure of H as in section 2, one proves the square integrability
of ®a(i) (EA(k) ± iO, k) and the identity

(/, g)=Z (f, n% (Aï?*g) + (/. Pg) (3-46)
;>i

on a dense set of/, g, where P is the projector on the discrete spectrum of H. Leaving
a proof of maximal regularity as an exercise we have obtained the

Fheorem 3.7: Assume y e B(6, oo) and (SM) for all 2- and 3-particle subsystems.
Then the 4-body system is asymptotically complete.

§ 4. Unitarity and Maximal Analyticity
In this section we shall study not too singular 2-body potentials Vij(x), which

decrease exponentially in %-space. More precisely, we require that vtJ(p) belong to
the class H(6, q)

H(8, q) {v(p) v(— p*)* holomorphic for | Imp \ < Q,

sup(l+ \p\)° \Du(p)\ <oo} (4.1)

where 0 > 3/2, q > 0, D any differential monomial and sup extended over all | Imp | < q.
In generalized perturbation theory with holomorphic numerator functions, the

Feynman integrals are holomorphic for real momenta and Im z -> 0, except on
certain Landau varieties L(. Let us assume that there are only finitely many channels
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by imposing (S). Then wc expect that the exact A-body amplitudes satisfy maximal
analyticity (MA) in the form :

(MA) : There are only finitely many Landau varieties L,- in the physical region.
The A-body resolvents are holomorphic in the physical region except on U Lt.

We shall prove MA for purely repulsive potentials (see section 5) in H(6, q) that
is only for one-channel systems. Using recent results by Federbush [20], one should

be able to extend our results at least to multichannel systems satisfying (SM) for all
M < N. However, a complete argument will go far beyond the scope of our present
exposition.

MA will be used recursively to prove unitarity (asymptotic completeness) according

to the following scheme: Assume that one can "solve" the N-body problem in
some B(a, /3) in the spirit of Faddeev (see section 2). Then in a neighborhood of any
point Zq, where (1 — ^(z,,))-1 exists and where Ak(z) is bounded in B(cn, ß) and in z

HC in the strong topology of C(B(<x., ß)), (1— Ak(z))~1 exists as a convergent series in
C(B(x,ß)):

OO

(1 - A^z))-1 (1 - A^Zq))-1 Z\iAk(') - Ak{'o)) (1 - ^W)-1]"- (4-2)
n-0

Assume that all subamplitudes satisfy MA. Then we shall show that around every
point z0, where the homogeneous F-Y equation f — A (z0)f has no non-trivial solution,
(4.2) converges for some k and allows to prove MA for the N-body resolvent. These

analyticity properties can then be used (if (SN) holds) to prove compactness of some

power of the (A + l)-body kernel, by a deformation of the contour in the multiple
singular integrals. By this method one only retains threshold singularities, which can
be easily estimated [27].

As in section 3 we try to prove that qualitative properties of perturbation theory
hold for the exact amplitudes. Therefore we shall first investigate MA in perturbation
theory for potentials in H(6, g).

A graph G in the Born series Va+ EVa (R0(z) Va)" for Ta(z) (a: partition of
{1, «}) is called c-connected, if c is the largest integer such that by cutting G at
c — 1 intermediate states one obtaines c subgraphs with all particles in each set of a
connected.

Fheorem 4.1 : Assume y e H(6, q). Let G be a c-connected graph for F(z) with
left- and right connectivity a.x (ax, aN_x), ßx (bx, nN_x). There exists a

Cq (depending only on mx, mN) such that, if c > c0, the Feynman amplitude
G(k, I, z) of G is holomorphic for k, l e R3'v and Im z -> 0, except on the thresholds

z=Ea.(k), z=Eb.(l) (l<i<N-l). (4.3)

Proof: Let G V1 ÏI*.2 (R0(z) V), where V VtMjM. We denote the external
momenta by q° k, qk I and the internal momenta between V and V+1 by q*,
1 < x < K — 1. One has, by momentum conservation, for 1 < x < K

«_1 ?ï A*»».«*) rfM+#M=?iM + #M- (4-4)

We shall construct for a highly connected G a particular solution q of (4.4) which
satisfies ~qA 0 for some 1 <X < K — 1. Then q*, 0 < x < X, will be linear
combinations of k, and the q?, X < x < K, of /.
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The general solution q* of the homogeneous equation (^° 0 qK) can be
parametrized by L loop momenta^, pL e R3, where L K + 1 — A, if G is connected.
We take as loop momenta a consistent choice of particle momenta of the following
type: from the left we cut the graph G once it is 1-, 2-, c-connected and choose

as loop momenta each time A — 1 particle momenta. Within the 1-connected
components we again cut highly connected subsystems. Inductively we can find loop
momenta such that every particle momentum is a linear combination of at most
2 A of the px, pL, all with coefficients ± 1.

For every intermediate state q" there is a denominator D" (z — E(qx)). Let
Re z E, Im z e > 0. Consider the "rotation" pi -> p{(l — i<p), 0 < cp < cp0. We
shall choose the q" in such a way that E + i s 4= q* + q" (1 — iAp)) holds for all
e > 0 and 0 < cp < <p0, except on the thresholds (4.3). The proof of the following
lemma can be found in App. B :

Lemma 4.2: If G is c-connected, c > c0, then there exists a solution q" of (4.4)

satisfying :

(1) q" is a linear combination of kx, kN, q" k", if 0 < x < X; ~tf" 0; q" I* is

a linear combination of lx, lN, if X < x < k.

(2) For every real solution q" of (4.4) with q° qk 0, E + i e 4= E (q* + qx (1 — cp))

for all e > 0 and 0 < cp < tp0, cp0 > 0 sufficiently small. For e j 0 and 0 < cp <
cpQ, the equality sign holds only if q" 0 and if E, k, I satisfy (4.3).

(3) q" can be chosen holomorphic in E, k and /, except on (4.3), and everywhere HC.

(4) After identification of two solutions 'qK, "q" for two graphs G', G" which differ
only in the repetitive occurrence of some q", (1) ,(2) and (3) can be accomplished
using only a finite number of different classes of solutions.

Lemma 4.2 allows to avoid the singularities of the propagators for Im z -> 0 by
a deformation of the contour of loop momenta (p) -> (1 — itp) (p). However, we must
take into account the region of analyticity of the potentials and the behaviour of the
integrands at infinity.

Lemma 4.3: Let G be a graph with loop momenta (p) (px, pL) as before.
For every X > 0 there is a c < oo and a 1-parameter family F(ç>) of contours in the
C3L of complex loop momenta with
(1) r(cp) is C°° and semiflat, i.e. in the natural direct product C3L (ReC3L)X

(Im C3L) r(cp) is a C00 cross section over Re C3L.

(2) Let p" be the combination of loop momenta (p) e F(cp) in the intermediate state x.
If E(Re px) < X, then Im px - cp Re p".

(3) On r(cp), | Im pt \ < c j cp j for 1 < t < L.

Proof: Let (d) (dx, dK_x), dx 0,1 (1 < x < K - 1). A covering {D(d)} of
R3L is defined by

D(d) ={(p)eR3L: E(p") <X+1, if dx 0 ; E(p) > X, if dx 1}. (4.5)

Let {0(d)} be a partition of the unit in R3L subordinate to [D(d)}. For every (d), one
can complete the {p* : dK 0, 1 < i < A} by a minimal set of loop momenta {p'x,

p'r}C{px, pL}, such that every particle momentum pj depends on the {p1}U{p'e}
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via (4.4) and p° pK 0. The component pt of every loop momentum p, along the
{p'e} is unique and Cœ in (p).

We define y>(d) (p) (W(d) (p)x, f(d) (p)L) by

|0 -pte{p'e}
y>(d)(p)t=lp,:ple{px:dx 0}

Pt — Pt '¦ otherwise (4.6)

F(cp) {(p) eC3t: Im pt ~?>2>W (Re P)t ®(d) (Re p)}. (4.7)
(d)

Clearly F(<p) is semiflat and C00. If (p) e F(cp) satisfies E(Repx) < X, then for all (d)

D(d) 3 (Re p) dx 0 and y>(d) (Re p)x Re px and thus Im px -cp Re p".
Given (d) and pt ${P'Q} u{Pl}, A is easy to estimate | pt — pt \ : \etx',x" be the

closest intermediate states to the right and left of the particle line carrying pt with
dx, 0 or x' 0 and dx„ 0 or x" K. Then there are a'{, a" e {0, +_ 1}. such that

Pt-Pt=Z(a'iP*i' + *iPf)- (4-8)
»-1

Since on the support of 0(d) the px with dx 0 are bounded by \2m (X + 1), m

maxoij, one obtains for (p) e F(cp)

\lmpt\ < \cp\ 2(N - l))J2m(X+ 1) (4.9)

For fixed X, there is a cp0 > 0 such that, for | gs | < <p0 and (p) e r(cp), the argument
of every vx(q) stays in {| Im q \ < g}, since q is a linear combination of < 4A loop
momenta pt with coefficients + 1. Let Re z < £, F > 0 arbitrary but fixed. If
(p) e /"(y) and F(Re p") < X, then by Lemma 4.2 Dx 4= 0 except at thresholds for
0 < |

cp | < cpQ and sgnç? • Im z > 0. On the other hand, if F(Re p") > X, then we
consider

Re FA Re z - E (kx + lx + Re />") + £(Im ^). (4.10)

If x is not within an annihilation scheme (see proof of Lemma 4.2) and if the connectivity

of the subgraph to the left is at, i > 1, then lx 0 and

E (kx + Re p") =Zn(a,) Ha,)2 + j>, (kx - -^ k(am) + Re pxf (4.11)

where the kx are linear combinations of the k(af) with for all graphs G uniformly
bounded coefficients. Hence (4.10) never vanishes for sufficiently large X. Otherwise
E(k") < E, which leads to the same conclusion.

For Re z < E, Im z sgncp > 0 and sufficiently small qj0

G(k, l,z) [ dp I(k, I, p, z) / dp I(k, I, p, z), (4]12)
r(0) r(y)

since the integrand / vanishes at infinity typically as LJ (1 + p2)-1 x (1 + \ p{ — E y
Pi |)~3'2, Cij 0 for j < i, if k, I, z are fixed, and since the deformation r(cp'), 0 <

1 cp' I < | <p |. proceeds over semiflat contours within the region of analyticity. (4.12)
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defines an analytic continuation of G(k, I, z) for Imz->-0 outside of (4.3) by a suitable

choice of the rj's in Lemma 4.2.

Fheorem 4.4: Under the assumptions of Theorem 4.1 G(k, I, z) is HC in k, I, z and
uniformly decreasing in k, I for Re z < E, Im z > 0 or < 0.

Proof: We shall give here a new proof of Theorem 3.1 which, however, can easily
be generalized to the exact amplitudes. Consider (4.12) for cp 4= 0. The dependence
of I on k, I, z is explicit in the q"(k, I, Re z) of Lemma 4.2. There is a natural
decomposition of the region of yintegration by cutting at E(Repx) 1. The dominant
asymptotic behaviour for large k, I comes from {F(Re^>*) > 1, 1 < x < K — 1}, and
is covered by Lemma 3.3. The strongest local singularities arise, when all F(Re p") <
1, and then on r(cp) Imp" — 99 Rep". Using Lemma 3.2 one obtains

I FA j > c £(Re px) (4.13)

where c > 0 is independent of (p). For fixed Re z, k, I, the HC in Im z > 0 or < 0
follows very simple. If Re z 4= 0, the singularities of the multiple singular integral
decouple at an intermediate state, where q" 0 and hence D" 4= 0. Then Privalov's
lemma can be repeatedly applied. In any case we can use (4.13) for estimating (4.12).
We subdivide the region of integration into sectors W, where

£(Re px{1)) < < E(Re p"^'1) < 1. (4.14)

In W we introduce as new coordinates a maximal set of v(l) independent particle
momenta p'x, p'ytx) through x(l), then v(2) — v(l) through x(2), etc. One obtains
m

c(p'k)2j2 m < min | Dx{i) | (4.15)

for 1 < t < K — 1 and v(t— l) + l<k< v(t). Lemma 3.2 gives the algorithm for
proving the HC of (4.12), since every d3p' can absorb a factor /7(D*(>))0('), if Eô(j) <
3/2 and if the x(j) are compatible with (4.15). Since the Holder index of q"(k, I, Re z)

can be chosen independent of G, one obtains a uniform Holder index pi > 0 for all
graphs G as in (3.19), (3.22).

It is now rather easy to reduce the study of the exact amplitudes to perturbation

theory, if there are no solutions of the homogeneous F-Y equations in B(ol, ß)

for all M < N. This condition will be denoted by (SN).

Fheorem 4.5: Assume y e H(6, q), 6> 3/2, q > 0, and (SN). Then the A-body
T-operator has a representation F(z) Fx(z) + F2(z). Fx(z) is a product of Af-body
amplitudes, M < A. F2(z) is a solution of the F-Y equations in some 5 (oc, /?), a > 3/2,
ß > 0, with a kernel which is MA except at the thresholds (4.3). The kernel of the
connected part of Tx(z) is holomorphic for real k, l e R^N and Imz^-0 except on the
union of finitely many Landau varieties Lf corresponding to physical rescattering or
threshold configurations.

Proof: We use induction with respect to A. For A 2, no assumptions on the
solution of subprocesses are necessary, and all information about the F-Y kernel
and inhomogeneity is contained in the definition of H(6, g). For A > 2, the exact
amplitude of a subsystem ar with connectivity v.r and ßr from both sides can be split as

fq*rßr _ 1N«-rßr + 2jy*rßr (4.16)
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where 2A0 is highly connected within a. For estimating the F-Y kernel AM(z) we choose

real momenta qx q" + q" as in Lemma 4.2. If some 2Aa-amplitude occurs, then we
can assume that the critical intermediate state (B.17) or (B.19) lies on one side of
2Aa. If 2Aa is within a dissipation scheme (B.21), then the dissipation within a makes
that in the intermediate states on both sides of 2Aa q" and qx+1 have vanishing relative
momenta within a. In an annihilation scheme a dissipation within a is compatible
with Theorem 4.1 and produces the same effect. We obtain qx q"+qx, where
q*(k, I, Re z) can be chosen holomorphic except on thresholds and HC everywhere,

if M is sufficiently large, q" is a linear combination of loop momenta, which in a rotation

(p) -> (1 — i cp) (p), sgncp Im z > 0, ] cp \ < cp0, never crosses a singularity of a
propagator. In the intermediate states next to a 2Aa-amplitude the relative momenta
within a in y" are zero.

We make the induction assumption that all highly connected subamplitudes have
the form (see (1.26))

X;%. h z) \ (k - l) *&?' (kx - ygy ~k(am) ,...,z- Ear(k)) (4.17)

2N%ß(k, I, z) is holomorphic for real k, I (always with k(af) l(af) 0, 1 < / < r) and

z$ [0, oo) and for k e ra (cp), l e Fß (cp) and Re z < F, argz 4= arg (1 — icp)2, where
I 9?

I < <Pq and cpQ > 0 is sufficiently small. ra (cp) is any semiflat Cœ contour in the

relative momenta with uniformly small imaginary parts and the restriction that, if
«;C ar and if Fa.(Re k) < X, then Im k(aj + xjaj) — cp Re k(aj+xjaf) for all i — 1 <
j < r (X fixed, sufficiently large). Furthermore A has at z 0 on these ra (cp), rß (cp)

HC boundary values. The asymptotic behaviour in k, I should be of the form N(k, a)

N(î, oc) after multiplication with (1 + F(Ä))"1 or (1 + E(î))-\
Let now M be sufficiently large (related to the minimal connectivity in Theorem

4.1) and Re z < E. The 2Aa-insertions then stay well-behaved also on rotated
contours. The external momenta of AM(k, I, z) only enter in the form 2N%ß(px, px+1,
z — Ea (px + q")). Let Im z 4= 0 and sgn cp Im z > 0. We claim that by placing the
loop momenta (p) on a C™ semiflat contour r(qp) which takes into account the restrictions

on the px, px+1, we stay for small cp in the holomorphy domains of the exact
amplitudes. This follows from Lemma 4.2: for Im z 4= 0 on such a contour z —

Ea (px + q") never lies on {y : argy arg (1 — icp)2}. For Im z -> 0, the cut is reached
at most at the origin and only if (4.3) holds. The assumed asymptotic behaviour
guarantees that there are no contributions from infinity in the deformation F(cp'),
0 < cp' < cp.

By Theorem 4.4, the kernel of AM(z) Ro(^)"1 has uniform HC and growth properties
for Im z -> 0 and allows a solution of the A-body problem in the spirit of Faddeev.
Let us reproduce the analyticity properties of the induction For z0 E0 + i 0,

F0 < E, the homogeneous equation /= ^4(z0)/has no non-trivial solution in B(y, ô)

by (SN). Assume that for all K > M, fK AK(z0)fK has a non-trivial solution in
B(y, Ô). Then for some 1 < k < K - 1

A (Zq) gK exp(2 it 1 kjK) gK (4.18)
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has a non-trivial solution in B(y, 8). By varying K, one can obtain for the compact
operator AM(z0) infinitely many different eigenvalues on the unit circle, which is

impossible. Hence (1 — AK(z0))~1 exists on B(a, ß) for some K > M and also (1 —

AK(z))~1 for all | z — z0 j < ò > 0, Im z ¦ Im zQ > 0, and is given by the series (4.2).
There exists a splitting F(z) Fx(z) + F2(z), where 772(2) is a sum of terms of

the form
OO _

AK(z)Zi(l - AK(z0)Y1 (Ak(z) - AK(z0))]» (1 - Ak(zq))-1 Ak(z) T(z) (4.19)
n 0

We study the kernel of (4.19) and in particular a term of nth order with right- and

left-connectivity oc, ß. We try to continue analytically in k, I, z on contours rjçp),
rß(cp) with Re z < F, argz 4= arg (1 — icp)2 and z — z0 j < ô' > 0. K is assumed to
be large. We use

(1 - A^Zq))-1 Ak(zq) + 1 + Ak(Zq) (1 - A^Zq))-1 Ak(Zq) (4.20)

In the first two terms one can reach contours ro(tp) in the external momenta, similarly

in the third term, where we keep the intermediate momenta on both sides of
(1 — AK(zq))'1 real. The series (4.19) converges uniformly on these deformed contours
for | z — Zq I < ô', ô' > 0 sufficiently small. Using the Heine-Borei theorem one
obtains finitely many zox 0 < z02 < < z0s E, such that the continuations (4.19)
provide the analyticity in the "second sheet" of the induction, if <p0 is small enough.
The HC of the solution F2(z) in F>(oc, ß) leads to the HC of the boundary values of
(4.17).

Tx(z) can be decomposed further by splitting all subamplitudes into highly
connected remainders with only threshold singularities and potentials and free
propagators. This decomposition is finite by Theorem 4.1. By applying the Landau argument

[13] on necessary conditions for physical region singularities to the case, where
the numerator functions have threshold singularities, one proves that except on the
union of finitely many real algebraic varieties of the Coleman-Norton type [9],
each connected with a perturbation-theoretic diagram, the connected part of Tx(k, I, z)

is holomorphic for k, l e R^N and Im z -> 0. Disconnected components have a similar
behaviour on linear subspaces (see (1.25)).

The A-body scattering amplitude for a 1-channel system is given by Theorem
1.3 as

(k\S\l)= òaN (k-l)-2ni d(E(k) - E (I)) F(k, I, E(k) + i 0). (4.21)

Let us introduce angular variables on the energy shell by

k. k Xi, It ky{(l<i< A), E(k) k2

Exi Eyl 0,Entx\~Enly2=l. (4.22)

If the v{J are superpositions of Yukawa potentials
' doij{x)

vij(P) =j yyfr - jd\ <yW | < oo suPP dot} C [y, oo), y > o, (4.23)

then the physical region regularity properties of F(k, I, z) can be extended to
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Fheorem 4.6: Assume that y satisfies (SN) and (4.23). Then the connected part
of F(kxx, kyN, k2 + iO) is for real xx, yN on (4.22) outside of the union of
finitely many Landau varieties Lt the boundary value of a function, which is
holomorphic for real xx, yN on {(4.22)} — U Lt and for k2 in a cut place C1 — (— oo,

i
— r] — [0, oo) with r > 0 and has holomorphic boundary values for k2 -> (0, oo).

The proof of this dispersion relation domain in the energy k2 has been obtained for
N 2, 3 by Rubin, Sugar and Tiktopoulos [21] and for general A by Riahi [5],
using the Fredholm series for F(k, I, z). Dedicated amateurs in analyticity can find
here a rich field of non-trivial exercises.

§ 5. Conclusion

The results of sections 3 and 4 do not yet provide a proof of asymptotic completeness

from first principles. Essential for the construction of section 3 was the
spectrum condition (SM) for M 2, 3, while section 4 was based on the stronger requirement

(SN). It remains to show that a non-trivial class of 2-body potentials satisfies
these restrictions.

We conjecture that (SN) holds for all distinguishible y e B(6, r) with sufficiently
large 6 and r, where possibly some small v„ have to be added to remove bound states

at thresholds. For proving (S2), we remark that, if v G B(0, 2), 6 > 3/2, then every
solution of the homogeneous equation q>m(p) (A (Em + i 0) q)m) (p) is C1 in p and
vanishes for np2 Em [3]. Therefore even at threshold Em 0, cpm(p)jp2 is L2 and
therefore a bound state. Kato [23] and Birman [24] have given very general
conditions on V(x) which permit only finitely many eigenvalues Em, all with finite
multiplicity and Em < 0. Faddeev [3] has remarked that the replacement V -> (1 + e) V,
e real, 0 < j e | < e0, removes any possible zero energy bound state.

For purely repulsive potentials, H has no discrete spectrum [25] : Consider a

Hamiltonian in L2(Rm), H — A + q(x), where the real-valued q satisfies

(A) q e Qa(Rm) for some a > 0, i.e.

Mq(x)q(x)= J \q(y)\\x-y\i-m-dy (5.1)

\x-y\ <1

is uniformly bounded for x e Rm.

(B) for every x e Rm, x 4= 0, there exists a radial derivative qr(x) of q(x) and

e-1 | q ((1 + e)x) - q(x) \ < q0(x) e Qß(x) (5.2)

holds for 0 < e < £0 and some ß > 0.

We call a potential q purely repulsive, if (A) and (B) hold and qr(x) < 0 for all
x e Rm, x #= 0. Weidmann [25] has proved the

Fheorem 5.1 : If q is purely repulsive, then H does not have any eigenvalue.
There are interesting classes of 2-body potentials satisfying (A) and (B), for

instance superpositions of Yukawa potentials.



Vol. 42, 1969 On the Quantum Mechanical N-Body Problem 451

Fheorem 5.2: Let y e H(6, g), 6 > 3/2, g > 0, be purely repulsive. Then there
are no non-trivial solutions of the homogeneous F-Y equations (1.24) in B(ot, ß),
6 > oc > 3/2, ß > 0.

Proof: For A 2, this follows from our preceeding remark concerning (S2).
Assume that there are no non-trivial solutions in B(a., ß) for all subsystems. Then
the A-body amplitudes have all only one component for every a. A solution of (1.24)
for z e [0, oo) is excluded by Theorem 5.1 and section 1.

Assume that there are fa e B(a.t ß) satisfying (1.24) with z E + iO, E > 0.

Then, as for A 3 [3], it is a consequence of the symmetry of V on X)(H°) thatfa(k)
0 for E(k) E. Furthermore fa(k) is holomorphic for real k(aN/aN_x), since the
dependence on this variable is entirely through the first potential. The estimates in [3]

carry over and show that
(E + i 0 - E(k))-1 Z'/"(*) (5-3)

IX

is a L2 function and therefore an eigenstate of H, unless Efa 0. By the F-Y equation

the latter condition implies fa 0 for all a.
Another class of A-body forces, for which there are no solutions of the

homogeneous F-Y equations in B(a., ß), has weak potentials.

Fheorem 5.3: Let vSJ e H(6, g), 6 > 3/2, g > 0. There exists a X0 > 0, such that
(SN) holds for all A-body systems with potentials X{j vljt — X0 < Xtj < X0.

Proof: From Theorem 4.4 it follows, assuming (SM) for M < N, that there are

no non-trivial solutions of (1.24) for Re z < E, if — X0 < Xtj < Xit where X0 X0(E).
More careful estimates show that the norms of AM(z) as mappings from B(a, ß) to
B(y, ô) increase only polynomially with Re z and are proportional to Xq Furthermore,
by increasing M and decreasing y > a > 3/2,(5 > ß > 0, one can find uniform bounds

independent of Re z, proportional to Xq. For A 3, this is a consequence of Lemma
7.2 in [3]. Since there exists probably a more direct proof of asymptotic completeness
for weak potentials along the lines of [7] and [8], we shall not bring the tedious

improvements of Theorem 4.4 and Lemma 3.3.

Corollary 5.4: Let v(, e H(6, g) satisfy (SN). Then unitarity and maximal analyticity

are stable against small perturbations in H(6, g).
This concludes our presentation of the quantum mechanical A-body problem. It

is desirable to treat by the Faddeev approach more general multichannel systems
with 2-body forces of short range. Short range many-body potentials are, of course,
always less singular. The Federbush technique [26] appears to be promising, if
the complicated geometry of deformed contours is efficiently treated. A direct
proof of (SN) (for undistinguishable particles in the subspace of totally
symmetric or antisymmetric wave functions) using a priori estimates on — A + q(x)
would be most welcome for our physical understanding of multichannel many-
body systems.

The lecturer wants to thank his many colleagues, in particularly L. D. Faddeev,
P. Federbush, W. Hunziker, C. Lovelace, D. Ruelle and G. Tiktopoulos, for
contributing to his partial understanding of quantum scattering theory.
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Appendix A : Kinematics

For every oE. {1, ¦ ¦ • A}, the following splitting of the kt, i e a, into CM and
relative momenta is useful

~m=Zkf Ma)=Zmi *i(o)=*,--^r*(a). (A.l)
tea iea * '

One has with n{ (2 mj)'1, n(a) (2 m(a))~1,

Znt kl M*) *(«)* +Zni *«(«)* • (A-2)
iea tea

Let i4 bea channel with a (4) a (ait a,-). Let/(w) satisfy a?(m) 3 m and define

£.(*) Ì>(a,)*(a,)"

^(A) £„(a)+Ì;ej

£(*) j>r ^ £.(*) + ZX Mû*>)* • (A.3)
r-1 r-1

Every sequence (ax, aN) of partitions with «,- D ai + x, 1 < i < A — 1, defines a
coupling scheme for Jacobi coordinates &(%) E kr, k(a2jax), k(aNjaN_x) :

k(al + xjat) ^AlM^Bff^ (A.4)v + v '' m{ae) + m{af)
y '

if ai + x becomes a{ by connecting ae, afto û(uû/. Usingn(ai+xla,) n(ae) + n(af) one
obtains for E(k) and any 2 < * < A — 1

E(k) Ea.(k) +Zn(aj + Xja3) k(aj+xja})2. (A.5)
i-i

For k, l e i?3A we define

àa.(k -l) fjÒ (k(aj + J«,) - / («,+1/«,) ÒA. (k-l), if a(A.) ax. (A.6)

Let BM(6, pi), 6 > 0, pi > 0, be the Banach space of all functions/: 7?3M -> C satisfying

\\f\\e,?,M < °°. where

11 / I k„,„ ««P ^^(Ä. Ö)-1 [I /(A) I + U{k+^rJ{k)1\ (A.7)

M -1
NM(k,d)=zïI(1 + \kij\r6- (A-8)

» ,-i
The summation in (A.8) extends over all (M ¦— l)-tupels (ktf) of partial sums

M

kij=Z°urH. oi}r 0,±l (A.9)
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which span kx, kM. In general we need Banach spaces

Bm(0,/t) XBMr(6,pi). (A. 10)
r-1

Without confusion we shall omit the index (M). Using a Cantor scheme one proves
that for y > a > 0, «5 > ß > 0, every bounded linear mapping B(x, ß) -> B(y, ô)
is compact in C(B(ol, ß)).

Appendix B : Auxiliary Theorems

Proof of Lemma 3.2: We need only to estimate A3 'v~4, since in AM, M > 3A — 4,
each new potential leads to an additional 3-dimensional loop integration with a

(1 + t)~3i2 bound for the new intermediate state. We set ô (6A - IO)"1. A3N~i is
a sum of products QXR0 Q3N_t R0, where Q{ has the form (1.22).

Let R'q be a propagator in Qx R0 R0 QK with / Q's to the left (if R'0 is a factor of
some Qit Qt Q[ R'0 Q", then Q\ is included) and r Q's to the right (Q'i possibly
included). Then at least

min {l,r,N -l.K-N +1} (B.l)

independent particle momenta through R'Q are undetermined by the external
momenta oi QxRq Qk. (Proof : In R'0, at least min {/, AT — 1} independent particle
momenta are not fixed by the external momenta to the left, since Qx R0 Qt_x

produces at least the connectivity aN_l+x, which is increased to ßv_z by the first
potential in Qt. Furthermore, the external momenta to the right can only determine
max {N — 1 — r, 0} particle momenta).

For every Q'R0QX QK R0 Q" (Q' R0, R0 Q" either 1 or the Q' or Q" are right
or left ends of some Q) we define a "niveau" scheme: Let g min {Ar — 1, K —

A + 1}. The propagators in Qg R0 QK-g+x belong to the "plateau" with "height"
g, the others to the "slope" with the following heights: 0for Q' R0, R0Q", 1 for Qx R0,

R0QK,...,g-lior Qg_x Rq, R0 QK_g+2.
Let g(l) > g(2) > g(f) be the order of the intermediate states in Qx R0

Qsn-i induced by (3.11). Assume that g(l) lies on the slope of Qx R0 Q3N-it where
we always choose the left-hand side for a simpler notation. Then g(l) belongs to some
Qa(i) Rq, where cr(l) < A — 1. The number v(l) of undertermined particle momenta
through g(l) satisfies v(l) > ct(1). We cut the graph at g(l).

The v(l) loop momenta through ^(l) provide a factor

(i + ^r3"'1"2- (B-2)

Let pt(l) be the number of intermediate states to the left of g(l). In this subgraph
there we can place a loop momentum on one of the particle lines after pi(l) — v(l) + 1

potentials, starting e.g. from the left, which gives a (1 + £)~3/2 bound for ,«(1) —

v(l) + 1 propagators. After v(l) — 1 potentials and on g(l) all momenta are
determined. Here we use a factor (1 + t^j)"1'0 from (B.2). There remains a power

t(1) ^ <t(1) (1-2 Ò)j2 (B.3)
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of proper times which are larger than those of all remaining propagators. We turn
to Ço'(i) Rq Qa(i)+i Ro • ¦ ¦ Qsn-4- ^n a somewhat simplified notation, let g(2) be the
intermediate state with largest proper time, again on the slope. Then we define as
above v(2), a(2), x(2). We continue with g(3), g(g) under the same conditions, as

long as a(g) < 2A — 3, and obtain a reserve power

r(g)>a(g) (1-2 0)12. (B.4)

If g 0, i.e. g(l) on the plateau, we replace (B.4) by 0. There are three alternatives:

(1) a(g) 2A - 3. Then ~(g) > A - 3/2 - (2A - 3) <5, which is enough to control
the < N — 2 intermediate states in Q'^g) R0 Q3 v_4, where no loop momentum
is free. There we need a power (A — 2) (1 + ô) of large proper times, which we
have:

T(g) _ (jv _ 2) (1 + Ò) > 1/2 - (3 A - 5) cS > 0 (B.5)

(2) A — 2 < a(g) < 2A — 3. By assumption the next largest propagator, g(g + 1),
lies on the plateau of Q'^g) R0 Q3N-i. There are v (g + 1) new loop momenta,
with

»(g+l)>3A-4- a(g) -N+l (B.6)

as a consequence of (B.l). The reserve, after having majorized the subgraph to
the left and g (g + 1), is

> a(g) (1 - 2 ò)/2 + (2 N - 3 - a(g)) (1 - 2 Ò)j2 (B.7)

which is enough by (B.5).

(3) a(g) < min{2A — 3, A — 2}. In this case v (g + 1) A — 1 and the reserve in¬

creases by (A — 1) (1 — 2 ô)/2. One obtains two niveau schemes, on which the
previous operations must be repeated. Since the total length is 3 A — 4, case (3)

can only occur once.

Proof of Lemma 3.3 : Without restriction we can assume that in G the right
connectivity ßx is established by the last A — 1 potentials

77 (V"Ro)- (B-8)
x-K -N + 2

We use the bound C (1 + E(q))_1 for the g2-terms and can determine explicitely that
the external momenta lx lw on the right hand-side occur in the A — 1 propagators
as A — 1 independent partial sums with coefficients 0, + 1. Therefore one obtains
for the kernel of (B.8) the trivial bound c A(/, 2) (c not always the same constant).

A bound in terms of the external momenta of the left-hand side of Q will be
generated by the repeated loop integrations in the multiplication of (B.8) with VxRq
Vk~n+1Rq.

Inductively we assume as bound in the external momenta p e KqN to the left a

sum of terms of the type

ofiA+iPiir (q<yI- (R9)
»¦-i \ -/
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After the multiplication with V" R0, two cases have to be distinguished :

(a) i(x) k or j(x) k. This leads to the typical majorization (x 1/2 (A — 1))

< /' dP'r I »12 (Pi-Pi)

[l + \P'i\+E |/>!-|)2(l + |£i|)e77(i + l/>i|)s
\ t=3 / t 3

<on(i + \pi\rQ(i + \Pr\rQ-x
j-3

iV

x / dxx2(i + xy-e[i + x + Z\Pi\\ (B-10)
i-S

using [3] (6 6x + 62,2> 6> 3/2, B, > 0) :

fdÜ (p'x) j vX2 (px -p'x)\<C(l+\px |r». (1 + | p'x \)-*. (BAI)

The integral in (B.10) is trivially bounded by < c n^_3 (1 + \p \)~%. Therefore

g->Q+lj2(N-l)=Q+X (B.12)
in the induction.

(b) Otherwise one has the typical situation

r ap[ \v12(Px-p'x)\(l + \px\)-e(l + \p'x + p3+...pNi)-e< / ~y N \-> ¦ (BAÓ)
J IT(i +1Pili« (i + \P'l\ + \P'1 + Pt+ ¦¦¦+PN\ + E\P{\)

1=4 \ t=S I

We apply the inequality [3] :

(i +1 px - p'x \r (i +1 p'x + pa + + pN \rs

< c (i +1 px + p3 + + pN \r
X [(1 + I Pi - P'r \re + (1 + I P'i + Ps + ¦ ¦ ¦ + Pn I)"5] (B.14)

and treat each term separately.
In the first term we use (B.14) :

1 + I Pi - P'i IP 1 + | P'r + | P'r + Ps + • • • + Pn +Z
N

y
1-3

Pi

N
-Q-X

JS
"<c(l+\px + p3...+pN \YxlJ(l + | Pi |P (l+\Ps

i-i
x (l + Ip'xIp+^-D*[(i + \px-p[|p +(i + \p1 + p3 + + pNpy (B.15)

and the remaining ^-integral is uniformly bounded in px, pN, since 6 ~ % + g +
X + 2 — g — (N — 1)#> 3. The second term can be treated in the same way. Since
I p2 I i Pi + Ps + ¦ ¦ ¦ Pn \, we obtain again (B.12).

After 3 A — 3 steps we obtain as left bound c N(k, 6), where some 6 > 3/2 can
be found, since in all estimates we have not completely exploited 6 > 3/2.

Remark: We have used repeatedly that for a, ß, y > 0, a + ß + y > 3, the func-

F(b, c) fd3a (1 + | a \)~a (1 + | a - b \)~ß (1 + | a - c \)~v (B.16)
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is uniformly bounded for (b, e) e R6. This can be proved by a (b, c)-dependent
subdivision of the region of integration.

Proof of Lemma 4.2: The determination of qx, 0 < x < X, q* 0, satisfying (4.4)
follows different schemes depending on the left-connectivity ax of G and on F e R1,

k e R3QN. Let 1 x(l) < x(2) < <x (A - 1) be such that V"W connects aN_p+x
to aN_p, 1 <p < A- 1.

Let 0 < r\x, r]N_x < rj be arbitrary, but fixed, with rj to be restricted later.

(a) Assume
E - Eafk) + rj2 k(a2jax)2 < 0. (B.17)

Then we shall define qx by an "«j-annihilation scheme", as the unique solution of
(4.4) with q° k, q"^'-1) 0 and satisfying for 1 < g < A - 2:

qMi) qy-di+i ^<*+i)-i. (B.18)

All q", 1 < x < x (A — 1), are linear combinations of the CM momenta k(af), 1 <
j < r, with coefficients +_ 1 or 0, if ar (ax, ¦ ¦ ¦ ar) is the connectivity of V1IIX=2 (R0Ve).

(b) Assume for some 2 < p < A — 1

E-Eap(k) + r,t,k(apjap_x)2>0

E-Eap+l(k) + Vl> + xk(ap + xlap)2<0 (if p < A - 2). (B.19)

Then we determine if, 0 < >« < x (N — p), by an "«^-annihilation scheme", starting
with q° k and terminating with

ff~P) y^T %•<») • • • ^f«-^-1 (B.20)

where a^, (a,, ap) and Q/(,-)3 ». There is again a unique solution to (4.4), if one
requires (B.18) for 1 <g < N -p. Let 1 < X < x (A - p), and let V1 FI\=2 (R0 VQ) have
connectivity ar (p + 1 < r < A). Then q% is a linear combination of (mijm(aj^)))
k(a'j(i)) (ar (a'x, ¦ ¦ a'r), a'i{i)3 i) and k(arjar_x), k(ap + xjap) with coefficients
which are uniformly bounded for all graphs G. The q'', X> x (N + 1 — p), are to be
determined by a "dissipation scheme":

qt1 i * id), j(X)

(liw + qm1) nmKnHÂ) + nm) i *'W

(rfd)1 + ^I)1) "iwH"iW + »«a)) ¦ /W (B.21)

This scheme has the property [20] that, if Ve+1R0 F" is connected, with external
qQ, q" and internal momenta qe+1, q"'1 related by (B.21), then E(qa) < % E(q°)
for some i < 1 (i universal for all A-body graphs with masses mx, mN). More
generally, if Ve+1 R0 V has the connectivity a, then Ea(q") Ea(qQ) and

E(q") - Ea(q°) < x((E(qs) - Ejtf)). (B.22))

If Ve+1R0 V is sufficiently connected, then the relative momenta qa(aNjaN_x),
qa(ai + xjaj) become so small that

E(q) - Ea(q) < (Eff) - EM)) (B.23)

«f
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for all q, which occur in an «-annihilation scheme leading from q" to (fn{lm(Oj^))

Therefore, the qx (X>x(N+l—p)) are determined by a dissipation scheme,

interrupted as often as possible by some ^-annihilation scheme. If Vs+1 R0 Va
is sufficiently connected, then one can reach qx 0 from the left. By proceeding
from the right in a similar way one can find a solution q" satisfying (1) and (4) in
Lemma 4.2.

Let us check property (2). If qx 0 and qx e Rg'v, then F + ie - E (qK (1 - icp))
never vanishes for 0 < cp < <p0 and 0 < s, and for e 0 and 0 < <p < <p0 only for
F 0, ql 0. If (a) is satisfied and if 1 < X < x (N - 1), where V1 R0 Vk has

connectivity au then we use

E + i e - E (qA + qA (1 - icp)) F + i s - Ea. (k)

-Zns [?s - m^fj %„>) + % (1 - icp)]', (B.24)

F - Ea.(k) E- Eas(k) + r,2 k(a2jax)2

i

- rj2 k(a2lax)2-2Jn(aJlaj_x) k(ajjaj_x)2 (B.25)
j-s

and the fact that q\ — (msjm(a^S)j) k(a^sA is a linear combination of k(aijai_x),
k(a2jax) with uniformly bounded coefficients. Therefore (B.24) never vanishes for
e > 0 and 0 < cp < <p0, cp0 > 0 sufficiently small uniformly for all G, and for e | 0

and 0 < tp < <Pq only if E 0, k^Ja^) k(a2jax) 0.
Assume that (b) holds. For the X > x (A + 1 — p), cp > 0, we use the identity

Dx E + i e - E (qx + ~ql (1 - icp)) E - E(qx)

+ E(ql) (1 + cp2) +±~ IHL^- + i Im Dx (B.26)

and E(f) < E(qx(-N+1~f1), with equality only for k(ap_xjap^2) k(ai+xja,) 0.

(ai : connectivity of V1 R0 V1). By construction

F - E&) >E- EaAk) + JX+1 i *(V«,-i)p «(a)te)) + »(a/w)

(x(N +1-P)), h j (x(N +1-P)) (B.27)

Let ri 1/2 min (ng + nh)2j(n(aj{g)) + n(am)). Then DÀ =*= 0 for e > 0, if (B.19) is
satisfied.

The other ton-trivial configuration is X<x(N — p), with connectivity ar
(ai, ar) of V Rq... V\
Then

Dx= E + ie- E (*) -27«. fe- dry *(%)) + # (1 " *»)* (B.28)
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By construction, the q* — (msjm(a'j^))) k(a'j(Sj) are linear combinations of the relative

momenta k(arjar_x), k(ap + xjap) with uniformly bounded coefficients. Furthermore

E - Ear(k) E - Eap+i(k) + rjp+x k(ap+xjapf

r

- Vp+i k(ap+ilapf -Z n(ajJaj-i) Hajla]-i)* (B-29)
i -P+2

and therefore (B.28) can vanish only for k(ar/ar_x) k(ap + xjap) 0 and E
Ea (k), ii cpQ is sufficiently small.

The finiteness (4) of different classes of solutions follows from the interposition
of «^-annihilation schemes, whenever this is possible. The HC finally is a consequence
of the fact that the different determinations (B.17) or (B.19) become equal with a

power law at the thresholds.
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